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REGULARIZATION OF A BACKWARD HEAT TRANSFER

PROBLEM WITH A NONLINEAR SOURCE

DANG DUC TRONG AND NGUYEN MINH DIEN

Dedicated to Professor Tran Duc Van on the occasion of his sixtieth birthday

Abstract. We consider the problem of finding, from the final data u(x, T ),
the function u satisfying

ut − uxx = f(x, t, u(x, t), ux(x, t)), (x, t) ∈ R × (0, T ).

The problem is ill-posed and we shall use the Fourier transform to get a nonlin-
ear integral equation in the frequency space. By truncating high frequencies,
we give a regularized solution. Error estimates are given.

1. Introduction

Let T be a positive number, we consider the problem of finding a solution
u(x, t), (x, t) ∈ R × [0, T ] of the system

{
ut − uxx = f(x, t, u(x, t), ux(x, t)), (x, t) ∈ R × (0, T ),

u(x, T ) = ϕ(x),
(1.1)

where ϕ(x), f(x, t, y, z) are given. The problem is called the nonlinear backward
heat problem included the first-order derivative. From now on, we shall denote

Fu,v(x, t) := f(x, t, u(x, t), v(x, t)).

Using the Fourier transform, we can rewrite the above system in the following
form

û(p, t) = e(T−t)p2
ϕ̂(p) −

T∫

t

e(s−t)p2
F̂u,ux(p, s) ds,(1.2)

where

ĝ(p, t) =
1√
2π

+∞∫

−∞

g(ξ, t)e−ipξ dξ.
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As known, the problem is severely ill-posed. The solution does not always exist
and in the case of existence, the solution can be non-unique. Moreover, in the
case of existence and uniqueness, it may not depend continuously on the given
data. Hence a regularization is in order. For forty years, many authors stud-
ied the linear backward problems. Lattes-Lions [6], Miller [7], and Trong-Tuan
[12] studied a regularization method called the quasi-reversibility (QR for short)
method by perturbing the main equation. Clark and Oppenheimer [3] gave an-
other regularization method by perturbing the final value (quasi-boundary value
(QBV) method). Recently, the problem was also studied in [4, 5, 10].

In the last nine years, we can find a few papers concerning the nonlinear back-
ward heat transfer problem. In [1, 2], the authors gave a result for the structural
stability for the Ginzburg-Landau equation. Quan and Dung, in [8], studied a
regularization method by transforming the problem into the one of minimizing
an appropriate functional. In [9], the authors used the Fourier transform to get
an integral equation in the frequency space. By perturbing directly the integral
equation, they constructed a regularization method. In [11], the authors mixed
two methods QR and QBV to regularize the problem. And recently, in [14], the
authors used the method of truncated Fourier series to regularize the problem.
However, we did not find any papers dealing with the nonlinear problem included
the first-order derivative ux.

Noting that, in (1.2), the “bad” factors are

e(T−t)p2
, e(s−t)p2

, 0 < t < s < T.

Since e(s−t)p2 → +∞ very fast when p → ∞, the solution is unstable. To regu-
larize the problem, we have to replace the factors by some appropriate ones. In
fact, we can truncate high frequencies |p| > cε where limε→0 cε = ∞. Letting
α > 0, 0 < ε < 1, in the present paper, we choose

(1.3) cε =

√

α ln

(
1

ε

)
.

We put

(1.4) Aε = [−cε, cε]

and

χAε(p) =

{
1 if p ∈ Aε,

0 if p /∈ Aε.

We shall approximate problem (1.2) by the following

Problem Pϕ: For ϕ ∈ L2(R), find uε ∈ C([0, T ];H1(R)) satisfying

ûε(p, t) = χAε(p)e
(T−t)p2

ϕ̂(p) − χAε(p)

T∫

t

e(s−t)p2
F̂uε,uε

x
(p, s) ds(1.5)
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or

uε(x, t) =
1√
2π

+∞∫

−∞

e(T−t)p2
ϕ̂(p)eipxχAε(p) dp

− 1√
2π

+∞∫

−∞

T∫

t

e(s−t)p2
F̂uε,uε

x
(p, s)eipxχAε(p) ds dp.(1.6)

From now on, we shall denote by ‖ . ‖ the norm of L2(R); | . |1 the norm of
H1(R) and ||| . ||| the sup-norm of C([0, T ],H1(R)).

The remains of our paper are divided into three sections. Section 2 gives some
preliminary results. In Section 3, we investigate the well-posedness of Problem
(Pϕ). In Section 4, we give two regularization results in the exact and non-exact
data cases.

2. Preliminary results

We first find some conditions of f such that (1.5) is defined. The integral in
the right hand side of (1.5) is well-defined if Fu,ux is in L∞(0, T ;L2(R)). In fact,
we have

Lemma 2.1. Let k > 0, let f : R× [0, T ]×R×R → R be a continuous function
satisfying

|f(x, y, v, w) − f(x, y, v′, w′)| ≤ k(|v − v′| + |w − w′|),

where x, v,w, v′, w′ ∈ R, y ∈ [0, T ].

If F0,0 ∈ C([0, T ], L2(R)), V,W ∈ C([0, T ], L2(R)), then

FV,W ∈ L∞((0, T ), L2(R)).

Moreover, for V, V1 ∈ C([0, T ],H1(R)), 0 ≤ t ≤ T , one has

‖F̂V,Vx(., t) − F̂V1,V1x
(., t)‖2 ≤ 2k2|V (., t) − V1(., t)|21.

Proof. For every 0 ≤ t ≤ T , one has

|FV,W (x, t) − F0,0(x, t)| ≤ k(|V (x, t) − 0| + |W (x, t) − 0|).

It follows that

‖FV,W (., t)‖ ≤ ‖F0,0(., t)‖ + k‖V (., t)‖ + k‖W (., t)‖
≤ sup

0≤t≤T

‖F0,0(., t)‖ + k sup
0≤t≤T

‖V (., t)‖ + k sup
0≤t≤T

‖W (., t)‖.
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Hence FV,W ∈ L∞((0, T ), L2(R)). The last inequality of Lemma 2.1 can be proved
by the Plancherel theorem

‖F̂V,Vx(., t) − F̂V1,V1x
(., t)‖2

=‖FV,Vx(., t) − FV1,V1x
(., t)‖2

≤k2

∞∫

−∞

(|V (x, t) − V1(x, t)| + |Vx(x, t) − V1x(x, t)|)2 dx

≤2k2
(
‖V (., t) − V1(., t)‖2 + ‖Vx(., t) − V1x(., t)‖2

)
.

This completes the proof of Lemma 2.1. �

Now, we give some estimates used in next sections. Putting

(2.1) bε = 1 + α ln

(
1

ε

)
,

we get

Lemma 2.2. Let 0 < ε < 1, α > 0 and let 0 ≤ t ≤ s ≤ T . We have

e(s−t)p2
χAε(p) ≤ ε(t−s)α

and √
1 + p2e(s−t)p2

χAε(p) ≤
√
bεε

(t−s)α.

Proof. We have

e(s−t)p2
χAε(p) ≤ e(s−t)α ln( 1

ε ) = ε(t−s)α.

Similarly, we have the second inequality. This completes the proof of Lemma
2.2. �

3. The well-posedness of problem (Pϕ)

Now, we investigate the well-posedness of Problem (Pϕ). The functions as in
(1.5) are often called the band-limited ones. In the pioneering paper [15], Zim-
merman studied a class of nonlinear PDE in the space of band-limited functions.
Under the assumption

|f(u,w)| ≤ Aαu
2 +Aβw

2,

he studied the local existence and the stability of the mentioned problem. In the
present paper, we have a slightly different condition

|f(x, t, u,w)| ≤ |f(x, t, 0, 0)| + k(|u| + |w|).
However, the Zimmerman method can be applied to prove the global existence
result for our problem. In fact, we have

Theorem 3.1. Let 0 < ε < 1, ϕ ∈ L2(R) and let f be as in Lemma 2.1. Then
Problem (Pϕ) has a unique solution uε ∈ C([0, T ];H1(R)).
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Proof. For w ∈ C([0, T ];H1(R)), we put

Q(w)(x, t) =
1√
2π
ψ(x, t) − 1√

2π

+∞∫

−∞

T∫

t

e(s−t)p2
F̂w,wx(p, s)eipxχAε(p) ds dp,

where

ψ(x, t) =

+∞∫

−∞

e(T−t)p2
ϕ̂(p)χAε(p)e

ipxdp.

We first prove that Q(w) ∈ C([0, T ];H1(R)). In fact, one has

Q̂(w)(p, t) = χAε(p)e
(T−t)p2

ϕ̂(p) − χAε(p)

T∫

t

e(s−t)p2
F̂w,wx(p, s) ds.

Using Lemma 2.1, we can verify directly that Q̂(w)(p, t); pQ̂(w)(p, t) are in
C([0, T ];L2(R)). Hence, the Plancherel theorem gives that Q(w) is in C([0, T ];
H1(R)) for every w ∈ C([0, T ];H1(R)).

For every w, v ∈ C([0, T ];H1(R)), using the Zimmerman method, we shall get
after some direct estimates

|Qm(v)(., t) −Qm(w)(., t)|21 ≤ 2m(T − t)2mk2mam
ε

(2m− 1)!!
|||v − w|||2,(3.1)

where (2m− 1)!! = 1.3 . . . (2m− 1) and aε = bεε
−2Tα.

Since limm→∞ Tmkm
√

2mam
ε

(2m−1)!! = 0, there exists a positive integer m0 such that

Qm0 is a contraction in C([0, T ];H1(R)). It follows that the equation Qm0(w) =
w has a unique solution U ∈ C([0, T ];H1(R)). We prove that Q(U) = U . In fact,
one has Q(Qm0)(U) = Q(U). Hence Qm0(Q(U)) = Q(U). By the uniqueness of
the fixed point of Qm0 , one has Q(U) = U . This completes the proof of Theorem
3.1. �

To get a stability result for the solution of problem (Pϕ), we consider

Theorem 3.2. Let 0 < ε < 1, ϕ, g ∈ L2(R) and let f be as in Lemma 2.1. If
u, v ∈ C([0, T ],H1(R)) are solutions of Problem (Pϕ), (Pg) respectively, then

|||u− v||| ≤
√

2bεe
2k2T 2

ε−αT (1+2k2T )||ϕ − g||.

Proof. From (1.5) and (1.6), we have

|u(., t) − v(., t)|21 = ||u(., t) − v(., t)||2 + ||ux(., t) − vx(., t)||2

= ||û(., t) − v̂(., t)||2 + ||ûx(., t) − v̂x(., t)||2

≤ K1 +K2,
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where

K1 = 2

+∞∫

−∞

(1 + p2)|e(T−t)p2
χAε(p)(ϕ̂(p) − ĝ(p))|2 dp,

K2 = 2

+∞∫

−∞

(1 + p2)

∣∣∣∣∣∣

T∫

t

e(s−t)p2
χAε(p)

(
F̂u,ux(p, s) − F̂v,vx(p, s)

)
ds

∣∣∣∣∣∣

2

dp.

We estimate K1. Lemma 2.2 gives

K1 ≤ 2bεε
2(t−T )α

+∞∫

−∞

|ϕ̂(p) − ĝ(p)|2 dp

≤ 2bεε
2(t−T )α||ϕ− g||2.

We estimate K2. From Lemma 2.2, we have

K2 = 2

+∞∫

−∞

∣∣∣∣∣∣

T∫

t

√
1 + p2e(s−t)p2

χAε(p)
(
F̂u,ux(p, s) − F̂v,vx(p, s)

)
ds

∣∣∣∣∣∣

2

dp

≤ 2bεε
2tα

+∞∫

−∞

∣∣∣∣∣∣

T∫

t

ε−sα
(
F̂u,ux(p, s) − F̂v,vx(p, s)

)
ds

∣∣∣∣∣∣

2

dp

≤ 2(T − t)bεε
2tα

+∞∫

−∞

T∫

t

ε−2sα
∣∣∣F̂u,ux(p, s) − F̂v,vx(p, s)

∣∣∣
2
ds dp.

Lemma 2.1 gives

K2 ≤ 2(T − t)bεε
2tα

T∫

t

ε−2sα||F̂u,ux(., s) − F̂v,vx(., s)||2 ds

≤ 4k2(T − t)bεε
2tα

T∫

t

ε−2sα|u(., s) − v(., s)|21 ds.

So, we have

ε−2tα|u(., t) − v(., t)|21 ≤ 2bεε
−2Tα||ϕ− g||2

+4k2Tbε

T∫

t

ε−2sα|u(., s) − v(., s)|21 ds.
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Using the Gronwall inequality, we have

|u(., ) − v(., t)|1 ≤
√

2bεε
(t−T )α exp

(
2bεk

2T (T − t)
)
||ϕ− g||

=
√

2bεe
2k2T (T−t)ε−α(T−t)(1+2k2T )||ϕ − g||

≤
√

2bεe
2k2T 2

ε−αT (1+2k2T )||ϕ− g||.
It follows that

|||u− v||| ≤
√

2bεe
2k2T 2

ε−αT (1+2k2T )||ϕ − g||.
This completes the proof of Theorem 3.2. �

4. Regularization and error estimates

In this section, we shall state and prove some regularization results under many
preassumed conditions on the exact solution u of problem (1.2). We first have

Theorem 4.1. Let β ≥ 0, let ϕ, f be as in Theorem 3.1. Assume that problem
(1.2) has a solution

u ∈ C([0, T ];H1(R))

satisfying

(4.1) A := sup
0≤t≤T






+∞∫

−∞

(1 + p2)e2(β+t)p2 |û(p, t)|2 dp




 < +∞.

Then, for every t ∈ [0, T ], we have

|u(., t) − uε(., t)|1 ≤
√
A exp(k2T (T − t))εα(β+t−k2T (T−t)),

where we denote by uε the unique solution of Problem (Pϕ).

Remarks. 1. If β = 0 in (4.1), f ≡ 0 and if we have the preassumption u(·, 0) ∈
H1(R), then (4.1) holds. In fact, in this case, we have etp

2
û(p, t) = û(p, 0). Since

u(x, 0) is in H1(R) one has

+∞∫

−∞

(1 + p2)e2tp2 |û(p, t)|2 dp = ||
√

1 + p2û(., 0)||2 = |u(., 0)|21.

Hence the condition (4.1) is reasonable.

2. If β > k2T 2, then limε→0 |u(., 0) − uε(., 0)|1 = 0.

3. If β = 0, then uε(x, t) is a good approximation of u(x, t) when t− k2T (T −
t) > 0, i.e. k2T 2

1+k2T
< t ≤ T .

4. If f = f(x, t, u) does not depend on ux, using the technique of the proof of
Theorem 4.1 (but easier), we can prove that

||u(., 0) − uε(., 0)|| ≤Mεα(β+t).
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Proof of Theorem 4.1. We have

|u(., t) − uε(., t)|21 = ||u(., t) − uε(., t)||2 + ||ux(., t) − uε
x(., t)||2

= ||û(., t) − ûε(., t)||2 + ||ûx(., t) − ûε
x(., t)||2

= I1 + I2,

where

I1 =

+∞∫

−∞

(1 + p2)

∣∣∣∣∣(1 − χAε(p))û(p, t)

∣∣∣∣∣

2

dp,

I2 =

+∞∫

−∞

(1 + p2)

∣∣∣∣∣

T∫

t

e(s−t)p2
χAε(p)

(
F̂uε,uε

x
(p, s) − F̂u,ux(p, s)

)
ds

∣∣∣∣∣

2

dp.

We estimate I1. We have

I1 =

∫

|p|≥cε

(1 + p2)|û(p, t)|2 dp

=

∫

|p|≥cε

e−2(β+t)p2
(1 + p2)e2(β+t)p2 |û(p, t)|2 dp,

where we recall that cε is defined in (1.3). For |p| > cε, we have

e−2(β+t)p2 ≤ exp (−2(β + t)c2ε ) = ε2α(β+t).

It follows that

I1 ≤ ε2α(β+t)

+∞∫

−∞

(1 + p2)e2(β+t)p2 |û(p, t)|2 dp

≤ ε2α(β+t)A.

We estimate I2. We first note that

I2 =

+∞∫

−∞

(1 + p2)

∣∣∣∣∣∣

T∫

t

e(s−t)p2
χAε(p)

(
F̂uε,uε

x
(p, s) − F̂u,ux(p, s)

)
ds

∣∣∣∣∣∣

2

dp

=

+∞∫

−∞

∣∣∣∣∣∣

T∫

t

√
1 + p2e(s−t)p2

χAε(p)
(
F̂uε,uε

x
(p, s) − F̂u,ux(p, s)

)
ds

∣∣∣∣∣∣

2

dp.



REGULARIZATION OF A BACKWARD HEAT TRANSFER PROBLEM 513

Using Lemma 2.2, we have

I2 ≤ bεε
2tα

+∞∫

−∞

∣∣∣∣∣∣

T∫

t

ε−sα
(
F̂uε,uε

x
(p, s) − F̂u,ux(p, s)

)
ds

∣∣∣∣∣∣

2

dp

≤ (T − t)bεε
2tα

+∞∫

−∞

T∫

t

ε−2sα
∣∣∣F̂uε,uε

x
(p, s) − F̂u,ux(p, s)

∣∣∣
2
ds dp

≤ (T − t)bεε
2tα

T∫

t

ε−2sα||F̂uε,uε
x
(., s) − F̂u,ux(., s)||2 ds.

Lemma 2.1 gives

I2 ≤ 2k2(T − t)bεε
2tα

T∫

t

ε−2sα|uε(., s)) − u(., s)|21 ds.

It follows that

ε−2tα|uε(., t)) − u(., t)|21 ≤ ε2αβA+ 2k2Tbε

T∫

t

ε−2sα|uε(., s)) − u(., s)|21 ds.

Using the Gronwall inequality, we have

|uε(., t)) − u(., t)|21 ≤ Aε2α(β+t) exp
(
2bεk

2T (T − t)
)
.

On the other hand,

exp
(
2bεk

2T (T − t)
)

= exp

((
2 + 2α ln

(
1

ε

))
k2T (T − t)

)

= e2k2T (T−t)ε−2αk2T (T−t).

This completes the proof of Theorem 4.1. �

In the case of non-exact data, one has

Theorem 4.2. Let ϕ, f be as in Theorem 3.1 and let β > k2T 2. Assume that
problem (1.2) has a solution

u ∈ C([0, T ];H1(R))

satisfying

A := sup
0≤t≤T






+∞∫

−∞

(1 + p2)e(β+t)p2 |û(p, t)|2 dp




 < +∞.

Let δ ∈ (0, 1) and let ϕδ ∈ L2(R) be a measured data such that

||ϕδ − ϕ|| ≤ δ.
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Then from ϕδ , we can construct a function zδ ∈ C([0, T ];H1(R)) satisfying

|zδ(., t) − u(., t)|1 ≤
(
√
Aek

2T 2
+

√

2(1 + µ) ln

(
1

δ

)
e2k2T 2

)
δν(4.2)

for every t ∈ [0, T ], where

µ = α2(β + T + k2T 2), ν =
β − k2T 2

β + T + k2T 2
.

Proof. Let uε be the solution of Problem (Pϕ) and let uε,δ be the solution of
problem (Pϕδ

).

From Theorem 4.1, we have

|u(., t) − uε(., t)|1 ≤
√
Aek

2T 2
εα(β−k2T 2)(4.3)

for every t ∈ [0, T ].

From Theorem 3.2, we have

|uε(., t) − uε,δ(., t)|1 ≤
√

2bεe
2k2T 2

ε−α(T+2k2T 2)||ϕ− ϕδ ||
≤ δ

√
2bεe

2k2T 2
ε−α(T+2k2T 2)(4.4)

where bε is defined in (2.1). So we have

|u(., t) − uε,δ(., t)|1 ≤
√
Aek

2T 2
εα(β−k2T 2) + δ

√
2bεe

2k2T 2
ε−α(T+2k2T 2).

Choosing

ε = ε(δ) = δ
1

α(β+T+k2T2) ,

we get

|u(., t) − uε(δ),δ(., t)|1 ≤
(
√
Aek

2T 2
+

√

2(1 + µ) ln

(
1

δ

)
e2k2T 2

)
δν .

Put zδ(x, t) = uε(δ),δ(x, t), for every x ∈ R, t ∈ [0, T ]. Then from (4.3) and
(4.4), we have the inequality (4.2).

This completes the proof of the theorem. �
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