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Abstract. This paper introduces a mathematical formulation of the problem
of detection and characterization of shallowly buried landmines (more gener-
ally, buried objects) using passive thermal infrared technique. The problem
consists of two steps. In the first step, referred to as thermal modeling which
aims at predicting the soil temperature provided by the thermal properties of
the soil and the buried objects, a parabolic partial differential equation based
model is formulated. The proposed model is validated using experimental
data. For solving the model, a splitting finite difference scheme is used. In
the second step, referred to as inverse problem setting for landmine detection,
the forward thermal model and acquired infrared images are used to detect
the presence of buried objects and characterize them based on the estima-
tion of their thermal and geometrical properties. Mathematically, this inverse
problem is stated as the estimation of a piecewise constant coefficient of the
heat transfer equation. To reduce the ill-posedness of this problem, which is
due to the lack of spatial information in the measured data, we make use of
a parametrization of the coefficient which needs only a small number of un-
knowns. The problem is then solved by gradient-based optimization methods.
Numerical results both validate the proposed thermal model and illustrate the
performance of the suggested algorithm for the inverse problem.

1. Introduction

Thermal infrared (IR) technique has been applied to the detection of shallowly
buried landmines for more than a decade and has been found to be promis-
ing for non-metallic mines. Its aim is to detect and distinguish landmines from
other buried objects (false alarms) using diurnal IR measurements of the air-soil
interface. The detection principle is based on the perturbation of the ground tem-
perature due to the presence of buried objects. Indeed, the presence of buried
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objects, which have different properties compared to those of the soil, affects the
diurnal heat conduction inside the soil. Consequently, the soil temperature on
the ground above the objects is often different from that of the background. This
temperature can be measured by an IR imaging system placed above the soil
area. Figure 1 describes several heat transfer processes inside the soil and at the
soil-air interface.

From measured thermal images, it is possible to detect the presence of shallowly
buried anomalies using image processing techniques such as segmentation [6].
However, to classify them, one has to estimate their material properties (ther-
mal diffusivity), size and shape. Such a problem is often solved in two steps.
In the first step, referred to as thermal modeling which aims at predicting the
soil temperature provided by the thermal properties of the soil and the buried
objects, a parabolic partial differential equation based model is formulated. In
the second step, referred to as inverse problem setting for landmine detection, the
forward thermal model and acquired IR images are used to detect the presence
of buried objects and characterize them based on the estimation of their thermal
and geometrical properties.

The forward thermal model helps understanding the effect of buried objects on
the soil-surface thermal signatures, while the inverse problem helps classifying the
detected objects. So far, most of the works in IR technique for landmine detection
have focused on defining and validating thermal models for buried landmines (see,
e.g. [17, 24, 19]). However, there are just a few works considering the inverse
problem [19, 31, 35, 33]. Mathematically, the inverse problem is stated as the
estimation of a piecewise constant coefficient of the heat transfer equation from
measurements on a surface of the boundary of the domain under investigation.
Such problems have been discussed in some aspects in [2, 3, 4, 7, 8]. There are two
main difficulties in dealing with this problem: (i) it is extremely difficult to have
a thermal model which is valid under different soil and weather conditions; (ii)
the lack of spatial information in observed data since it is only taken at the air-
soil interface while the coefficient needed to be estimated is a three-dimensional
function. This is different from most of the publications on this topic in the
literature in which the measured data is available on the whole boundary or even
in the whole domain (see, e.g., [11, 12, 14]).

Note that IR cameras do not measure the temperature of the soil surface it-
self but the thermal radiation emitted from the soil surface. In order to use the
measured IR images in thermal modeling, a pre-processing chain, consisting of:
1) radiometric calibration; 2) temporal co-registration; 3) apparent temperature
conversion; and 4) inverse perspective (ground) projection, must be applied. The
output of this pre-processing chain is an image sequence of the soil-surface appar-
ent temperature. A detailed description of the pre-processing steps is given in [6].
In this work, we consider the measured IR images as the soil-surface temperature
measured during the period of analysis.

In [34] we proposed and validated a thermal model with the estimation of
soil thermal properties from in situ measurements. This approach enables us
to apply the thermal model in a wide range of soil and weather conditions. In
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[35, 33] the inverse problem was investigated. In these papers, keeping in mind
our application to buried landmine detection, we assumed that buried objects
were upright cylinders, but their horizontal cross-sections were not necessarily
circular. Under these assumptions, a buried object was specified by (i) its depth
of burial, (ii) its height, (iii) its horizontal cross-section, and (iv) its thermal
diffusivity. Then a two step method was proposed to solve the inverse problem.
In the first step, we considered a given cross-section which was obtained by image
segmentation techniques [35], and we estimated three parameters, namely, the
depth of burial, the height, and the thermal diffusivity. This approach helps
reducing the ill-posedness of the estimation problem as it reduces the number of
unknown parameters. However, its result depends on the accuracy of the cross-
section being given by the anomaly detection procedures. In the second step,
we used the result of the previous step as an initial guess for estimating the
full parameter vector, namely, the depth of burial, the height and the thermal
diffusivity on a horizontal plane of the soil domain across the object. The cross-
section was improved via the estimated thermal diffusivity on this plane. This
step helps improving the result of the first step.

This paper gives a review of our previous works [31, 32, 33, 34, 35] with new
contributions. It is different from the above ones in two points. First, we propose
a slightly different thermal model. Second, in solving the inverse problem, we
make use of another parametrization method to represent the shape of the object.
More precisely, we also assume that the object is an upright cylinder with a
star-shaped cross-section. In this case, the cross-section can be parametrized
by Fourier coefficients of its radial function. If the cross-section is regular, the
number of Fourier coefficients to be estimated can be significantly reduced. For
example, only one parameter is needed for a circular cross-section. Using this
parametrization method we only need to estimate a small number of unknowns.
This makes the inverse problem more stable.

To solve the inverse problem, we also use gradient-based iterative methods as
in [35, 33]. An estimate of the object’s cross-section using the image segmentation
technique described in [35] is used as an initial guess for the iterative method.

The rest of the paper is organized as follows. In Section 2, we describe the
mathematical formulation of the thermal modeling and discuss its well-posedness.
In this section we also propose a finite difference splitting scheme for solving the
thermal model and prove its convergence. Section 3 is devoted to the inverse
problem which is stated as a minimization problem using the least-squares ap-
proach. The gradient of the objective function is given and the parametrization
of the object’s shape is described. In Section 4, we validate the proposed thermal
model for experimental data and illustrate the performance of the algorithm for
the inverse problem with both simulated and experimental data. Finally, some
conclusions and perspectives are given in Section 5.
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Figure 1. Heat transfer processes inside the soil and on the air-
soil interface.

2. Forward thermal modeling for landmine detection

The principle of the IR technique for landmine (more generally, buried object)
detection is based on unusual diurnally temperature signatures on the ground
surface due to the presence of buried objects. The change in the ground tem-
perature depends not only on the ground properties and heating conditions but
also on the physical properties, size and depth of burial of the buried objects.
Understanding how these parameters affect the ground temperature is crucial
to the detection and classification process. This is the objective of the forward
modeling. In this section, we formulate a mathematical model approximating
the ground temperature given a buried landmine (object) under natural heating
conditions. The model is described as an initial boundary value problem for the
heat equation.

Figure 2. Orthonormal Cartesian coordinate system associated
with the soil volume.

2.1. Mathematical formulation of the thermal model. For simplicity, we
assume that the ground surface in a small area is flat (see Remark 2.2). Within
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this area, let us consider a rectangular parallelepiped Ω, which contains a buried
landmine as shown in Figure 2. We associate the soil volume with an orthonor-
mal Cartesian coordinate system in which the coordinate of a point is denoted
by x := (x1, x2, x3)

′. Without loss of generality, we assume that Ω := {x : 0 <
xi < li, i = 1, 2, 3}. We denote by Γ the boundary of Ω. We also denote by
Γ1 the ground surface – the only part of Γ which is accessible for IR measure-
ments – and Γ2 := Γ \ Γ1. The duration of analysis is denoted by (0, te) and
Si

te := Γi × (0, te), i = 1, 2. In this work, we assume that the soil and the mine
are isotropic and thermally homogeneous. Moreover, the soil moisture content
variation is assumed to be negligible during the period of analysis. Then the
temperature distribution T (x, t), (x, t) ∈ Qte := Ω× (0, te), can be approximated
by the solution to the following parabolic partial differential equation [5, 29]

(2.1)
∂T

∂t
=

3
∑

i=1

∂

∂xi

(

α(x)
∂T

∂xi

)

, ∀(x, t) ∈ Qte ,

where α(x) (m2/s) is the thermal diffusivity (of the soil and the buried mine) in
the domain.

2.1.1. Initial and boundary conditions. In order to solve (2.1), one has to know
the initial temperature distribution as well as necessary boundary conditions, e.g.
the prescribed soil temperature or incoming heat flux on the boundary Γ of the
domain. These conditions are described in the following.

1. The initial condition expresses the temperature distribution in Ω at the
beginning of analysis

(2.2) T (x, 0) = g(x), x ∈ Ω.

We note that, in practice, the initial soil temperature distribution g(x) is gen-
erally not known in an arbitrary minefield. In [31, 34], we approximated it by
interpolations from the measured soil temperature at a reference location. This
temperature is measured at different depths. In doing so, we made use of the
assumption that the temperature of the mine is almost the same as that of the
surrounding soil. However, this assumption is reasonable only at some certain
time instants such as around sunrise or sunset [19, 31]. Therefore, we should
start the analysis in these time periods.

2. On the ground surface, there are different heat transfer processes resulting
in an incoming heat flux given by

(2.3) κs
∂T

∂n
(x, t) = qnet(x, t), (x, t) ∈ S1

te
,

where n is the outward unit normal vector to Γ and κs (W/m/K) is the soil
thermal conductivity. In this work, we assume that the evaporation/condensation
is negligible during the period of analysis, so the surface heat flux (2.3) can be
approximated as follows [36, 16]

(2.4) qnet(x, t) = qsun(t) + qsky(t) + qconv(x, t) − qemis(x, t),

where
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• qsun := εsunEsun (W/m2) is the solar irradiance absorbed by the soil with
εsun being the solar absorption coefficient of the soil and Esun (W/m2)
the solar irradiance on the earth’s surface.

• qsky := εskyEsky (W/m2) is the sky irradiance absorbed by the soil with
εsky being the sky absorption coefficient of the soil and Esky (W/m2) the
sky irradiance on the earth’s surface.

• qconv (W/m2) is the heat transfer by convection between the soil and the
air. It refers to the transport of heat between the soil surface and the
atmosphere by motion of the air.

• qemis (W/m2) is the thermal emittance of the soil. It corresponds to the
thermal radiation emitted by the soil surface.

In practice, the solar irradiance Esun and the sky irradiance Esky are either
approximated using model formulas [36, 16] or measured via a weather station
placed near the minefield [6]. Comparisons between the models and measured
data were discussed in [34]. In this work, we use the latter method in order to
avoid possible inaccuracies of the models in real situations.

From Stefan–Boltzmann’s law [16], the thermal emittance is given by

(2.5) qemis(x, t) = εsoilσT 4(x, t), (x, t) ∈ S1
te ,

with εsoil being the soil thermal emissivity and σ = 5.67×10−8 (W/m2/K4) being
Stefan–Boltzmann’s constant.

The convection term in (2.4) is usually approximated by Newton’s law [5]

(2.6) qconv(x, t) = hconv[Tair(t) − T (x, t)], (x, t) ∈ S1
te ,

where hconv (W/m2/K) is the convective heat transfer coefficient and Tair is
the air temperature. In general, the convective heat transfer coefficient depends
on wind speed. Consequently, it varies from time to time and is difficult to
be accurately approximated. In this work, for simplicity, we assume that the
model is only applicable in the absence of strong wind, so the coefficient h can
be considered as a constant which can be estimated using in situ measurements,
see [34, 31].

From (2.4)–(2.6) the heat flux at the air-soil interface is rewritten as

qnet(x, t) = εsunEsun(t) + εskyEsky(t)

− εsoilσT 4(x, t) + hconv[Tair(t) − T (x, t)], (x, t) ∈ S1
te .

(2.7)

3. On the part Γ2 of the boundary, we assume that the considered domain
is large and deep enough so that the effect of the landmine on the bottom and
vertical boundary surfaces can be neglected. In this case, under the assumption of
homogeneous soil, the heat balance takes place on Γ2. This condition is described
by the equation

(2.8)
∂T

∂n
(x, t) = 0 for (x, t) ∈ S2

te .

Equation (2.1) with conditions (2.2)–(2.8) is considered as the thermal model of
the soil with the presence of shallowly buried landmines.
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Remark 2.1. Concerning the boundary condition at the bottom of the soil
volume, we can also assume that the soil temperature at a sufficiently deep depth
is constant in the period of analysis which results in the Dirichlet boundary
condition. This condition was used in our previous papers [34, 35, 33].

2.1.2. Linearization. We note that the thermal model (2.1)–(2.8) is nonlinear
due to the nonlinearity of the boundary condition (2.7) on the air-soil inter-
face. Therefore, solving this problem is really time-consuming. To overcome this
difficulty, the nonlinear condition is usually linearized. In the literature, the lin-
earization has been performed using the modeled sky irradiance [36, 24]. In this
work, the linearization is performed by approximating the soil thermal emittance
term (2.5) by the following form

(2.9) qemis(x, t) = εsoilσT 4(x, t) ≈ εsoilσT 4
0 + 4εsoilσT 3

0 [T (x, t) − T0],

if T (x,t)−T0

T0
<< 1. The value T0 may be chosen as the mean value of the soil

surface temperature measured by, e.g. a thermocouple. From (2.3), (2.7) and
(2.9) we have

(2.10) αs
∂T (x, t)

∂n
+ pT (x, t) = q(t), (x, t) ∈ S1

te ,

with αs (m2/s) being the thermal diffusivity of the homogeneous soil and

p :=
αs

κs
(4εsoilσT 3

0 + hconv),

q(t) :=
αs

κs
[εsunEsun(t) + εskyEsky(t) + 3εsoilσT 4

0 + hconvTair(t)].
(2.11)

Here Esun, Esky, T0 and Tair are measured values. In (2.10), we have multiplied
both sides by αs/κs for the convenience of mathematical analysis and numerical
methods presented in the sequel.

In summary, we have the following linearized forward thermal model of shal-
lowly buried objects

(2.12)



























∂T
∂t

(x, t) −
3

∑

i=1

∂
∂xi

(

α(x)∂T (x,t)
∂xi

)

= 0, (x, t) ∈ Qte ,

α(x)∂T
∂n

(x, t) + pT (x, t) = q(t), (x, t) ∈ S1
te ,

∂T
∂n

(x, t) = 0, (x, t) ∈ S2
te

,

T (x, 0) = g(x), x ∈ Ω,

Remark 2.2. Above we assumed that the soil is isotropic and homogeneous
and the soil surface is flat. Moreover, the moisture content variation and the
evaporation/condensation are negligible during the period of analysis. These
assumptions, of course, are not accurate under all soil and weather conditions.
However, in our application, we assume that the thermal model can only be
applied under reasonably good weather conditions such as dry climates with the
absence of strong wind or rain. Under these conditions, the assumptions on the
moisture content variation and the evaporation/condensation are acceptable. In
addition, we only consider a small soil volume, say, 50 cm by 50 cm by 50 cm
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around each mine. Within such a small area, the assumptions on the homogeneity
of the soil and flat soil surface are acceptable. These assumptions have also been
made in the literature (see, e.g. [17, 24, 20] and the references therein).

Under the assumption of homogeneous soil and mine, the thermal diffusivity
α(x) is piecewise constant, that is

α(x) =

{

αo, x ∈ Ω1,

αs, x ∈ Ω \ Ω1,

where αo is the thermal diffusivity of the mine and Ω1 is the sub-domain of Ω
occupied by the mine.

Remark 2.3. In practical applications, it should be remarked that the soil ther-
mal diffusivity αs and the parameters p and q in (2.11) are generally not available.
Moreover, it is not easy to measure these parameters in an arbitrary minefield.
In our approach, these parameters are estimated using in situ measurements.
More precisely, the soil thermal diffusivity can be estimated using measured soil
temperature profiles at different depths at a reference location. The estimation
of αs is then treated as a 1D coefficient reconstruction problem. The surface
coefficients p and q(t) are estimated from the ground temperature measured by
the IR camera using a 1D model with homogeneous soil. For more details, we
refer the reader to [31, 34].

2.2. Well-posedness of the forward thermal model. Since the coefficient
α(x) is discontinuous, problem (2.12) does not have solutions in the classical
sense. We therefore introduce the notion of generalized solutions defined in the
Sobolev space H1,1(Qte). For definitions and properties of Sobolev spaces, we
refer the reader to [1, 18]. The generalized solutions of the thermal model (2.12)
are defined as follows.

Definition 2.4. A function T (x, t) is called a generalized solution of (2.12) in
the Sobolev space H1,1(Qte) if it belongs to this space and satisfies the following
problem
(2.13)






∫

Qte

Ttηdxdt +
∫

Qte

αTxηxdxdt +
∫

S1
te

pTηdx′
3dt =

∫

S1
te

qηdx′
3dt, ∀η ∈ H1,0(Qte),

T (x, 0) = g(x), x ∈ Ω,

where dx′
3 := dx1dx2 and Txηx :=

3
∑

i=1
Txi

ηxi
.

For a general interest, in this section we consider problem (2.12) with the right
hand side of the governing equation being set to be f(x, t), i.e. the following
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problem

(2.14)







































∫

Qte

utηdxdt +

∫

Qte

αuxηxdxdt +

∫

S1
te

puηdx′
3dt

=

∫

Qte

fηdxdt +

∫

S1
te

qηdx′
3dt,∀η ∈ H1,0(Qte),

u(x, 0) = g(x), x ∈ Ω.

The well-posedness of the problem (2.14) is stated in the following theorem. Its
proof is demonstrated in [31].

Theorem 2.5. For problem (2.14) suppose that

(1) α ∈ L∞(Ω) : 0 < ν ≤ α(x) ≤ µ, for a.e. x ∈ Ω,

(2) p > 0, f ∈ L2(Qte), q ∈ H1(0, te), g(x) ∈ H1(Ω).

Then it has a unique solution u in H1,1(Qte). Moreover, this solution satisfies

the energy balance inequality

(2.15) ‖u‖H1,1(Qte) ≤ C
(

‖q‖H1(0,te) + ‖g‖H1(Ω) + ‖f‖L2(Ω)

)

,

where C is a positive constant independent of u.

2.3. A splitting numerical method for solving the forward thermal

model. In our approach, we apply the finite difference method proposed by
Ladyzhenskaya [18] for solving the thermal model (2.12). The method introduces
difference schemes based on the integral equation corresponding to the definition
of the generalized solution instead of the original differential equation. The con-
vergence of approximate solutions to the generalized one of the original problem
is proved based on embedding theorems of interpolations of grid functions. The
method consists of two steps. First, we approximate the original problem (2.12)
by a system of ordinary differential equations of the time variable t by discretiz-
ing the problem in the space variable x. Then a splitting scheme is introduced
for solving the system (see [21, 22, 27] and the references therein). To prove the
convergence of the difference scheme to the solution of the original problem we
need to recall some properties of interpolations of grid functions. For further
discussions, we refer the reader to [18], Chapter 6.

2.3.1. Interpolations of grid functions. We divide the domain Ω into small cells
by the planes {xi = kihi} with ki = 0, 1, . . . , Ni, hi = li/Ni. To simplify the
notation, we set x(k) := (k1h1, k2h2, k3h3)

′, k := (k1, k2, k3), k + 1 := (k1 +
1, k2 + 1, k3 + 1); h := (h1, h2, h3)

′ and ∆h := h1h2h3. We also denote by ei the
unit normal vector along the xi-direction in R3, i.e. e1 := (1, 0, 0)′ and so on. In
the following, we need to use the following subsets of Ω

ω+(k) := {x ∈ Ω : kihi ≤ xi ≤ (ki + 1)hi, i = 1, 2, 3} ,

ω(k) := {x ∈ Ω : (ki − 0.5)hi ≤ xi ≤ (ki + 0.5)hi, i = 1, 2, 3} ,

ω+
i (k) := {x ∈ Ω : kihi ≤ xi ≤ (ki + 1)hi, (kj − 0.5)hj ≤ xj ≤ (kj + 0.5)hj , ∀j 6= i} .
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The set of the indices of grid points belonging to Ω̄ is denoted by Ω̄h. That is,

Ω̄h := {k : 0 ≤ ki ≤ Ni, i = 1, 2, 3}.

The following subsets of Ω̄h will also be used in the sequel

Ω̄−
i := {k : 0 ≤ ki ≤ Ni − 1, 0 ≤ kj ≤ Nj, ∀j 6= i}.

Suppose that uh(k, t) is a grid function defined in Qhte := Ω̄h × (0, te) having the
generalized derivative with respect to t. Moreover, the following norm
(2.16)

‖uh‖2
H1,1(Qhte ) := ∆h

te
∫

0







∑

k∈Ω̄h

(

[

uh(k, t)
]2

+
[

uh
t (k, t)

]2
)

+
3

∑

i=1

∑

k∈Ω̄−

i

[

uh
xi

(k, t)
]2







dt

is assumed to be bounded by a constant which is independent of h, with

uh
xi

(k) :=
uh(k + ei) − uh(k)

hi

being the forward difference quotient of the grid function uh. We also define the
backward difference quotient of u by

uh
x̄i

(k) :=
uh(k) − uh(k − ei)

hi
.

For the grid function uh(k, t) we define the following interpolations in Qte

(2.17) ũh(x, t) := uh(k, t), (x, t) ∈ ω(k) × (0, te),

ûh(x, t) := uh(k, t) +
3

∑

i=1

uh
xi

(k)(xi − kihi) +
∑

1≤i<j≤3

uh
xixj

(k)(xi − kihi)(xj − kjhj)

+ uh
x1x2x3

(k)

3
∏

i=1

(xi − kihi), (x, t) ∈ ω+(k) × (0, te).

(2.18)

It is clear from (2.17) and (2.18) that the interpolation ũh is constant in each
subdomain ω(k) while ûh is multi-linear in ω+(k). Moreover, ûh belongs to
H1,1(Qte). We have the following properties of the multi-linear interpolation.

Lemma 2.6. Suppose that for the grid function uh we have

(2.19) ‖uh‖H1,1(Qhte ) ≤ C,

where C is a constant independent of h. Then the multi-linear interpolation

(2.18) is bounded in the norm of H1,1(Qte).

Asymptotic relationships between the two interpolations as h tends to zero are
stated in the following lemmas.

Lemma 2.7. Suppose that the hypothesis of Lemma 2.6 is fulfilled. Then if

{ûh(x, t)}h converges strongly to a function u(x, t) in L2(Qte) as the grid size

h tends to zero, the sequence {ũh(x, t)}h also converges to u(x, t) in the same

manner. Moreover, the assertion is still valid for the projections of the functions
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on the boundary of Ω, i.e. if {ûh
|Γ
}h converges to u|Γ , {ũh

|Γ
}h also converges to

u|Γ.

Lemma 2.8. Suppose that the hypothesis of Lemma 2.6 is fulfilled and i ∈
{1, 2, 3}. Then if the sequence of derivatives {ûh

xi
(x, t)}h converges weakly to

a function v(x, t) in L2(Qte) as h tends to zero, the sequence {ũh
xi

(x, t)}h also

converges to v(x, t) in the same manner, where

ũh
xi

(x, t) := uh
xi

(k), ∀x ∈ ω+
i (k).

For the proofs of the above lemmas, we refer the reader to [18], Chapter 6, §6.3
and §6.4.

2.3.2. Spatial discretization. In addition to the notation in §2.3.1, we also need
the following notation

Γ̄1
h := {k = (k1, k2, 0) : 0 ≤ ki ≤ Ni, ∀i = 1, 2}.

Suppose that uh(k, t) is a grid function defined on Qte . In this section, we drop
the time variable t for simplifying the notation, i.e. uh(k, t) is abbreviated by
uh(k). The integrals in (2.14) with respect to x are approximated formally as
follows

∫

Ω

αuxi
ηxi

dxdt ≈ ∆h
∑

k∈Ω̄−

i

α+
i (k)uh

xi
(k)ηh

xi
(k), i = 1, 2, 3,

∫

Γ1

uηdx′
3 ≈ h1h2

∑

k∈Γ̄1
h

uh(k)ηh(k),

∫

Ω

fηdx ≈ ∆h
∑

k∈Ω̄h

fh(k)ηh(k),

where uh(k) and ηh(k) are respectively certain types of approximations of u and
η at the point x = kh. In the following, we denote uh = {uh(k), k ∈ Ω̄h}. The
quantities fh(k) and α+

i (k) are the mean values in the corresponding cells

fh(k) :=
1

|ω(k)|

∫

ω(k)

f(x)dx, k ∈ Ω̄h,

α+
i (k) :=

1

|ω+
i (k)|

∫

ω+

i (k)

α(x)dx, k ∈ Ω̄−
i .
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With the above approximations, we have the following discrete analogue of the
first equation of (2.14)

∆h

te
∫

0





∑

k∈Ω̄h

uh
t (k)ηh(k) +

3
∑

i=1

∑

k∈Ω̄−

i

α+
i (k)uh

xi
(k)ηh

xi
(k) +

1

h3

∑

k∈Γ̄1
h

puh(k)ηh(k)



 dt

= ∆h

te
∫

0

∑

k∈Ω̄h

fh(k)η(k)dt + h1h2

te
∫

0

∑

k∈Γ̄1
h

qηh(k)dt,

(2.20)

for all grid functions η(k, t) satisfying η(k, ·) ∈ L2(0, te), ∀k ∈ Ω̄h. For arbitrary
but fixed values k2, k3 satisfying 0 ≤ k2 ≤ N2 and 0 ≤ k3 ≤ N3, we have

N1−1
∑

k1=1

α+
1 (k)uh

x1
(k)ηh

x1
(k) = −

α+
1 (0, k2, k3)u

h
x1

(0, k2, k3)

h1
ηh(0, k2, k3)

+

N1−1
∑

k1=1

α−
1 (k)uh

x̄1
(k) − α+

1 (k)uh
x1

(k)

h1
ηh(k)

+
α−

1 (N1, k2, k3)u
h
x1

(N1, k2, k3)

h1
ηh(N1, k2, k3),

with α−
1 (k) = α+

1 (k− e1). The same manner is applied to the two other terms in
the x2- and x3-directions. From these equalities, (2.14) is approximated by the
following system
(2.21)










te
∫

0

[

uh
t + (A1 + A2 + A3)uh − F h

]

(k, t)η(k, t)dt = 0, ∀η(k, ·) ∈ L2(0, te), k ∈ Ω̄h,

uh(k, 0) = gh(k), k ∈ Ω̄h,

with gh(k) := 1
|ω(k)|

∫

ω(k)

g(x)dx, the average value of g(x) in the corresponding

subdomain, and the operators specified by

(2.22) (Aiu
h)(k) :=















α−

i (k)uh
x̄i

(k)

hi
−

α+

i (k)uh
xi

(k)

hi
, 1 ≤ ki ≤ Ni − 1,

−
α+

i (k)
hi

uh
xi

(k), ki = 0,
α−

i (k)
hi

uh
x̄i

(k), ki = Ni

for i = 1, 2 and

(2.23) (A3u
h)(k) :=



















α−

3
(k)uh

x̄3
(k)

h3
−

α+
3

(k)uh
x3

(k)

h3
, 1 ≤ k3 ≤ N3 − 1,

−
α+

3
(k)Uh

x3
(k)

h3
+ puh(k)

h3
, k3 = 0,

α−

3
(k)uh

x̄3
(k)

h3
, k3 = N3.



THERMAL INFRARED TECHNIQUE FOR LANDMINE DETECTION 481

The matrix F h(t) is given by

(2.24) F h(k, t) :=

{

fh(k) + q(t)
h3

, k3 = 0,

fh(k), otherwise.

Before turning to the time discretization of the Cauchy problem (2.21), let us
consider some properties of the coefficient matrices as well as the convergence of
the solution of (2.21) to the solution of (2.14).

Lemma 2.9. The coefficient matrices Ai, i = 1, 2, 3, do not depend on t and they

are positive semi-definite.

Proof. The independence of Ai from t follows directly from the independence
of α(x) from t. Let us prove that A1 is positive semi-definite. The proofs for
the other matrices are similar. For an arbitrary three-dimensional matrix U :=
{U(k), k ∈ Ω̄h}, we have

(A1U,U) =

N2
∑

k2=0

N3
∑

k3=0

(

Ak2,k3

1 U1(k2, k3), U1(k2, k3)
)

,

where,
(2.25)

Ak2,k3

1 :=



























α+

1
(0,k2,k3)

h2
1

−
α+

1
(0,k2,k3)

h2
1

· · · 0 0

−
α−

1
(1,k2,k3)

h2
1

2α∗

1(1,k2,k3)

h2
1

· · · 0 0

0 −
α−

1
(2,k2,k3)

h2
1

· · · 0 0

· · · · · · · · · · · · · · ·

0 0 · · ·
2α∗

1
(N1−1,k2,k3)

h2
1

−
α+

1
(N1−1,k2,k3)

h2
1

0 0 · · · −
α−

1
(N1,k2,k3)

h2
1

α−

1
(N1,k2,k3)

h2
1



























with α∗
1(k) := 1

2 [α−
1 (k) + α+

1 (k)] and

U1(k2, k3) := (U(0, k2, k3), U(1, k2, k3), . . . , U(N1, k2, k3))
′ .

It is noted that α+
1 (k) = α−

1 (k + e1). Hence

(

Ak2,k3

1 U1(k2, k3), U1(k2, k3)
)

=

N1−1
∑

k1=0

α+
1 (k) [U1(k) − U1(k + e1)]

2 .

It is clear that Ak2,k3

1 are positive semi-definite for all k2 and k3, so is A1. �

Remark 2.10. From (2.23) we can even prove that matrix A3 is positive definite
for p > 0.

Lemma 2.11. Let uh be a solution of the Cauchy problem (2.21). Then it is

bounded in the norm of H1,1(Qhte). More precisely,

(2.26) ‖uh‖H1,1(Qhte ) ≤ C,

with constant C independent of h.
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Proof. Recall that (2.20) is satisfied for all functions η of which η(k, ·) ∈ L2(0, te), ∀k ∈
Ω̄h. For any t∗ ∈ (0, te], we set η(k, t) = uh(k, t) for t ∈ [0, t∗] and zero otherwise.
Since

t∗
∫

0

dt
∑

k∈Ω̄h

uh
t (k)uh(k) =

1

2

∑

k∈Ω̄h

[

uh(k, t∗)
]2

−
1

2

∑

k∈Ω̄h

[

uh(k, 0)
]2

,

we have from (2.20) the following equality

1

2
∆h

∑

k∈Ω̄h

[

uh(k, t∗)
]2

+ ∆h

te
∫

0







3
∑

i=1

∑

k∈Ω̄−

i

α+
i (k)

[

uh
xi

(k)
]2

+
p

h3

∑

k∈Γ̄1
h

[

uh(k)
]2







dt

=
1

2
∆h

∑

k∈Ω̄h

[

uh(k, 0)
]2

+ ∆h

te
∫

0

dt
∑

k∈Ω̄h

fh(k)uh(k) + h1h2

te
∫

0

dt
∑

k∈Γ̄1
h

quh(k).

Multiplying both sides by two, applying Cauchy inequality to the right hand side,
we have

∆h
∑

k∈Ω̄h

[

uh(k, t∗)
]2

+ 2∆h

te
∫

0







3
∑

i=1

∑

k∈Ω̄−

i

α+
i (k)

[

uh
xi

(k)
]2

+
p

h3

∑

k∈Γ̄1
h

[

uh(k)
]2







dt

≤ ∆h
∑

k∈Ω̄h

[

gh(k)
]2

+ ∆h

∫ t∗

0

∑

k∈Ω̄h

[

fh(k, t)
]2

dt + ∆h

∫ t∗

0

∑

k∈Ω̄h

[

uh(k, t)
]2

dt

+ h1h2

t∗
∫

0

dt
∑

k∈Γ̄1
h

{

1

ε
q2(t) + ε

[

uh(k)
]2

}

(2.27)

for an arbitrary positive real number ε. For simplicity of the notation, we denote
(2.28)

G1(t
∗, ε) := ∆h

∑

k∈Ω̄h

[

gh(k)
]2

+ ∆h

∫ t∗

0

∑

k∈Ω̄h

[

fh(k, t)
]2

dt +
h1h2

ε

t∗
∫

0

dt
∑

k∈Γ̄1
h

q2(t).

To eliminate the last term on the right hand side of (2.27), we choose ε = 2p.
Denote

y(t∗) := ∆h

∫ t∗

0

∑

k∈Ω̄h

[

uh(k, t)
]2

dt.

Then from (2.27) and (2.28) we have

(2.29) ∆h

te
∫

0

dt

3
∑

i=1

∑

k∈Ω̄−

i

[

uh
xi

(k)
]2

≤
1

2ν
G1(te, 2p) +

1

2ν
y(te)
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and

y′(t∗) ≤ G1(t
∗, 2p) + y(t∗).

Applying Gronwall-Bellman’s lemma [18] to this inequality, we obtain

(2.30) y(t∗) ≤
(

et∗ − 1
)

G1(t
∗, 2p).

In order to obtain a bound estimate for ∆h
te
∫

0

dt
∑

k∈Ω̄h

[

uh
t (k)

]2
, we replace ηh in

(2.20) by uh
t . We have

∆h

te
∫

0

dt







∑

k∈Ω̄h

[

uh
t (k)

]2
+

3
∑

i=1

∑

k∈Ω̄−

i

α+
i (k)uh

xi
(k)uh

xit
(k) +

p

h3

∑

k∈Γ̄1
h

uh(k)uh
t (k)







= ∆h

te
∫

0

dt
∑

k∈Ω̄h

fh(k)uh
t (k) + h1h2

te
∫

0

dt
∑

k∈Γ̄1
h

q(t)uh
t (k).

(2.31)

Multiplying both sides by two, integrating the second and the third terms on the
left hand side, integrating by parts the right hand side, we obtain

2∆h

te
∫

0

dt
∑

k∈Ω̄h

[

uh
t (k)

]2
+ ∆h

3
∑

i=1

∑

k∈Ω̄−

i

α+
i (k)

{

[

uh
xi

(k, te)
]2

−
[

uh
xi

(k, 0)
]2

}

+ h1h2p
∑

k∈Γ̄1
h

{

[

uh(k, te)
]2

−
[

uh(k, 0)
]2

}

= 2∆h

te
∫

0

dt
∑

k∈Ω̄h

fh(k)uh
t (k)

+ 2h1h2

∑

k∈Γ̄1
h

[

q(te)u
h(k, te) − q(0)uh(k, 0) −

∫ te

0
qt(t)u

h(k)dt

]

.

Transposing the terms on the left hand side with minus sign to the right hand
side, applying Cauchy’s inequality to the right hand side, taking into account the
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assumption that ν ≤ α(x) ≤ µ, we have

2∆h

te
∫

0

dt
∑

k∈Ω̄h

[

uh
t (k)

]2
+ ∆h

3
∑

i=1

∑

k∈Ω̄−

i

α+
i (k)

[

uh
xi

(k, te)
]2

+ h1h2p
∑

k∈Γ̄1
h

[

uh(k, te)
]2

≤ ∆hµ

3
∑

i=1

∑

k∈Ω̄−

i

[

gh
xi

(k)
]2

+ h1h2µp
∑

k∈Γ̄1
h

[

gh(k)
]2

+ ∆h

te
∫

0

dt
∑

k∈Ω̄h

[

fh(k)
]2

+ ∆h

te
∫

0

dt
∑

k∈Ω̄h

[

uh
t (k)

]2
+

h1h2

ε

∑

k∈Γ̄1
h

q2(te) + εh1h2

∑

k∈Γ̄1
h

[

uh(k, te)
]2

+ h1h2

∑

k∈Γ̄1
h

q2(0) + h1h2

∑

k∈Γ̄1
h

[

gh(k)
]2

+ h1h2

te
∫

0

dt
∑

k∈Γ̄1
h

{

1

h3
q2
t (t) + h3

[

uh(k)
]2

}

.

(2.32)

Choose ε = p, then the last term on the left hand side is eliminated by the same
term on the right hand side. The fourth term on the right hand side is also
eliminated by the first term on the left hand side. For abbreviating the notation,
we denote

G2 := ∆hµ
3

∑

i=1

∑

k∈Ω̄−

i

[

gh
xi

(k)
]2

+ h1h2(µp + 1)
∑

k∈Γ̄1
h

[

gh(k)
]2

+ ∆h

te
∫

0

dt
∑

k∈Ω̄h

[

fh(k)
]2

+
h1h2

p

∑

k∈Γ̄1
h

q2(te) + h1h2

∑

k∈Γ̄1
h

q2(0) +
h1h2

h3

te
∫

0

dt
∑

k∈Γ̄1
h

q2
t (t).

(2.33)

It follows from (2.32) and (2.33) that

∆h

te
∫

0

dt
∑

k∈Ω̄h

[

uh
t (k)

]2
≤ G2 + ∆h

te
∫

0

dt
∑

k∈Γ̄1
h

[

uh(k)
]2

≤ G2 + y(te).

(2.34)

From (2.29), (2.30) and (2.34) we have

‖uh‖2
H1,1(Qhte ) ≤ G2 +

(4ν + 1)(ete − 1) + 1

2ν
G1(te, 2p).

It can be proved from (2.28) that there exists a positive constant C∗ such that

G1(te, 2p) ≤ C∗
[

‖g‖2
L2(Ω) + ‖f‖2

L2(Qte) + ‖q‖2
L2(0,te)

]

.

A similar estimate can be obtained for G2. Hence, we have proved that the grid
function uh is bounded in the norm of H1,1(Qhte). �
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Remark 2.12. It follows from Lemmas 2.9 and 2.11 that there is only one
solution of the Cauchy problem (2.21).

From Lemma 2.11 we have the convergence of the solution uh(k, t) of (2.21)
to the solution of the original problem. We state this property in the following
theorem.

Theorem 2.13. The multi-linear interpolation (2.18) of the solution of the prob-

lem (2.21) on Qte converges to the generalized solution of the original problem

(2.14) strongly in the norm of L2(Qte) and weakly in the norm of H1,1(Qte) as

the grid size h tends to zero.

Proof. It follows from Lemmas 2.6 and 2.11 that the sequence {ûh}h of the multi-
linear interpolations is bounded in H1,1(Qte). It follows from the compact imbed-
ding theorem of Sobolev spaces (see, e.g. [18]) that it is weakly relatively compact
in H1,1(Qte) and strongly relatively compact in L2(Qte). Hence, there is a subse-

quence
{

ûhi

(x, t)
}

i
such that it converges strongly to a function u(x, t) and the

sequence of the derivative
{

ûhi

xj
(x, t)

}

i
converges weakly to the corresponding

derivative uxj
(x, t) in the norm of L2(Qte) as i tends to infinity (equivalently, hi

tends to zero) for j = 1, 2, 3. Therefore u(x, t) ∈ H1,1(Qte).
From Lemmas 2.7 and 2.8 it follows that the corresponding sequence of piece-

wise constant interpolations
{

ũhi

(x, t)
}

i
also converges to u(x, t) in the same

manner. To finish the proof, we need to show that each term in the discrete equa-
tion (2.20) converges to the corresponding one in (2.14). Indeed, since C2,1(Qte)
is dense in H1,1(Qte), it is enough to consider the function η in this space. The
values of the grid function ηh in (2.20) are set to be the values of η at the grid
points. It is clear that ηh converges uniformly to η as h tends to zero. This
implies that all the terms in (2.20) also converge to the corresponding terms in
(2.14). That means, u is a generalized solution of the original problem. Hence,
the uniqueness theorem implies that every subsequence of

{

ûh(x, t)
}

h
converges

to the same function u. So the sequence
{

ûh(x, t)
}

h
itself converges to u. This

completes the proof. �

2.3.3. Time discretization and implicit splitting scheme. Solving the problem
(2.21) is usually time-consuming. To reduce the computation cost, we make use
of splitting methods. The main idea of these methods is to replace a complicated
problem by a chain of simpler ones. The methods were initiated by Douglas,
Peaceman and Rachford [10, 25] and then developed by Bagrinovskii, Godunov,
Yanenko, Samarskii [26, 30, 27, 28], Dyakonov, Saulyev, and Marchuk [22, 21].
These methods have many advantages for solving multi-dimensional problems.
For example, they are absolutely stable and much faster than implicit schemes
as it does not require iterative procedures for solving large linear systems.

To discretize (2.21), we divide the interval [0, te] into Nt equal sub-intervals by
the points ti, i = 0, . . . , Nt : 0 = t0 < t1 = ∆t < t2 = 2∆t < · · · < tNt = te. We
set un+ε = uh(tn + ε∆t) and Fn+ε = F h(tn + ε∆t) with 0 ≤ ε ≤ 1 (we drop the
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superscript h for simplifying the notation). We introduce the following backward
implicit splitting scheme

(2.35)



















u0 = gh,

(E1 + ∆tA1)u
n+ 1

3 = un,

(E2 + ∆tA2)u
n+ 2

3 = un+ 1

3 ,

(E3 + ∆tA3)u
n+1 = un+ 2

3 + ∆tFn+ 1

2 ,

for n = 0, . . . , Nt − 1. Here Ei is the unit matrix associated with Ai, i = 1, 2, 3.
Since the coefficient matrices are positive semi-definite as proven in Lemma 2.9,
the above splitting scheme is absolutely stable and converges to the solution of
problem (2.21) with the first order in t ([21], pages 167–168).

3. Inverse problem for landmine detection

Given the forward thermal model (2.12) and IR images measured at the air-
soil interface, we now consider the inverse problem for landmine detection. We
should note that the measured IR images can be considered as measured soil
temperature at the air-soil interface. The purpose of this problem is to detect
the presence of buried objects and characterize them based on the estimation of
their thermal as well as geometrical parameters. Mathematically, it is stated as
the reconstruction of the coefficient α(x), x ∈ Ω, of the forward thermal model
(2.12) from the measurements of the solution to the forward model, T (x, t), for
(x, t) ∈ S1

te
.

The most common way to set up this inverse problem is the least-squares
approach in which the estimation problem is aimed at finding α(x) such that
the simulated soil-surface temperature using the forward model (2.12) fits the
measured data. It is equivalent to the following minimization problem

(3.1) min
α(x)

F(α) :=
1

2

∫

S1
te

[T (x, t;α) − θ(x, t)]2 dx′
3dt,

where θ(x, t) is the measured soil-surface temperature (IR images). Here we use
the notation T (x, t;α) to emphasize the dependence of the solution to the forward
problem (2.12) on the coefficient α(x).

We note that, since thermal properties of materials are positive and finite, the
following bound constraints must be taken into account in solving the inverse
problem (3.1) subject to (2.12)

(3.2) 0 < αl ≤ α(x) ≤ αu, x ∈ Ω,

where [αl, αu] is the range to which the thermal diffusivity of the object is ex-
pected to belong.

Remark 3.1. Although some results on the uniqueness of the coefficient identifi-
cation problem have been published in the literature, most of the published works
requires more than one (even infinitely many) measurements on the whole bound-
ary or even in the whole domain for the coefficient to be uniquely determined,
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see, e.g., [11, 12, 13, 14]. The uniqueness for a one-dimensional coefficient esti-
mation problem with one measurement taken at one end of the one-dimensional
rod has been proved by Dinh Nho Hào [7]. Recently, such a result for piecewise
constant coefficients was reproved by Hoang and Ramm [15] by another method.
However, the techniques used in these papers cannot be generalized to multidi-
mensional cases. Moreover, for this problem, the main difficulty is due to the
lack of spatial data as we want to determine the three-dimensional coefficient
when only one measurement on a part of the boundary is given. Therefore, the
uniqueness question is still open to us. For some simple cases, the analysis is
under investigation.

The existence of a solution to problem (3.1) was proved in [31] in the space
BV (Ω) of functions with bounded variation.

3.1. Discrete inverse problem and the gradient of the objective func-

tional. To numerically solve the minimization problem (3.1) subject to (2.12),
we make use gradient-based optimization algorithms. More precisely, we use the
Matlab function fmincon which implements a quasi-Newton trust region algo-
rithm, see [23]. In gradient-based optimization methods, it is required to calcu-
late the gradient of the objective functional. In this paper, we use the method
of adjoint problems for this purpose. This technique helps calculating the gradi-
ent of the objective functional by solving one forward and one adjoint problem.
Moreover, to avoid discretization errors in numerical implementation, we apply
this method directly to the discretized problem. That is, we first formulate the
discrete objective functional corresponding to the discrete forward model (2.35),
with u being replaced by T . Then the gradient of the discrete objective functional
is calculated. This approach was also used in [33].

In this discrete setup, the objective functional F(α) of minimization problem
(3.1) is replaced by the following discrete one:

(3.3) Fh(α) :=
∆th1h2

2

Nt
∑

n=0

∑

k∈Γ̄1
h

[T n(k;α) − θn(k1, k2)]
2 ,

with
{

T n(k;α), k ∈ Ω̄h, n = 0, . . . , Nt

}

being the solution of the discrete forward
problem (2.35) associated with the coefficient α(x) and {θn(k1, k2), 0 ≤ ki ≤ Ni,
n = 0, . . . , Nt} being the discrete measured soil-surface temperature. It is clear
that the discrete objective functional Fh(α) is an approximation of the continuous
one.

It should be noted that, in the discrete problem, the coefficient α(x), x ∈ Ω,
can be replaced by the average values α+

i (k). For shortening the notation, in the
following, we denote αi(k) := α+

i (k) and αi := {αi(k), k ∈ Ω̄−
i }. Since α(x) is

bounded by (3.2), the average values αi(k) are also bounded by

(3.4) 0 < αl ≤ αi(k) ≤ αu, k ∈ Ω̄−
i , i ∈ {1, 2, 3}.

For each i = 1, 2, 3 it is clear from (2.22)–(2.23) that the coefficient matrix Ai

depends on (and only on) αi (in the following, we sometimes use the notation
Ai(αi) to emphasize the dependence of Ai on αi). Moreover, with the assumption
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that the object is so small that the vertical boundary layers of the soil domain
contain only homogeneous soil, we have that αi(k) = αs at the vertical boundary
points, e.g. for k1 = 0 or k1 = N1. Hence, we only need to consider the variables
αi(k) for 1 ≤ k1 ≤ N1 − 1, 1 ≤ k2 ≤ N2 − 1, 0 ≤ k3 ≤ N3 − 1. This assumption
helps reducing the complexity of the numerical implementation.

We also note that the discrete forward model (2.35), with u being replaced by
T , can be rewritten as

(3.5)

{

A(α)T n+1 − T n = ∆tC(α)Fn+ 1

2 , n = 0, . . . , Nt − 1,

T 0 = gh,

where

A(α) = (E1 + ∆tA1(α1)) (E2 + ∆tA2(α2)) (E3 + ∆tA3(α3)) ,

C(α) = (E1 + ∆tA1(α1)) (E2 + ∆tA2(α2)) .

Let us now formulate the gradient of the discrete objective functional Fh with
respect to the unknowns αi. To this end, we consider an infinitesimal variation δα
of the coefficient α. By denoting α′(x) = α(x)+δα(x) and α′

i(k) = αi(k)+δαi(k),
we have from (3.3) that

Fh(α′) −Fh(α) =
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[

T n(k1, k2, 0;α
′) − θn(k1, k2)

]2

−
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[T n(k1, k2, 0;α) − θn(k1, k2)]
2

=
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[Un(k1, k2, 0)]
2

+ ∆th1h2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

Un(k1, k2, 0) [T n(k1, k2, 0;α) − θn(k1, k2)] ,

(3.6)

where Un(k) := T n(k;α′)−T n(k;α). It follows from (3.5) that U := {Un(k), n =
0, . . . , Nt − 1, k ∈ Ω̄h} is the solution of the following problem











[

A(α)Un+1
]

(k) − Un(k) = ∆t
[

δC(α)Fn+ 1

2

]

(k) −
[

δA(α)T n+1
]

(k, α′),

n = 0, . . . , Nt − 1,

U0 = 0,

where δC(α) = C(α′) − C(α) and δA(α) = A(α′) −A(α). Consider an arbitrary
matrix η = {ηn(k), n = 0, . . . , Nt − 1, k ∈ Ω̄h}. Multiplying both sides of the
first equation by ηn(k), summing up the results with respect to k ∈ Ω̄h and
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n = 0, . . . , Nt − 1, we have

Nt−1
∑

n=0

∑

k∈Ω̄h

[

A(α)Un+1
]

(k)ηn+1(k) −

Nt−1
∑

n=0

∑

k∈Ω̄h

Un(k)ηn+1(k)

= ∆t
Nt−1
∑

n=0

∑

k∈Ω̄h

[

δC(α)Fn+ 1

2

]

(k)ηn+1(k) −
Nt−1
∑

n=0

∑

k∈Ω̄h

[

δA(α)T n+1
]

(k, α′)ηn+1(k).

If η satisfies the following equation

Nt−1
∑

n=0

∑

k∈Ω̄h

[

A(α)Un+1
]

(k)ηn+1(k) −

Nt−1
∑

n=0

∑

k∈Ω̄h

Un(k)ηn+1(k)

=
1

h3

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

Un(k1, k2, 0) [T n(k1, k2, 0;α) − θn(k1, k2)] ,

(3.7)

then the variation of the discrete objective functional is given by

Fh(α′) −Fh(α) =
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[Un(k1, k2, 0)]
2

+ ∆t2∆h

Nt−1
∑

n=0

∑

k∈Ω̄h

[

δC(α)Fn+ 1

2

]

(k)ηn+1(k)

− ∆t∆h

Nt−1
∑

n=0

∑

k∈Ω̄h

[

δA(α)T n+1
]

(k, α′)ηn+1(k).

(3.8)

Before deriving the gradient of Fh(α), let us first define the discrete adjoint prob-
lem from (3.7). Suppose that ξ =

{

ξn(k), k ∈ Ω̄h, n = 0, . . . , Nt

}

is specified by

(3.9) ξn(k) =

{

1
h3

[T n(k;α) − θn(k1, k2)] if k3 = 0,

0 otherwise,

then we have from (3.7) the following discrete adjoint problem

(3.10)

{

A∗(α)ηn − ηn+1 = ξn, n = Nt − 1, Nt − 2, . . . , 2,

A∗(α)ηNt = ξNt ,

with A∗(α) being the adjoint operator of A(α). Since the matrices Ai, i = 1, 2, 3,
are positive semi-definite and symmetric as proved in Section 2, we have

A∗(α) = (E3 + ∆tA3)(E2 + ∆tA2)(E1 + ∆tA1).

With the above representation of the operator A∗(α), the discrete adjoint problem
can be rewritten in the following form
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• For n = Nt :










(E3 + ∆tA3)η
Nt+

2

3 = ξNt ,

(E2 + ∆tA2)η
Nt+

1

3 = ηNt+
2

3 ,

(E1 + ∆tA1)η
Nt = ηNt+

1

3 .

• For n = Nt − 1, Nt − 2, . . . , 2 :










(E3 + ∆tA3)η
n+ 2

3 = ξn + ηn+1,

(E2 + ∆tA2)η
n+ 1

3 = ηn+ 2

3 ,

(E1 + ∆tA1)η
n = ηn+ 1

3 .

This problem is solved in a similar way as the discrete forward model (2.35).
We now turn back to the gradient of the discrete objective functional. We can

prove by induction that [31]

(3.11)
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[Un(k1, k2, 0)]
2 = o(δα).

We also have

δC(α) = [E1 + ∆tA1(α
′
1)][E2 + ∆tA2(α

′
2)] − [E1 + ∆tA1(α1)][E2 + ∆tA2(α2)]

= ∆tδA1(α1)[E2 + ∆tA2(α
′
2)] + ∆t[E1 + ∆tA1(α1)]δA2(α2),

with δAi(αi) = Ai(α
′
i) − Ai(αi). We note that Fn+ 1

2 (k) does not depend on

either the coefficient α(x) or the values of k1 and k2. Therefore, A1F
n+ 1

2 (k) = 0

and A2F
n+ 1

2 (k) = 0 for k ∈ Ω̄h. By elementary arguments, we also have that

δC(α)Fn+ 1

2 = 0. From these equalities, (3.8) and (3.11), the variation of the
objective functional can be rewritten as

(3.12) Fh(α′) −Fh(α) = −∆t∆h

Nt
∑

n=1

∑

k∈Ω̄h

(δA(α)T n) (k, α′)ηn(k) + o(δα).

The variation δA(α) can be represented by

δA(α) = δA1(α) + δA2(α) + δA3(α),

where

δA1(α) = ∆tδA1(α1)
[

E2 + ∆tA2(α
′
2)

]

[E3 + ∆tA3(α
′
3)],

δA2(α) = ∆t[E1 + ∆tA1(α1)]δA2(α2)[E3 + ∆tA3(α
′
3)],

δA3(α) = ∆t[E1 + ∆tA1(α1)][E2 + ∆tA2(α2)]δA3(α3).

From (2.22)–(2.23) we have that for each i ∈ {1, 2, 3}, the coefficient matrix Ai

is continuous in αi. Therefore, Ai(α
′
i) converges to Ai(αi) as δα tends to zero.

To derive the gradient of the objective functional, it is sufficient to formulate the
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directional derivatives of Ai(αi)T
n with respect to αi(k). For k ∈ Ω̄h : 1 ≤ k1 ≤

N1 − 1, we have

[

δA1(α)T n
]

(k) =
∆t

h1

(

[E2 + ∆tA2(α
′
2)][E3 + ∆tA3(α

′
3)]T

n
)

x̄1
(k)δα1(k − e1)

−
∆t

h1

(

[E2 + ∆tA2(α
′
2)][E3 + ∆tA3(α

′
3)]T

n
)

x1
(k)δα1(k).

Therefore,
(3.13)

∂[A1(α1)T
n](m)

∂α1(k)
=











−∆t
h1

([E2 + ∆tA2(α
′
2)][E3 + ∆tA3(α

′
3)]T

n)x1
(k) if m = k,

∆t
h1

([E2 + ∆tA2(α
′
2)][E3 + ∆tA3(α

′
3)]T

n)x1
(k) if m = k + e1,

0 otherwise.

Since A2 and A3 do not depend on α1, taking the limit as δα1 tends to zero, we
have from (3.12) and (3.13) that

∂Fh

∂α1(k)
= −∆t∆h

Nt
∑

n=1

∑

m∈Ω̄h

∂
[(

A1T n
)

(m)
]

∂α1(k)
ηn(m)

= −∆t∆h

Nt
∑

n=1

{

∂
[(

A1T n
)

(k)
]

∂α1(k)
ηn(k) +

∂
[(

A1T n
)

(k + e1)
]

∂α1(k)
ηn(k + e1)

}

= −∆t2∆h

Nt
∑

n=1

[(E2 + ∆tA2)(E3 + ∆tA3)T
n]x1

(k)ηn
x1

(k).

(3.14)

Denoting µi = ∆t/h2
i , i = 1, 2, 3, we obtain, for 1 ≤ k2 ≤ N2−1, 1 ≤ k3 ≤ N3−1,

[(E2 + ∆tA2)(E3 + ∆tA3)T
n] (k) =

− µ2α2(k − e2)[T
n(k − e2) + µ3α3(k − e2 − e3)h3T

n
x̄3

(k − e2) − µ3α3(k − e2)h3T
n
x3

(k − e2)]

+ [1 + µ2(α2(k − e2) + α2(k))] [T n(k) + µ3α3(k − e3)h3T
nx̄3(k) − µ3α3(k)h3T

n
x3

(k)]

− µ2α2(k)[T n(k + e2) + µ3α3(k + e2 − e3)h3T
n
x̄3

(k + e2) − µ3α3(k + e2)h3T
n
x3

(k + e2)].

(3.15)

Similarly, for 1 ≤ k2 ≤ N2 − 1, k3 = 0, we have

[(E2 + ∆tA2)(E3 + ∆tA3)T
n] (k) =

− µ2α2(k − e2) {(1 + µ3ph3)T
n(k − e2) − µ3α3(k − e2)[T

n(k − e2 + e3) − T n(k − e2)]}

+ [1 + µ2(α2(k − e2) + α2(k))] {(1 + µ3ph3)T
n(k) − µ3α3(k)[T n(k + e3) − T n(k)]}

− µ2α2(k){(1 + µ3ph3)T
n(k + e2) − µ3α3(k + e2)[T

n(k + e2 + e3) − T n(k + e2)]}.

(3.16)

The directional derivatives of the objective functional with respect to α1(k),
1 ≤ k1 ≤ N1 − 1, 1 ≤ k2 ≤ N2 − 1, 0 ≤ k3 ≤ N3 − 1, are calculated using
(3.14)–(3.16). The derivatives of Fh with respect to α2(k) and α3(k) are given
by similar formulae, see also [31].
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3.2. Parameterization of landmine shape. The inverse problem (3.3) sub-
ject to (3.5) for estimating the coefficient α(x) is severely ill-posed due to the
lack of spatial information in the measured data. Numerical tests have indicated
that it is difficult to obtain reliable estimates unless more constraints or simplifi-
cations must be used. The constraints or simplifications are based on particular
applications. As our objective is to detect landmines and distinguish them from
other objects, we assume that landmines are upright cylinders. Under this as-
sumption, a buried object is specified by (i) its depth of burial, (ii) its height,
(iii) its horizontal cross-section, and (iv) its thermal diffusivity.

In [31, 35, 33] we proposed a two-step method for solving the inverse prob-
lem. In the first step, we considered a given cross-section, and we estimate three
parameters, namely, the depth of burial, the height, and the thermal diffusivity.
This approach helps reducing the ill-posedness of the estimation problem as it
reduces the number of unknown parameters. However, its result depends on the
accuracy of the cross-section being given by anomaly detection procedures. In
the second step, we used the result of the previous step as an initial guess for
estimating the full parameter vector, namely, the depth of burial, the height and
the mean values of the thermal diffusivity on a horizontal plane of the soil domain
across the object. The cross-section is improved via the estimated mean values
of the thermal diffusivity. This step should enhance the result of the first step.

To parametrize the object’s shape, we denote by Γ̃1 its cross-section, %1 and
%2 are the depths of the top and the bottom surfaces (0 < %1 < %2 < l3). Then
the coefficient α can be written as

(3.17) α(x) =

{

αo, for (x1, x2) ∈ Γ̃1, %1 ≤ x3 ≤ %2,

αs, otherwise.

We assume further that the cross-section of the buried object is star-shaped. In
this case, the boundary of the cross-section ∂Γ̃1 in R2 can be represented by

(3.18) ∂Γ̃1 := {(x0
1, x

0
2)

′ + r(ϕ)(cos ϕ, sin ϕ)′, ϕ ∈ [0, 2π]},

where (x0
1, x

0
2)

′ is a given internal point of the cross section in the horizontal
plane and the radial function r is positive in [0, 2π] with r(0) = r(2π). Note that
the point (x0

1, x
0
2)

′ is not difficult to find from the measured IR images. Since
the radial function r(ϕ) satisfies r(0) = r(2π), it can be considered as a periodic
function with the period of 2π. Hence, we can represent it as the following Fourier
series

(3.19) r(ϕ) = β0 +

∞
∑

m=1

(βm cos mϕ + γm sin mϕ).

We note that the Fourier coefficients βm and γm converge to zero when m tends
to infinity. In solving the inverse problem (3.1), we replace r(ϕ) by the cut-off
approximation rM(ϕ) for some M ∈ N

(3.20) rM(ϕ) := β0 +

M
∑

m=1

(βm cos mϕ + γm sin mϕ).
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Using this parametrization, the inverse problem is to reconstruct the parameters
αo, %1, %2, βm m = 0, . . . ,M and γm, m = 1, . . . ,M .

The main advantage using this parametrization of the cross-section is that,
for regular shapes (e.g. circles, ellipses) the Fourier coefficients decay to zero
very quickly. Therefore, only a few number of Fourier coefficients need to be
reconstructed which helps improve the stability of the inverse problem.

In solving the minimization problem, some constraints of the unknown param-
eters must be taken into account. Firstly, it is obvious that the thermal diffusivity
αo is bounded by αl and αu as in (3.2), i.e.

(3.21) 0 < αl ≤ αo ≤ αu.

Secondly, we can assume that the object’s cross section is not too small or too
large. Under this assumption, the radial function should be bounded

(3.22) 0 < rl ≤ r(ϕ) ≤ ru,∀ϕ ∈ [0, 2π].

Thirdly, we remark that, as analyzed in [31], the detection can only be possible
for shallowly buried objects, say, at most 10 cm deep for common anti-personnel
(AP) mines. Hence, the depth of burial %1 should not be too large. Moreover,
since we assume that the soil-surface contains only homogeneous soil, the depth
of burial must be positive. More precisely, we have

(3.23) 0 < %l
1 ≤ %1 ≤ %u

1 < l3,

where %l
1 is a small positive value which prevents the depth of burial from con-

verging to zero and %u
1 is the maximum depth of burial at which the object is still

detectable.
Finally, concerning the height of the object, we showed in [31] that the effect

of the object’s height on the soil-surface temperature contrast is very small. The
contrasts associated with two values of the height are still distinguishable only
if these values do not greater than a certain threshold (e.g. approximately 5 cm
for common AP mines). Hence, an estimated value of the height is reliable only
in this range, i.e. the following constraints should be added to the estimation
problem

(3.24) h3 ≤ ς ≤ ςu,

where ςu is the maximum height of the object at which the estimation is still
reliable. Note that this parameter must be chosen so that %u

1 + ςu < l3.
To finish this section, let us calculate the derivatives of Fh with respect to the

new variables. Using the results of the previous section, it is sufficient to calculate
the derivatives of αi(k) with respect to them. Denote by α12(x1, x2) the coefficient
on a horizontal surface of the soil domain across the object. For simplicity, we
assume that the height of the object is not less than the corresponding grid size,
that is, %2 − %1 ≥ h3. Furthermore, if we denote by γ1

i (k1, k2) the projection of
ωi(k) on the surface Γ1, and αi

12(k1, k2), 1 ≤ ki ≤ Ni − 1, i = 1, 2, 3, specified by

αi
12(k1, k2) =

1

h1h2

∫

γ1
i (k1,k2)

α12(x1, x2)dx1dx2
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and suppose that the location of the top surface of the object falls into the grid
intervals [(k′

3 − 0.5)h3, (k
′
3 + 0.5)h3) and [k∗

3h3, (k
∗
3 + 1)h3), while the bottom

surface falls into the intervals [(k′′
3 −0.5)h3, (k

′′
3 +0.5)h3) and [k∗∗

3 h3, (k
∗∗
3 +1)h3).

That is,

(k′
3 − 0.5)h3 ≤ %1 < (k′

3 + 0.5)h3, (k′′
3 − 0.5)h3 ≤ %2 < (k′′

3 + 0.5)h3,

k∗
3h3 ≤ %1 < (k∗

3 + 1)h3, k∗∗
3 h3 ≤ %2 < (k∗∗

3 + 1)h3,

then the average values αi(k), 1 ≤ k1 ≤ N1−1, 1 ≤ k2 ≤ N2−1, 0 ≤ k3 ≤ N3−2,
can be represented as

αi(k) =































αs, if k3 < k′
3,

1
h3

{

αs[%1 − (k′
3 − 0.5)h3] + αi

12(k1, k2)[(k
′
3 + 0.5)h3 − %1]

}

, if k3 = k′
3,

αi
12(k1, k2), if k′

3 + 1 ≤ k3 ≤ k′′
3 − 1,

1
h3

{

αi
12(k1, k2)[%2 − (k′′

3 − 0.5)h3] + αs[(k
′′
3 + 0.5)h3 − %2]

}

, if k3 = k′′
3 ,

αs, if k3 > k′′
3 ,

for i = 1, 2 and

α3(k) =































αs, if k3 < k∗
3,

1
h3

{

αs[%1 − k∗
3h3] + α3

12(k1, k2)[(k
∗
3 + 1)h3 − %1]

}

, if k3 = k∗
3 ,

α3
12(k1, k2), if k∗

3 + 1 ≤ k3 ≤ k∗∗
3 − 1,

1
h3

{

α3
12(k1, k2)[%2 − k∗∗

3 h3] + αs[(k
∗∗
3 + 1)h3 − %2]

}

, if k3 = k∗∗
3 ,

αs, if k3 > k∗∗
3 .

The derivatives of αi, i = 1, 2, with respect to %1 and %2 are given by

∂αi(k)

∂%1
=

{

1
h3

[αs − αi
12(k1, k2)], if k3 = k′

3,

0, otherwise,

∂αi(k)

∂%2
=

{

1
h3

[αi
12(k1, k2) − αs], if k3 = k′′

3 ,

0, otherwise.

Similar formulas are obtained for α3. On the other hand, assuming that αo 6= αs,
we obtain the derivative with respect to αo:

∂αi(k)

∂αo
= ∆h

αs − αi(k)

αs − αo
.

For the geometric parameters βm and γm, it is difficult to obtain analytic formulas
for the derivatives of αi(k) with respect to these parameters. Therefore, we
approximate them by finite difference quotients. Since the coefficient does not
depend on time, this approximation method is much faster than using finite
difference approximations directly for the objective functional. Then using the
chain rule, we obtain the derivatives of the objective functional Fh with respect
to the new variables. Note that, the height of the object is given by ς = %2 − %1.
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4. Numerical results

This section consists of two parts. In the first part, we validate the proposed
thermal model (2.12) using experimental data measured in a dummy minefield.
In the second part, we illustrate the performance of the inverse problem with
reconstruction results for both simulated and experimental data.

4.1. Validation of the forward thermal model. In this section, we show that
the proposed thermal model (2.12) can be used in practice to approximate the
evolution of the ground thermal signature with the presence of buried landmines.
For this purpose, we compare numerical simulations to experimental data. The
experimental data used in this paper was acquired in a test minefield in the
Netherlands in 2001. The minefield was a box of sandy soil with several buried
landmines and other test objects. The mines were filled with a material having the
same properties as TNT, see Table 1. For a detailed description of the experiment
setup and the minefield we refer the reader to [9].

IR images were acquired by a Quantum Well Infrared Photo detector (QWIP).
The temperature resolution of the IR sensor is 0.03 K. Moreover, a weather
station was used to measure meteorological data such as solar irradiance, sky
irradiance, air temperature and wind speed. Before applying the algorithms to the

Material Conductivity Density Heat capacity Diffusivity
W/(m K) kg/m3 J/(kg K) m2/s

Sandy soil 0.75 1650 710 6.402×10−7

TNT 0.2 1170 1500 1.1396×10−7

Table 1. Thermal characteristics of sandy soil and TNT.

IR data set, a pre-processing chain, consisting of (i) radiometric calibration, (ii)
temporal co-registration, (iii) atmospheric correction, (iv) apparent temperature
conversion, and (v) inverse perspective (ground) projection, was applied to the
acquired IR images. For these steps, we refer to [31]. In this work, we assume
that the measured IR images represent the ground-surface temperature. For
the simplicity of analysis, the IR images were spatially interpolated with the
resolution of 0.01 × 0.01 (m2).

As mentioned in Section 2, the input parameters (the soil thermal diffusiv-
ity, the soil-surface boundary condition) of the thermal model (2.12) should be
estimated using in situ soil-temperature measurements. For this data set, the es-
timated soil thermal diffusivity (6.420× 10−7 m2/s) is very close to the reference
value (6.402×10−7 m2/s), see [31]. Hence, the latter is used in the following vali-
dation. The estimated value of the parameter p in the air-soil interface boundary
condition is p = 7.01 × 10−6 and the function q(t) is depicted in Figure 3(a).

In the following, we compare simulations using the thermal model (2.12) with
measured data for two different AP mines of different sizes. Their codes in the
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Figure 3. The function q(t): (a) Experimental data; (b) Simu-
lated data.

experiment were B82 and C49, respectively. Their characteristics are given in
Table 2. More validation results were given in [34, 31].

Code Type Shape Height Diameter Depth of burial
B82 AP (NR22C1) cylindrical 0.053 m 0.062 m 0.01 m
C49 AP (PMN) cylindrical 0.048 m 0.117 m 0.01 m

Table 2. Properties of the test mines.

To simulate the soil temperature, a volume of 40 cm by 40 cm by 50 cm
around each mine was considered. The locations of the mines were provided by
the ground truth. The discretization step was set to be 0.01 m in each direction
for the compatibility with the resolution of the measured IR images and the time
step was chosen to be 60 seconds.

As analyzed in Section 2, we should start the simulations around sunrise or
sunset in order to have a good approximation of the initial condition. The IR
images show that the heat equilibrium happened around 8:00 for this experiment.
The soil temperature at this time instant was approximated by interpolating the
soil temperature at different depths measured by thermocouples.

Figures 4 and 5 depict the simulated and measured soil-surface temperature
above the mines (the left figures), in the homogeneous soil areas (the middle
figures) and the temperature contrasts of the mines (the right figures) which are
calculated as the difference between the soil-surface temperature above the mines
and that of the background.

The figures show that the simulated soil-surface temperature and contrast be-
tween the mines and the soil approximate well the measured data. This confirms
the validity of the thermal model (2.12) in practical situations.

From the figures we can also see that the temperature contrast depends on the
size of the buried mines. Moreover, in [31], we also showed that several factors
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Figure 4. Comparison of the simulated and measured back-
ground temperature for mine B82: (a) Temperature above the
mine; (b) Temperature in a homogeneous soil area; (c) Tempera-
ture contrast.
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Figure 5. Comparison of the simulated and measured back-
ground temperature for mine C49: (a) Temperature above the
mine; (b) Temperature in a homogeneous soil area; (c) Tempera-
ture contrast.

have effect on the soil-surface temperature contrast such as the soil type, the
depth at which the mines are buried and the weather conditions.

4.2. Results of the inverse problem. Having the validated forward model
(2.12), the next step is to test the performance of the proposed algorithm for the
inverse problem. In the following, we show for some numerical examples using
both simulated and real data.

Simulated data. We first test the proposed algorithm for simulated data. Keeping
in mind the application in real situations, we choose similar parameters as in the
aforementioned experiment. A cylindrical mine of radius 0.04 m and height 0.05
m was buried in the middle of a sandy soil volume at 0.015 m deep. The size
of the soil domain was set to be 0.34 × 0.34 × 0.4 (m3) and the time interval of
analysis was chosen to be te = 16 (h) (from 8:00 till 24:00). The discretization
grid sizes were chosen as h = (0.01, 0.01, 0.01) (m) and ∆t = 300 (s) resulting in
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35× 35× 41 space grid points and 193 time steps. We note that due to the small
sizes of landmines, the spatial grid sizes should not be chosen too large while, due
to the stability of the splitting scheme (2.35), the time step can be more freely
chosen.

The initial condition was set to be g(x) = 293 (K). The parameters p and q(t)
were calculated through weather conditions, see [34]. In this example, we have
p = 9.2265 × 10−6 and q(t) is depicted in Figure 3(b).

In order to avoid the so-called inverse crime, we used an explicit finite difference
method to simulate the measured data. Then a random noise of magnitude
of 0.1 K was added to the simulated data. We remark that the soil-surface
temperature contrast is generally small, say, less than a few degrees Kelvin, see
[33]. Therefore, the noise level of 0.1 K is large in this situation, especially when
the mine is deeply buried.

For the star-shaped representation (3.19), we need to know the point x0 which
must be inside the cross-section of the object. To estimate this point, we make
use of the anomaly detection technique proposed in [35]. This techniques not
only helps detect the location of an anomaly but also provides a rough estimate
of the cross-section, see Figures 6(a) and 7(a). Therefore, the detected mask
can be used as an initial guess of the cross-section. In this test, we obtained
x0 = (0.17, 0.17)′ .

The first test of the algorithm was done with only four unknown representing
the depth of burial, height, radius and thermal diffusivity. In this case, we as-
sumed that the cross-section of the mine was circular with the center at x0. The
reconstruction result is depicted in Figure 6. In the figure we also plot the initial
guess.

From the figure we can say firstly that the algorithm converges very quickly.
This is the benefit of using a small number of unknowns. The use of a small num-
ber of unknowns also plays the role of regularization which makes the algorithm
stable although we do not use any other regularization techniques. Secondly, the
depth, the shape and the thermal diffusivity of the mine are accurately recon-
structed. However, the estimation of the height is not really good. This is due
to the fact that the height does not affect so much the soil-surface temperature
as mentioned before, see also [34].

To analyze the effect of the initial guess given by the anomaly detection tech-
nique, in Figure 7 we plot the reconstruction result using another estimated mask.
We can see that after a few iterations, the algorithm also converges to a very good
result.

To finish the analysis of the simulated data, let us analyze the effect of the point
x0 to the accuracy of the reconstruction. To do so, we set x0 = (0.18, 0.15)′ . In
this case, since this point is not at the center of the true object, we use three
parameters β0, β1, γ1 to represent the cross-section which results six unknowns to
be estimated. Note that the anomaly detection technique was not used for this
test. Figure 8 shows that the algorithm again provided a very good result. We
emphasize that if only one parameter is used for the cross-section, there must be
a shift between the exact and the estimated cross-sections. If more number of



THERMAL INFRARED TECHNIQUE FOR LANDMINE DETECTION 499

0.07 0.14 0.21 0.28 0.35

0.07

0.14

0.21

0.28

0.35

x
1
 (m)

x 2 (
m

)

 

 

Mask
Equiv. circle
Exact

(a) Estimated mask and its equivalent cir-
cle

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

x
1
 (m)

x 2 (
m

)

 

 

Initial guess
Estimate
Exact

(b) Cross-section

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

(c) Evolution of the objective functional

0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

8

x 10
−7

Depth (m)

T
he

rm
al

 d
iff

us
iv

ity
 (

m
2 /s

)

 

 

Initial guess
Estimated
Exact

(d) Distribution of the coefficient in depth

Figure 6. Reconstruction result for the simulated mine.

Fourier coefficients are used, it is possible to represent more complicated shapes,
but the algorithm becomes less stable. Therefore, if we know a priori that the
shape is regular, we should use just a few Fourier coefficients.

Real experimental data. Using the same algorithm, we obtained the reconstruc-
tion results for the experimental mines B82 and C49. The results are depicted in
Figure 9 and Figure 10, respectively. It is clear that, due to several types of noise,
the results of the experimental data are not as good as those of the simulated
data. The estimated cross-sections are larger than the ground truth. However,
the depth and the thermal diffusivity are reasonably well reconstructed. These
results are comparable to the results of the two-step method given in [31, 35] but
the computational cost of this algorithm is only of the same order as the first
step of the two-step method.
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Figure 7. Reconstruction result for the simulated mine with an-
other estimated mask.
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Figure 8. Reconstruction of the simulated mine with x0 = (0.18, 0.15)′ .
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Figure 9. Reconstruction result for the mine B82.

5. Conclusions

We have described the mathematical formulation of a thermal model for land-
mine detection using IR technique and formed an inverse problem for charac-
terizing a buried object by estimating its depth of burial, shape and thermal
diffusivity. We have also proposed a new algorithm for the inverse problem by
using the star-shaped representation of the object cross-section. Numerical re-
sults have shown the good performance of the proposed algorithm.

For further investigations of this problem, other parametrization methods
should be used for representing the whole object’s shape in order to deal with
other types of shape rather than upright cylinders. The finite element method
can also be used to solve the forward problem which can allow us to calculate the
gradient of the objective functional with respect to geometrical parameters by a
more explicit way.
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Figure 10. Reconstruction result for the mine C49.
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[19] P. López, Detection of Landmines from Measured Infrared Images using Thermal Modelling

of the Soil, PhD thesis, University of Santiago de Compostela, Spain, 2003.
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