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AN N -ORDER ITERATIVE SCHEME FOR A NONLINEAR

KIRCHHOFF-CARRIER WAVE EQUATION ASSOCIATED

WITH MIXED HOMOGENEOUS CONDITIONS

LE THI PHUONG NGOC, LE XUAN TRUONG AND NGUYEN THANH LONG

Abstract. In this paper, a high-order iterative scheme is established in order
to get a convergent sequence at a rate of order N (N ≥ 1) to a local unique
weak solution of a nonlinear Kirchhoff – Carrier wave equation associated with
mixed homogeneous conditions. This extends recent corresponding results
where recurrent sequences converge at a rate of order 1 or 2.

1. Introduction

In this paper we consider a nonlinear wave equation with the Kirchhoff-Carrier
operator
(1.1)

utt − µ
(
t, ||u(t)||2, ||ux(t)||2

) ∂

∂x
(A(x)ux) = f(x, t, u), 0 < x < 1, 0 < t < T,

(1.2) A(0)ux(0, t) − hu(0, t) = u(1, t) = 0,

(1.3) u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where A, µ, f, ũ0, ũ1 are given functions satisfying conditions specified later and
h ≥ 0 is a given constant. In Eq. (1.1), the nonlinear term µ(t, ||u(t)||2, ||ux(t)||2)
depends on the integrals

(1.4) ||u(t)||2 =

∫ 1

0
|u(x, t)|2dx, ||ux(t)||2 =

∫ 1

0
|ux(x, t)|2dx.

Eq. (1.1) has its origin in the nonlinear vibration of an elastic string (Kirchhoff
[5]), for which the associated equation is

(1.5) ρhutt =

(
P0 +

Eh

2L

∫ L

0
|∂u

∂y
(y, t)|2dy

)
uxx,

here u is the lateral deflection, ρ is the mass density, h is the cross section, L is
the length, E is Young’s modulus and P0 is the initial axial tension.
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In [3], Carrier also established a model of the type

(1.6) utt =

(
P0 + P1

∫ L

0
u2(y, t)dy

)
uxx,

where P0 and P1 are constants.

In [8] Long and Diem have studied the linear recursive schemes associated with
the nonlinear wave equation

(1.7) utt − uxx = f(x, t, u, ux, ut), 0 < x < 1, 0 < t < T,

associated with (1.3) and the mixed conditions (1.2) standing for

(1.8) ux(0, t) − h0u(0, t) = ux(1, t) + h1u(1, t) = 0,

where h0 > 0, h1 ≥ 0 are given constants. This result has been extended in [9]
to the nonlinear wave equation with the Kirchhoff operator

(1.9) utt − µ(||ux||2)uxx = f(x, t, u, ux, ut), 0 < x < 1, 0 < t < T,

associated with (1.3) and the Dirichlet homogeneous boundary condition.

The authors of [8], [9] proved that there exists a recurrent sequence which
converges at a rate of order 1 to a weak solution of the problem. Afterwards, the
quadratic convergence also has been studied in [11] - [14].

Based on the ideas about recurrence relations for a third order method for
solving the nonlinear operator equation F (u) = 0 in [15], we extend the above
results by the construction a high-order iterative scheme.

In this paper, we associate with equation (1.1) a recurrent sequence {um}
defined by

∂2um

∂t2
− µ(t, ||um||2, ||umx||2)

∂

∂x
(A(x)umx)

=

N−1∑

i=0

1

i!

∂if

∂ui
(x, t, um−1) (um − um−1)

i ,(1.10)

0 < x < 1, 0 < t < T, with um satisfying (1.2), (1.3). The first term u0

is chosen as u0 ≡ ũ0. If µ ∈ C1(R3
+), A ∈ C1 ([0, 1]) , A(x) ≥ a0 > 0 and

f ∈ CN ([0, 1]×R+ ×R), we prove that the sequence {um} converges at a rate of
order N to a local unique weak solution of the problem (1.1) – (1.3). This result
is a relative generalization of [2], [4], [8]-[14].

2. Preliminary results, notations

First, we denote the usual function spaces used in this paper by the notations
Lp = Lp(0, 1), Hm = Hm (0, 1) . Let 〈·, ·〉 be either the scalar product in L2 or
the dual pairing of a continuous linear functional and an element of a function
space. The notation || · || stands for the norm in L2 and we denote by || · ||X the
norm in the Banach space X. We call X ′ the dual space of X. We denote by
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Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions u : (0, T ) → X
measurable, such that

||u||Lp(0,T ;X) =
(∫ T

0 ||u(t)||pXdt
)1/p

< +∞ for 1 ≤ p < ∞,

and
||u||L∞(0,T ;X) = ess sup

0<t<T
||u(t)||X for p = ∞.

Let u(t), ut(t) =
·
u(t), utt(t) =

··
u(t), ux(t) = 5u(t), uxx(t) = ∆u(t), denote

u(x, t), ∂u
∂ t (x, t), ∂2u

∂ t2 (x, t), ∂u
∂x(x, t), ∂2u

∂x2 (x, t), respectively. With f ∈ Ck([0, 1] ×
R+ × R), f = f(x, t, u), we put D1f = ∂f

∂x , D2f = ∂f
∂t , D3f = ∂f

∂u and Dαf =

Dα1
1 Dα2

2 Dα3
3 f, α = (α1, α2, α3) ∈ Z

3
+, |α| = α1 + α2 + α3 = k.

Similarly, with µ = µ(t, y, z), we also put D1µ = ∂µ
∂t , D2µ = ∂µ

∂y , D3µ = ∂µ
∂z .

Next, let A ∈ C ([0, 1]) , with A(x) ≥ a0 > 0 for all x ∈ [0, 1]. We put

a(u, v) =

∫ 1

0
A(x)ux(x)vx(x)dx + hu(0)v(0),(2.1)

V = {v ∈ H1 : v(1) = 0}.(2.2)

Then V is a closed subspace of H1 and on V three norms ||v||H1 , ||vx|| and

||v||a =
√

a(v, v) are equivalent norms.

Then we have the following lemmas, the proofs of which are straightforward
and are omitted.

Lemma 2.1. The imbedding H1 ↪→ C0([0, 1]) is compact and

(2.3) ||v||C0([0,1]) ≤
√

2||v||H1 for all v ∈ H1.

Lemma 2.2. Let h ≥ 0. Then the imbedding V ↪→ C0([0, 1]) is compact and

(2.4)





||v||C0([0,1]) ≤ ||vx|| ≤ 1√
a0
||v||a,

1√
2
||v||H1 ≤ ||vx|| ≤ ||v||H1 ,

√
a0||vx|| ≤ ||v||a ≤

√
Amax + h||vx||,

for all v ∈ V, where Amax = ||A||C0([0,1]).

Lemma 2.3. Let h ≥ 0. Then the symmetric bilinear form a(·, ·) defined by (2.2)
is continuous on V × V and coercive on V.

Lemma 2.4. Let h ≥ 0. Then there exists the Hilbert orthonormal base {w̃j} of
L2 consisting of the eigenfunctions w̃j corresponding to the eigenvalue λj such
that

(2.5)

{
0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ ..., lim

j→+∞
λj = +∞,

a(w̃j , v) = λj〈w̃j , v〉 for all v ∈ V, j = 1, 2, ....

Furthermore, the sequence {w̃j/
√

λj} is also the Hilbert orthonormal base of V
with respect to the scalar product a(·, ·).
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On the other hand, we also have w̃j satisfying the following boundary value
problem

(2.6)





− ∂
∂x

(
A(x)

∂w̃j

∂x

)
= λjw̃j, in Ω,

∂w̃j

∂x (0) − h
A(0) w̃j(0) = w̃j(1) = 0, w̃j ∈ C∞(Ω).

The proof of Lemma 2.4 can be found in [16, p.87, Theorem 7.7], with H = L2

and V, a(·, ·) defined by (2.1), (2.2).

Finally, let us note more that the weak solution u of the initial and boundary
value problem (1.1) – (1.3) will be obtained in Section 3 (Theorem 3.4) in the
following manner:

Find u ∈ W̃ =
{
v ∈ L∞(0, T ;V ∩ H2) : vt ∈ L∞(0, T ;V ), vtt ∈ L∞(0, T ;L2)

}

such that u verifies the following variational equation

(2.7) 〈utt(t), v〉 + µ
(
t, ||u(t)||2, ||ux(t)||2

)
a(u(t), v) = 〈f(·, t, u), v〉 ∀v ∈ V,

and the initial conditions

(2.8) u(0) = ũ0, ut(0) = ũ1.

3. The N-order iterative scheme

We make the following assumptions:

(H1) h ≥ 0;

(H2) ũ0 ∈ V ∩ H2 and ũ1 ∈ V ;

(H3) A ∈ C1 ([0, 1]) and there exists a constant a0 > 0 such that A(x) ≥ a0 for
all x ∈ [0, 1];

(H4) µ ∈ C1(R3
+) and there exist constants p > 1, µ∗ > 0, µi > 0, i ∈ {0, 1, 2, 3},

such that

(i) µ∗ ≤ µ(t, y, z) ≤ µ0 (1 + yp + zp) , for all (t, y, z) ∈ R
3
+,

(ii) |D1µ(t, y, z)| ≤ µ1 (1 + yp + zp) , for all (t, y, z) ∈ R
3
+,

(iii) |D2µ(t, y, z)| ≤ µ2

(
1 + yp−1 + zp

)
, for all (t, y, z) ∈ R

3
+,

(iv) |D3µ(t, y, z)| ≤ µ3

(
1 + yp + zp−1

)
, for all (t, y, z) ∈ R

3
+;

(H5) f ∈ CN([0, 1] × R+ × R).

With f satisfying the assumption (H5), for each M > 0 and T > 0 we put

(3.1)





K0 = K0(M,T, f) = sup {|f(x, t, u)| : (x, t, u) ∈ A∗} ,

Ki = Ki(M,T, f) =
∑

|α|=i K0(M,T,Dαf),

K̂i = max
0≤j≤i

Kj ,

i = 1, 2, ..., N, where

A∗ = A∗(M,T ) = {(x, t, u) ∈ R
3 : 0 ≤ x ≤ 1, 0 ≤ t ≤ T, |u| ≤ M}.
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For each M > 0 and T > 0 we get
(3.2)



W (M,T ) =
{
v ∈ L∞(0, T ;V ∩ H2) : vt ∈ L∞(0, T ;V ) and vtt ∈ L2(QT ),

with ||v||L∞(0,T ;V ∩H2), ||vt||L∞(0,T ;V ), ||vtt||L2(QT ) ≤ M
}

,

W1(M,T ) = {v ∈ W (M,T ) : vtt ∈ L∞(0, T ;L2)}.
We shall choose as first initial term u0 ≡ ũ0, suppose that

(3.3) um−1 ∈ W1(M,T ),

and associate with problem (1.4), (1.6), (1.7) the following variational problem:

Find um ∈ W1(M,T ) (m ≥ 1) so that

(3.4)

{
〈··um(t), v〉 + µm(t)a(um(t), v) = 〈Fm(t), v〉 ∀v ∈ V,

um(0) = ũ0,
·
um(0) = ũ1,

where

(3.5) µm(t) = µ
(
t, ||um(t)||2, ||umx(t)||2

)
,

(3.6) Fm(x, t) =
∑N−1

i=0
1
i!D

i
3f(x, t, um−1) (um − um−1)

i .

Then, we have the following theorem.

Theorem 3.1. Let (H1) − (H5) hold. Then there exist a constant M > 0 de-
pending on A, ũ0, ũ1, µ and a constant T > 0 depending on A, ũ0, ũ1, µ, f such
that, for u0 ≡ ũ0, there exists a recurrent sequence {um} ⊂ W1(M,T ) defined by
(3.4)– (3.6).

Proof. The proof consists of several steps.
Step 1: The Faedo-Galerkin approximation (introduced by Lions [7]). Consider
the basis for V as in Lemma 2.4 (wj = w̃j/

√
λj). Put

(3.7) u
(k)
m (t) =

∑k
j=1 c

(k)
mj(t)wj ,

where the coefficients c
(k)
mj satisfy the system of nonlinear differential equations

(3.8)





〈··u
(k)

m (t), wj〉 + µ
(k)
m (t)a(u

(k)
m (t), wj) = 〈F (k)

m (t), wj〉, 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k,

·
u

(k)

m (0) = ũ1k,

where

(3.9)





ũ0k =
∑k

j=1 α
(k)
j wj → ũ0 strongly in H2,

ũ1k =
∑k

j=1 β
(k)
j wj → ũ1 strongly in H1,

and

(3.10)





µ
(k)
m (t) = µ

(
t, ||u(k)

m (t)||2, ||∇u
(k)
m (t)||2

)
,

F
(k)
m (x, t) =

∑N−1
i=0

1
i!D

i
3f(x, t, um−1)

(
u

(k)
m − um−1

)i
.
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Let us suppose that um−1 satisfies (3.3). Then it is clear that system (3.8) has

a solution u
(k)
m (t) on an interval 0 ≤ t ≤ T

(k)
m ≤ T. The following estimates allow

one to take constant T
(k)
m = T for all m and k.

Step 2: A priori estimates. Put

(3.11)





f1(t) = f(1, t, 0),

s
(k)
m (t) = || ·u

(k)

m (t)||2 + || ·u
(k)

m (t)||2a
+µ∗

(
||u(k)

m (t)||2a + || ∂
∂x

(
A∂u

(k)
m

∂x (t)
)
||2
)

+
∫ t
0 ||

··
u

(k)

m (s)||2ds,

S
(k)
m (t) = X

(k)
m (t) + Y

(k)
m (t) +

∫ t
0 ||

··
u

(k)

m (s)||2ds,

where

(3.12)





X
(k)
m (t) = || ·u

(k)

m (t)||2 + µ
(k)
m (t)||u(k)

m (t)||2a,

Y
(k)
m (t) = || ·u

(k)

m (t)||2a + µ
(k)
m (t)|| ∂

∂x

(
A∂u

(k)
m

∂x (t)
)
||2.

Then, it follows from (3.8)-(3.12) that

(3.13)

S
(k)
m (t) = S

(k)
m (0) +

∫ t
0

·
µ

(k)

m (s)
[
||u(k)

m (s)||2a + || ∂
∂x

(
A∂u

(k)
m

∂x (s)
)
||2
]
ds

+2
∫ t
0 〈F

(k)
m (s),

·
u

(k)

m (s)〉ds + 2
∫ t
0 a(F

(k)
m (s),

·
u

(k)

m (s))ds

−2A(1)
∫ t
0 f1(s)∇

·
u

(k)

m (1, s)ds +
∫ t
0 ||··u

(k)

m (s)||2ds

= S
(k)
m (0) +

∑5
j=1 Ij.

We shall estimate respectively the following terms on the right-hand side of
(3.13).

First term I1 : By (3.10)1, we have

(3.14)

·
µ

(k)

m (t) = D1µ
(
t, ||u(k)

m (t)||2, ||∇u
(k)
m (t)||2

)

+2D2µ
(
t, ||u(k)

m (t)||2, ||∇u
(k)
m (t)||2

)
〈u(k)

m (t),
·
u

(k)

m (t)〉

+2D3µ
(
t, ||u(k)

m (t)||2, ||∇u
(k)
m (t)||2

)
〈5u

(k)
m (t),∇ ·

u
(k)

m (t)〉.

By using the assumption (H4, (ii), (iii), (iv)), and the following inequalities

||u(k)
m (t)|| ≤ ||u(k)

m (t)||C0([0,1]) ≤ ||∇u(k)
m (t)||

≤ 1√
a0

||u(k)
m (t)||a ≤ 1√

a0µ∗

√
s
(k)
m (t),(3.15)

||∇u(k)
m (t)|| ≤ 1√

a0
||u(k)

m (t)||a ≤ 1√
a0µ∗

√
s
(k)
m (t),(3.16)

|| ·u
(k)

m (t)|| ≤
√

s
(k)
m (t),(3.17)
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||∇ ·
u

(k)

m (t)|| ≤ 1√
a0

|| ·u
(k)

m (t)||a ≤ 1√
a0

√
s
(k)
m (t),(3.18)

we deduce from (3.14), that

| ·µ
(k)

m (t)| ≤ µ1

(
1 + ||u(k)

m (t)||2p + || 5 u(k)
m (t)||2p

)

+ 2µ2

(
1 + ||u(k)

m (t)||2p−2 + || 5 u(k)
m (t)||2p

)
||u(k)

m (t)|||| ·u
(k)

m (t)||

+ 2µ3

(
1 + ||u(k)

m (t)||2p + || 5 u(k)
m (t)||2p−2

)
|| 5 u(k)

m (t)|||| 5 ·
u

(k)

m (t)||

≤ µ1

[
1 +

2

ap
0µ

p
∗

(
s(k)
m (t)

)p
]

+ 2µ2

[
1 +

1

ap−1
0 µp−1

∗

(
s(k)
m (t)

)p−1
+

1

ap
0µ

p
∗

(
s(k)
m (t)

)p
]

1√
a0µ∗

s(k)
m (t)

+ 2µ3

[
1 +

1

ap
0µ

p
∗

(
s(k)
m (t)

)p
+

1

ap−1
0 µp−1

∗

(
s(k)
m (t)

)p−1
]

1√
µ∗a0

s(k)
m (t)

= µ1 + 2µ2 + 2µ3 +

[
2µ1

ap
0µ

p
∗

+ 2

(
µ2 +

µ3√
a0

)(
1

a0µ∗

)p− 1
2

](
s(k)
m (t)

)p

+

[
2

(
µ2 +

µ3√
a0

)(
1

a0µ∗

)p+ 1
2

](
s(k)
m (t)

)p+1

≤ µ̃1

(
1 +

(
s(k)
m (t)

)p
+
(
s(k)
m (t)

)p+1
)

,(3.19)

where

(3.20) µ̃1 = µ1 + 2µ2 + 2µ3 +
2µ1

ap
0µ

p
∗

+ 2

(
µ2 +

µ3√
a0

)(
1 +

1

a0µ∗

)(
1

a0µ∗

)p− 1
2

.

Using the inequality

(3.21) sq ≤ 1 + sN0, ∀s ≥ 0, ∀q ∈ (0, N0], N0 = max{N − 1, 2p + 1},
we get from (3.11), (3.12), (3.19), that

I1 =

∫ t

0

·
µ

(k)

m (s)

[
||u(k)

m (s)||2a + || ∂

∂x

(
A

∂u
(k)
m

∂x
(s)

)
||2
]

ds

≤ µ̃1

∫ t

0

(
1 +

(
s(k)
m (s)

)p
+
(
s(k)
m (s)

)p+1
)

1

µ∗
s(k)
m (s)ds

≤ µ̃1

µ∗

∫ t

0

(
s(k)
m (s) +

(
s(k)
m (s)

)p+1
+
(
s(k)
m (s)

)p+2
)

ds

≤ 3µ̃1

µ∗

∫ t

0

[
1 +

(
s(k)
m (s)

)N0
]

ds
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≤ 3µ̃1

µ∗

[
T +

∫ t

0

(
s(k)
m (s)

)N0

ds

]
.(3.22)

We shall now require the following lemma.

Lemma 3.2. We have

(3.23) ||F (k)
m (t)|| ≤ K̂N−1

∑N−1
i=0 ãi

(√
s
(k)
m (t)

)i

,

(3.24) ||∇F
(k)
m (t)|| ≤ K̃N−1

∑N−1
i=0 ãi

(√
s
(k)
m (t)

)i

,

where K̃N = (1 + M)K̂N + (N − 1)K̂N−1, with ãi, i = 0, 1, ..., N − 1 defined as
follows

(3.25) ã0 = 1 + 1
2

∑N−1
i=1

(2M)i

i! , ãi = 1
2i!

(
2√

a0µ∗

)i
, i = 1, ..., N − 1.

Proof. (i) By (2.4), (3.3), (3.10)2, (3.15), and (3.16), we have

|F (k)
m (x, t)| ≤ K̂N−1 + K̂N−1

N−1∑

i=1

1

i!

(
||u(k)

m (t)||C0([0,1]) + ||um−1(t)||C0([0,1])

)i

≤ K̂N−1 + K̂N−1

N−1∑

i=1

1

i!

(
||∇u(k)

m (t)|| + ||∇um−1(t)||
)i

≤ K̂N−1 + K̂N−1

N−1∑

i=1

1

i!

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

≤ K̂N−1

[
1 +

N−1∑

i=1

1

i!
2i−1

((
1√
a0µ∗

)i(√
s
(k)
m (t)

)i

+ M i

)]

= K̂N−1

[
1 +

1

2

N−1∑

i=1

(2M)i

i!
+

N−1∑

i=1

1

2i!

(
2√
a0µ∗

)i(√
s
(k)
m (t)

)i
]

= K̂N−1

N−1∑

i=0

ãi

(√
s
(k)
m (t)

)i

,(3.26)

with ãi, i = 0, 1, ..., N − 1 defined as (3.25). Hence, (3.23) is proved.

(ii) We use the following notations: f [u] = f(x, t, u), Djf [u] = Djf(x, t, u),
j = 1, 2, 3.

By (3.10)2, we have

∇F (k)
m (x, t) = D1f [um−1] + D3f [um−1]∇um−1

+

N−1∑

i=1

1

i!

(
D1D

i
3f [um−1] + Di+1

3 f [um−1]∇um−1

) (
u(k)

m − um−1

)i
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+
N−1∑

i=1

i

i!
Di

3f [um−1]
(
u(k)

m − um−1

)i−1 (
∇u(k)

m −∇um−1

)
.(3.27)

Using the inequalities (2.4), (3.15), (2.6), it follows from (3.1), (3.3), (3.27),
that

|∇F (k)
m (x, t)|

≤ K1(1 + |∇um−1|)

+

N−1∑

i=1

1

i!
Ki+1 (1 + |∇um−1|)

(
||u(k)

m (t)||C0([0,1]) + ||um−1(t)||C0([0,1])

)i

+

N−1∑

i=1

i

i!
Ki

(
||u(k)

m (t)||C0([0,1]) + ||um−1(t)||C0([0,1])

)i−1 (
|∇u(k)

m | + |∇um−1|
)

≤ K1(1 + |∇um−1|) +

N−1∑

i=1

1

i!
Ki+1 (1 + |∇um−1|)

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

+

N−1∑

i=1

i

i!
Ki

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i−1 (
|∇u(k)

m | + |∇um−1|
)

≤ K1(1 + |∇um−1|) +
N−1∑

i=1

1

i!
Ki+1 (1 + |∇um−1|)

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

+

N−1∑

i=1

i

i!
Ki

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i−1 (
|∇u(k)

m | + |∇um−1|
)

.

(3.28)

It follows from (2.4), (3.1), (3.3), (3.15), (3.16) and (3.28), that

||∇F (k)
m (t)|| ≤ K1(1 + M) +

N−1∑

i=1

1

i!
Ki+1(1 + M)

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

+
N−1∑

i=1

i

i!
Ki

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i−1( 1√
a0µ∗

√
s
(k)
m (t) + M

)

≤ K1(1 + M) +

N−1∑

i=1

1

i!
Ki+1(1 + M)

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

+
N−1∑

i=1

i

i!
Ki

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

≤ (1 + M)K̂N

[
1 +

N−1∑

i=1

1

i!

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i
]
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+ (N − 1)K̂N−1

N−1∑

i=1

1

i!

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i

≤
[
(1 + M)K̂N + (N − 1)K̂N−1

] [
1 +

N−1∑

i=1

1

i!

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i
]

= K̃N

[
1 +

N−1∑

i=1

1

i!

(
1√
a0µ∗

√
s
(k)
m (t) + M

)i
]

≤ K̃N

[
1 +

N−1∑

i=1

1

i!
2i−1

(
1

(√
a0µ∗

)i
(√

s
(k)
m (t)

)i

+ M i

)]

= K̃N

[
1 +

1

2

N−1∑

i=1

(2M)i

i!
+

N−1∑

i=1

1

2i!

(
2√
a0µ∗

)i(√
s
(k)
m (t)

)i
]

= K̃N

N−1∑

i=0

ãi

(√
s
(k)
m (t)

)i

.(3.29)

Hence, (3.24) is proved. The proof of Lemma 3.2 is complete. �

We now return to the estimates for I2, I3.

Second term I2 : We again use inequality (3.21) and from (3.17), (3.23), we
have

I2 = 2

∫ t

0
〈F (k)

m (s),
·
u

(k)

m (s)〉ds

≤ 2

∫ t

0
||F (k)

m (s)|||| ·u
(k)

m (s)||ds

= 2K̂N−1

N−1∑

i=0

ãi

∫ t

0

(√
s
(k)
m (s)

)i+1

ds

≤ 2K̂N−1

N−1∑

i=0

ãi

∫ t

0

[
1 +

(
s(k)
m (s)

)N0
]

ds

≤ 2K̂N−1

N−1∑

i=0

ãi

[
T +

∫ t

0

(
s(k)
m (s)

)N0

ds

]
.(3.30)

Third term I3 : We have

I3 = 2

∫ t

0
a(F (k)

m (s),
·
u

(k)

m (s))ds ≤ 2

∫ t

0
||F (k)

m (s)||a||
·
u

(k)

m (s)||ads

≤ 2

∫ t

0
||F (k)

m (s)||a
√

s
(k)
m (s)ds.(3.31)
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On the other hand, by (2.3), (3.23) and (3.24), we obtain

||F (k)
m (t)||a =

√
h|F (k)

m (0, t)|2 +

∫ 1

0
A(x)|∇F

(k)
m (x, t)|2dx

≤
√

2h||F (k)
m (t)||2

H1 + Amax||∇F
(k)
m (t)||2

≤
√

(2h + Amax)
(
||F (k)

m (t)||2 + ||∇F
(k)
m (t)||2

)

≤
√

2h + Amax

(
||F (k)

m (t)|| + ||∇F (k)
m (t)||

)

≤
√

2h + Amax

(
K̂N−1 + K̃N−1

)N−1∑

i=0

ãi

(√
s
(k)
m (t)

)i

.(3.32)

Hence, it follows from (3.21), (3.31), (3.32), that

I3 ≤ 2

∫ t

0
||F (k)

m (s)||a
√

s
(k)
m (s)ds

≤ 2
√

2h + Amax

(
K̂N−1 + K̃N−1

)N−1∑

i=0

ãi

∫ t

0

(√
s
(k)
m (s)

)i+1

ds

≤ 2
√

2h + Amax

(
K̂N−1 + K̃N−1

)N−1∑

i=0

ãi

∫ t

0

[
1 +

(
s(k)
m (s)

)N0
]

ds

≤ 2
√

2h + Amax

(
K̂N−1 + K̃N−1

)N−1∑

i=0

ãi

[
T +

∫ t

0

(
s(k)
m (s)

)N0

ds

]
.(3.33)

Fourth term I4 : Integrating by parts, we have

(3.34)

I4 = −2A(1)
∫ t
0 f1(s)∇

·
u

(k)

m (1, s)ds

= −2A(1)f1(t)∇u
(k)
m (1, t) + 2A(1)f1(0)∇ũ0k(1)

+ 2A(1)
∫ t
0 f ′

1(s)∇u
(k)
m (1, s)ds

= −2A(1)
(∫ t

0 f ′
1(s)ds

)
∇u

(k)
m (1, t) − 2A(1)f1(0)∇u

(k)
m (1, t)

+ 2A(1)f1(0)∇ũ0k(1) + 2A(1)
∫ t
0 f ′

1(s)∇u
(k)
m (1, s)ds.

On the other hand, we have

∇u(k)
m (1, t) = ∇u(k)

m (0, t) +

∫ 1

0
∆u(k)

m (x, t)dx

=
h

A(0)
u(k)

m (0, t) +

∫ 1

0
∆u(k)

m (x, t)dx,(3.35)

and

a0||∆u(k)
m (t)|| ≤ ||A∆u(k)

m (t)||
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= || ∂

∂x

(
A

∂u
(k)
m

∂x
(t)

)
−∇A∇u(k)

m (t)||

≤ || ∂

∂x

(
A

∂u
(k)
m

∂x
(t)

)
|| + ||∇A||L∞(Ω)||∇u(k)

m (t)||

≤ 1√
µ∗

√
s
(k)
m (t) + ||∇A||L∞(Ω)

1√
a0µ∗

√
s
(k)
m (t)

=
1√
µ∗

(
1 +

1√
a0

||∇A||L∞(Ω)

)√
s
(k)
m (t).(3.36)

Hence, we obtain from (3.16), (3.35), (3.36), that

|∇u(k)
m (1, t)|2 ≤ 2h2

A2(0)
|u(k)

m (0, t)|2 + 2||∆u(k)
m (t)||2

≤ 2h2

A2(0)
||∇u(k)

m (t)||2 + 2||∆u(k)
m (t)||2

=
2

a0µ∗

[
h2

A2(0)
+

1

a0

(
1 +

1√
a0

||∇A||L∞(Ω)

)2
]

s(k)
m (t)

= µ̃4s
(k)
m (t),(3.37)

where

(3.38) µ̃4 = 2
a0µ∗

[
h2

A2(0)
+ 1

a0

(
1 + 1√

a0
‖∇A‖L∞(Ω)

)2
]

.

It follows from (3.34), (3.37), that

|I4| ≤ 2A(1)

(∫ t

0

∣∣f ′
1(s)

∣∣ ds

)√
µ̃4

√
s
(k)
m (t) + 2A(1) |f1(0)|

√
µ̃4

√
s
(k)
m (t)

+ 2A(1) |f1(0)∇ũ0k(1)| + 2A(1)
√

µ̃4

∫ t

0

∣∣f ′
1(s)

∣∣
√

s
(k)
m (s)ds

≤ 2βs(k)
m (t) +

1

β
A2(1)µ̃4

(
T 2||f ′

1||2L∞ + f2
1 (0)

)

+ 2A(1) |f1(0)∇ũ0k(1)| + 2A(1)
√

µ̃4||f ′
1||2L∞

[
T +

∫ t

0

(
s(k)
m (s)

)N0

ds

]
,

(3.39)

for all β > 0.

Fifth term I5 : Equation (3.8)1 can be rewritten as follows

(3.40) 〈··u
(k)

m (t), wj〉 − µ
(k)
m (t)〈 ∂

∂x

(
A∂u

(k)
m

∂x (t)
)

, wj〉 = 〈F (k)
m (t), wj〉, 1 ≤ j ≤ k.
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Hence, it follows after replacing wj with
··
u

(k)

m (t) and integrating that

I5 =

∫ t

0
||··u

(k)

m (s)||2ds

≤ 2

∫ t

0
||F (k)

m (s)||2ds + 2

∫ t

0

(
µ(k)

m (s)
)2

|| ∂

∂x

(
A

∂u
(k)
m

∂x
(s)

)
||2ds

= I
(1)
5 + I

(2)
5 .(3.41)

We shall estimate step by step two integrals I
(1)
5 , I

(2)
5 .

Estimate I
(1)
5 : Using the inequalities (3.21) and

(∑N−1
i=0 ai

)2
≤ N

∑N−1
i=0 a2

i ,

for all a0, a1, ..., aN−1 ∈ R, it follows from (3.23), that

(3.42)

I
(1)
5 = 2

∫ t
0 ||F (k)

m (s)||2ds ≤ 2NK̂2
N−1

∑N−1
i=0 ã2

i

∫ t
0

(
s
(k)
m (s)

)i
ds

≤ 2NK̂2
N−1

∑N−1
i=0 ã2

i

∫ t
0

[
1 +

(
s
(k)
m (s)

)N0
]

ds

≤ 2NK̂2
N−1

∑N−1
i=0 ã2

i

[
T +

∫ t
0

(
s
(k)
m (s)

)N0

ds

]
.

Estimate I
(2)
5 : By using the assumption (H4, (i)), we deduce from (3.10)1,

(3.15), (3.16), that

(3.43)

|µ(k)
m (t)| ≤ µ0

(
1 + ||u(k)

m (t)||2p + || 5 u
(k)
m (t)||2p

)

≤ µ0

[
1 + 2 (a0µ∗)

−p
(
s
(k)
m (t)

)p]
.

Hence, we obtain from (3.21), (3.43), that

I
(2)
5 = 2

∫ t

0

(
µ(k)

m (s)
)2

|| ∂

∂x

(
A

∂u
(k)
m

∂x
(s)

)
||2ds

≤ 2µ2
0

µ∗

∫ t

0

[
1 + 2 (a0µ∗)

−p
(
s(k)
m (s)

)p]2
s(k)
m (s)ds

≤ 4µ2
0

µ∗

[
1 + 4 (a0µ∗)

−2p
]2 ∫ t

0

[
1 +

(
s(k)
m (s)

)2p
]

s(k)
m (s)ds

≤ 8µ2
0

µ∗

[
1 + 4 (a0µ∗)

−2p
]2 ∫ t

0

[
1 +

(
s(k)
m (s)

)N0
]

ds

≤ 8µ2
0

µ∗

[
1 + 4 (a0µ∗)

−2p
]2 [

T +

∫ t

0

(
s(k)
m (s)

)N0
]

ds

= µ̃5

[
T +

∫ t

0

(
s(k)
m (s)

)N0
]

ds,(3.44)
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where

(3.45) µ̃5 =
8µ2

0
µ∗

[
1 + 4 (a0µ∗)

−2p
]2

.

It follows from (3.41), (3.42), (3.44), that

(3.46) I5 ≤ K
(1)
N

[
T +

∫ t
0

(
s
(k)
m (s)

)N0

ds

]
,

where

(3.47) K
(1)
N = µ̃5 + 2NK̂2

N−1

∑N−1
i=0 ã2

i .

Now, we need an estimate on the term S
(k)
m (0). We have

(3.48)
S

(k)
m (0) = ||ũ1k||2 + ||ũ1k||2a

+µ
(
0, ||ũ0k ||2, || 5 ũ0k||2

) [
||ũ0k||2a + || ∂

∂x

(
A∂ũ0k

∂x

)
||2
]
.

By means of the convergences (3.9) we can deduce the existence of a constant
M > 0 independent of k and m such that

(3.49) 2S
(k)
m (0) + 4A(1) |f1(0)∇ũ0k(1)| + 8A2(1)µ̃4f

2
1 (0) ≤ 1

2M2.

Finally, it follows from (3.11)-(3.13), (3.22), (3.30), (3.33), (3.39), (3.46),
(3.49), with β = 1

4 , that

(3.50) s
(k)
m (t) ≤ 1

2M2 + TD̃2(M,T ) + D̃1(M,T )
∫ t
0

(
s
(k)
m (s)

)N0

ds,

for 0 ≤ t ≤ T
(k)
m ≤ T, where

(3.51)



D̃1(M,T ) = 4A(1)
√

µ̃4||f ′
1||2L∞ + 2K

(1)
N + 6µ̃1

µ∗

+2
[
2K̂N−1 +

√
2h + Amax

(
K̂N−1 + K̃N−1

)]∑N−1
i=0 ãi,

D̃2(M,T ) = D̃1(M,T ) + 8A2(1)µ̃4T ||f ′
1||2L∞ .

Then, we have the following lemma.

Lemma 3.3. There exists a constant T > 0 independent of k and m such that

(3.52) s
(k)
m (t) ≤ M2 ∀t ∈ [0, T ], for all k and m.

Proof. Put

(3.53) Y (t) = 1
2M2 + TD̃2(M,T ) + D̃1(M,T )

∫ t
0

(
s
(k)
m (s)

)N0

ds, 0 ≤ t ≤ T.
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Clearly

(3.54)





Y (t) > 0, 0 ≤ s
(k)
m (t) ≤ Y (t), 0 ≤ t ≤ T,

Y
′

(t) ≤ D̃1(M,T )Y N0(t), 0 ≤ t ≤ T,

Y (0) = 1
2M2 + TD̃2(M,T ).

Put Z(t) = Y 1−N0(t), after integrating of (3.54)

Z(t) ≥
(

1

2
M2 + TD̃2(M,T )

)1−N0

− (N0 − 1) D̃1(M,T )t

≥
(

1

2
M2 + TD̃2(M,T )

)1−N0

− (N0 − 1) D̃1(M,T )T, ∀t ∈ [0, T ].(3.55)

Notice that, from (3.51), we have

lim
T→0+

[(
1

2
M2 + TD̃2(M,T )

)1−N0

− (N0 − 1) D̃1(M,T )T

]

=

(
1

2
M2

)1−N0

>
(
M2
)1−N0 .(3.56)

Then, from (3.56), we can always choose the constant T > 0 such that

(3.57)
(

1
2M2 + TD̃2(M,T )

)1−N0

− (N0 − 1) D̃1(M,T )T >
(
M2
)1−N0 .

Finally, it follows from (3.54), (3.55) and (3.57), that

(3.58) 0 ≤ s
(k)
m (t) ≤ Y (t) = 1

N0−1
√

Z(t)
≤ M2, ∀t ∈ [0, T ].

The proof of Lemma 3.3 is complete. �

Remark 3.1. The function

S(t) =

[(
1

2
M2 + TD̃2(M,T )

)1−N0

− (N0 − 1) D̃1(M,T )t

] 1
1−N0

, 0 ≤ t ≤ T,

is the maximal solution of the following Volterra integral equation with non-
decreasing kernel (see [6]).

(3.59) S(t) = 1
2M2 + TD̃2(M,T ) + D̃1(M,T )

∫ t
0 SN0(s)ds, 0 ≤ t ≤ T.

By Lemma 3.3, we can take constant T
(k)
m = T for all m and k. Therefore, we

have

(3.60) u
(k)
m ∈ W (M,T ) for all m and k.
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From (3.60) we can extract from {u(k)
m } a subsequence {u(kj)

m } such that

(3.61)





u
(kj)
m → um in L∞(0, T ;V ∩ H2) weak*ly,

·
u

(kj)

m → ·
um in L∞(0, T ;V ) weak*ly,

··
u

(kj)

m → ··
um in L2(QT ) weakly,

(3.62) um ∈ W (M,T ).

We can easily check from (3.8) – (3.10), (3.61), (3.62) that um satisfies (3.4) –
(3.6) in L2(0, T ). On the other hand, it follows from (3.4)1 and um ∈ W (M,T )

that
··
um = µm(t) ∂

∂x (Aumx) + Fm ∈ L∞(0, T ;L2), hence um ∈ W1(M,T ) and the
proof of Theorem 3.1 is complete. �

Theorem 3.4. Let (H1) -(H5) hold. Then

(i) There exist constants M > 0 and T > 0 satisfying (3.49), (3.57) such that
the problem (1.1) – (1.3) has a local unique weak solution u ∈ W1(M,T ).

(ii) The recurrent sequence {um} defined by (3.4 ) – (3.6), converges at a rate

of order N to the solution u strongly in the space W1(T ) = {v ∈ L∞(0, T ;V ) :
·
v

∈ L∞(0, T ;L2)} in the sense

||um − u||L∞(0,T ;V ) + || ·um − ·
u||L∞(0,T ;L2)

≤ C
(
||um−1 − u||L∞(0,T ;V ) + || ·um−1 −

·
u||L∞(0,T ;L2)

)N
,

for all m ≥ 1, where C is a suitable constant.

Furthermore, we have also the estimation

(3.63) ||um − u||L∞(0,T ;V ) + || ·um − ·
u||L∞(0,T ;L2) ≤ CT (kT )N

m

,

for all m ≥ 1, where CT and kT < 1 are positive constants depending only on T.

Proof. First, we note that W1(T ) is a Banach space with respect to the norm (see
[7]):

||v||W1(T ) = ||v||L∞(0,T ;V ) + || ·v||L∞(0,T ;L2).

We shall prove that {um} is a Cauchy sequence in W1(T ). Let vm = um+1−um.
Then vm satisfies the variational problem
(3.64)



〈··vm(t), v〉 + µm+1(t)a(vm(t), v) = (µm+1(t) − µm(t)) 〈 ∂
∂x (Aumx(t)) , v〉

+ 〈Fm+1(t) − Fm(t), v〉 ∀v ∈ V,

vm(0) =
·
vm(0) = 0,

where

(3.65)





µm(t) = µ
(
t, ||um(t)||2, ||umx(t)||2

)
,

Fm(x, t) =
∑N−1

i=0
1
i!D

i
3f(x, t, um−1) (um − um−1)

i .
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Taking w =
·
vm in (3.64)1, after integrating in t we get

(3.66)

σm(t) =
∫ t
0

·
µm+1(s)||vm(s)||2ads

+2
∫ t
0 (µm+1(s) − µm(s))

〈
∂
∂x

(
A∂um

∂x (s)
)
,
·
vm(s)

〉
ds

+2
∫ t
0

〈
Fm+1(s) − Fm(s),

·
vm(s)

〉
ds =

∑3
k=1 Jk,

where

(3.67)
σm(t) = || ·vm(t)||2 + µm+1(t)a(vm(t), vm(t))

≥ || ·vm(t)||2 + µ∗||vm(t)||2a ≡ Em(t).

We shall estimate step by step all integrals Jk, k = 1, 2, 3.

First, by using the assumption (H4, (ii), (iii), (iv)), we deduce from (3.3),
(3.62), that
∣∣∣ ·µm+1(t)

∣∣∣
≤ µ1

(
1 + ||um+1(t)||2p + || 5 um+1(t)||2p

)

+ 2µ2

(
1 + ||um+1(t)||2p−2 + || 5 um+1(t)||2p

)
||um+1(t)||||

·
um+1(t)||

+ 2µ3

(
1 + ||um+1(t)||2p + || 5 um+1(t)||2p−2

)
|| 5 um+1(t)|||| 5

·
um+1(t)||

≤ µ1

[
1 + 2

(
1√
a0

||um+1(t)||a
)2p
]

+ 2µ2

[
1 +

(
1√
a0

||um+1(t)||a
)2p−2

+

(
1√
a0

||um+1(t)||a
)2p
]
×

× 1√
a0

||um+1(t)||a||
·
um+1(t)||

+ 2µ3

(
1 +

(
1√
a0

||um+1(t)||a
)2p

+

(
1√
a0

||um+1(t)||a
)2p−2

)
×

× 1√
a0

||um+1(t)||a|| 5
·
um+1(t)||

≤ µ1

[
1 + 2

(
M√
a0

)2p
]

+ 2 (µ2 + µ3)

[
1 +

(
M√
a0

)2p−2

+

(
M√
a0

)2p
]

M2

√
a0

≡ M̃1,

(3.68)

|µm+1(t) − µm(t)| ≤ 2
(
1 + M2p−2 + M2p

)
M [µ2 ‖vm(t)‖ + µ3 ‖∇vm(t)‖]

≤ 2
(
1 + M2p−2 + M2p

)
M [µ2 ‖vm(t)‖a + µ3 ‖vm(t)‖a]
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= 2
(
1 + M2p−2 + M2p

)
M (µ2 + µ3) ‖vm(t)‖a ≡ M̃2 ‖vm(t)‖a ,(3.69)

|| ∂

∂x

(
A

∂um

∂x
(t)

)
|| ≤ ||A∆um(t)|| + ||∇A∇um(t)|| ≤ M̃3

≤ Amax||∆um||L∞(0,T :L2) + ||∇A||L∞(Ω)||∇um||L∞(0,T :L2)

≤
(
Amax + ||∇A||L∞(Ω)

)
M ≡ M̃3.(3.70)

Hence, it follows from (3.62), (3.67)–(3.70), that

|J1| =

∣∣∣∣
∫ t

0

·
µm+1(s) ‖vm(s)‖2

a ds

∣∣∣∣

≤
∫ t

0

∣∣∣ ·µm+1(s)
∣∣∣ ||um(s)||2ads ≤ M̃1

µ∗

∫ t

0
Em(s)ds,(3.71)

|J2| = 2

∣∣∣∣
∫ t

0
(µm+1(s) − µm(s))

〈
∂

∂x

(
A

∂um

∂x
(s)

)
,
·
vm(s)

〉
ds

∣∣∣∣

≤ 2

∫ t

0
|µm+1(s) − µm(s)| || ∂

∂x

(
A

∂um

∂x
(s)

)
|||| ·vm(s)||ds

≤ 2M̃2M̃3
1√
µ∗

∫ t

0
Em(s)ds.(3.72)

On the other hand, by using Taylor’s expansion of the function f(x, t, um)
around the point um−1 up to order N, we obtain

f(x, t, um) − f(x, t, um−1)

=
N−1∑

i=1

1

i!
Di

3f(x, t, um−1) (vm−1)
i +

1

N !
DN

3 f(x, t, λm) (vm−1)
N ,(3.73)

where λm = λm(x, t) = um−1 + θ1 (um − um−1) , 0 < θ1 < 1.

Hence, it follows from (3.6), (3.73), that

Fm+1(x, t) − Fm(x, t)

=
N−1∑

i=1

1

i!
Di

3f(x, t, um) (vm)i +
1

N !
DN

3 f(x, t, λm) (vm−1)
N .(3.74)

Then we deduce, from (3.62), (3.67) and (3.74), that

||Fm+1(t) − Fm(t)||

≤
N−1∑

i=1

Ki

i!

(
1√
a0

||vm(t)||a
)i

+
KN

N !

(
1√
a0

||vm−1(t)||a
)N

≤
N−1∑

i=1

Ki

i!

(
1√
a0

)i

||vm(t)||i−1
a ||vm(t)||a +

KN

N !

(
1√
a0

)N

||vm−1(t)||Na
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≤
N−1∑

i=1

Ki

i!

(
1√
a0

)i M i−1

√
µ∗

√
Em(t) +

KN

N !

(
1√
a0

)N 1
(√

µ∗
)N
(√

Em−1(t)
)N

= ρ
(1)
T

√
Em(t) + ρ

(2)
T

(√
Em−1(t)

)N
,

(3.75)

where

(3.76) ρ
(1)
T =

∑N−1
i=1

Ki

i!

(
1√
a0

)i
M i−1√

µ∗

, ρ
(2)
T = KN

N !
1

(
√

a0µ∗)
N+1 .

Then we deduce, from (3.67) and (3.75), that

J3 = 2

∫ t

0
〈Fm+1(s) − Fm(s),

·
vm(s)〉ds

≤ 2

∫ t

0
||Fm+1(s) − Fm(s)|||| ·vm(s)||ds

≤ 2

∫ t

0

[
ρ
(1)
T

√
Em(s) + ρ

(2)
T

(√
Em−1(s)

)N
]√

Em(s)ds

≤
(
2ρ

(1)
T + ρ

(2)
T

) ∫ t

0
Em(s)ds + ρ

(2)
T

∫ T

0
EN

m−1(s)ds.(3.77)

Combining (3.66), (3.67), (3.71), (3.72) and (3.77), we then have

(3.78) Em(t) ≤ ρ
(2)
T

∫ T
0 EN

m−1(s)ds + ρ
(3)
T

∫ t
0 Em(s)ds,

where

(3.79) ρ
(3)
T = M̃1

µ∗

+ 2M̃2M̃3√
µ∗

+ 2ρ
(1)
T + ρ

(2)
T .

By using Gronwall’s lemma, we obtain from (3.78) that

(3.80) ||vm||W1(T ) ≤ µT ||vm−1||NW1(T ),

where µT is the constant given by

(3.81) µT =
(
1 + 1√

µ∗

)√
Tρ

(2)
T (1 + µ∗)

N exp(Tρ
(3)
T ).

Hence, we obtain from (3.78) that

(3.82) ||um − um+p||W1(T ) ≤ (1 − kT )−1 (µT )
−1

N−1 (kT )N
m

,

for all m and p where kT = 2M (µT )
1

N−1 < 1. It follows that {um} is a Cauchy
sequence in W1(T ). Then there exists u ∈ W1(T ) such that um → u strongly in
W1(T ). Thus, by applying a similar argument used in the proof of Theorem 3.1,
u ∈ W1(M,T ) is the local unique weak solution of problem (1.1)-(1.3). Passing
to the limit as p → +∞ for fixed m, we obtain the estimate (3.63) from (3.82).
This completes the proof of Theorem 3.4. �
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Remark 3.2. In order to construct a N -order iterative scheme, we need the
condition f ∈ CN ([0, 1]×R+ ×R). Then, we get a convergent sequence at a rate
of order N to a local unique weak solution of problem and the existence follows.
However, the above condition of f can be relaxed if we only consider the existence
of solution, see [9]–[12].
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