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AN N-ORDER ITERATIVE SCHEME FOR A NONLINEAR
KIRCHHOFF-CARRIER WAVE EQUATION ASSOCIATED
WITH MIXED HOMOGENEOUS CONDITIONS

LE THI PHUONG NGOC, LE XUAN TRUONG AND NGUYEN THANH LONG

ABSTRACT. In this paper, a high-order iterative scheme is established in order
to get a convergent sequence at a rate of order N (N > 1) to a local unique
weak solution of a nonlinear Kirchhoff — Carrier wave equation associated with
mixed homogeneous conditions. This extends recent corresponding results
where recurrent sequences converge at a rate of order 1 or 2.

1. INTRODUCTION

In this paper we consider a nonlinear wave equation with the Kirchhoff-Carrier
operator

(1.1)
i 1 (1 )P e (1) A (AGw)sa) = Flartu), 0< 0 <1, 0 <1 < T,

(1.2) A(0)ug(0,t) — hu(0,t) = u(l,t) =0,

(13) U(ZE, 0) = ﬂ0($)7 ut(gj»O) = ﬂ1(:17)7
where A, i, f, ug, w1 are given functions satisfying conditions specified later and

h > 0is a given constant. In Eq. (1.1), the nonlinear term g (¢, ||u(t)||?, ||uz (t)||?)
depends on the integrals

1 1
(1.4) u(t)||? = /O e, 0)2de, |[ua(t)]? = /0 g, ) P

Eq. (1.1) has its origin in the nonlinear vibration of an elastic string (Kirchhoff
[5]), for which the associated equation is

Eh [T du
1.5 huy = [ Po+ =+ —(y,1)|%d
( ) PRUL ( 0+ 2L/0 8y(y’ )| y> Ugg,
here w is the lateral deflection, p is the mass density, h is the cross section, L is

the length, E is Young’s modulus and Fy is the initial axial tension.
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In [3], Carrier also established a model of the type

L
(1.6) Uy = <P0 + Pl/ u2(y,t)dy> Uy,
0

where Py and P; are constants.
In [8] Long and Diem have studied the linear recursive schemes associated with
the nonlinear wave equation
(1.7) U — Uy = fx,t,u,ug,up), 0 <z <1, 0<t<T,
associated with (1.3) and the mixed conditions (1.2) standing for
(1.8) uz(0,t) — hou(0,t) = uy(1,t) + hyu(l,t) =0,

where hg > 0, hy > 0 are given constants. This result has been extended in [9]
to the nonlinear wave equation with the Kirchhoff operator

(1.9) wg — pl|[ug||)tee = flz,tu,ug,uy), 0 <z <1, 0<t<T,

associated with (1.3) and the Dirichlet homogeneous boundary condition.

The authors of [8], [9] proved that there exists a recurrent sequence which
converges at a rate of order 1 to a weak solution of the problem. Afterwards, the
quadratic convergence also has been studied in [11] - [14].

Based on the ideas about recurrence relations for a third order method for
solving the nonlinear operator equation F(u) = 0 in [15], we extend the above
results by the construction a high-order iterative scheme.

In this paper, we associate with equation (1.1) a recurrent sequence {u,,}
defined by

U, ) NG
Ot2 - 'u’(t’ HumH ’ HumxH )% (A(a:)umx)
N-1 ;
19 Z.
(110) = Z,—!au‘):(x,t,um_l)(um _um—l) ,

1=

0 <z <1, 0 <t < T, with u, satisfying (1.2), (1.3). The first term wug
is chosen as ug = wp. If p € CY(R3), A € C'([0,1]), A(z) > ap > 0 and
f€CN([0,1] x Ry x R), we prove that the sequence {u,,} converges at a rate of
order N to a local unique weak solution of the problem (1.1) — (1.3). This result
is a relative generalization of [2], [4], [8]-[14].

2. PRELIMINARY RESULTS, NOTATIONS

First, we denote the usual function spaces used in this paper by the notations
LP = L[P(0,1), H™ = H™(0,1). Let (-,-) be either the scalar product in L? or
the dual pairing of a continuous linear functional and an element of a function
space. The notation || - || stands for the norm in L? and we denote by || - ||x the
norm in the Banach space X. We call X’ the dual space of X. We denote by
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LP(0,T;X), 1 < p < oo for the Banach space of real functions u : (0,7) — X
measurable, such that

T 1/p
lullzooroxy = (Jy Tl fdt) ™ < +oo for 1 < p < ox,

and
[[ul| oo (0,7;x) = esssup||u(t)|[x for p = oco.
0<t<T

Let u( ), ut(t) = u(t), u(t) = u(t), ug(t) = yu(t), uzg(t) = Au(t), denote

u(z, t) 9u(z,1), 9 at2 2 (x,t), g; (x,1), 822 (z,t), respectively. With f € C*(]0,1] x
Ry X R>, f=f(ztu), weput Dif = %L Dof = % Dyf = &L and Dof =
DMDY?DE f, o = (e, a0, a3) € Z3, |a] = a1 + az —l— as = k.

Similarly, with p = u(t,y, z), we also put Dypu = W? Doy = 6y, Dsp = 3£
Next, let A € C([0,1]), with A(z) > ap > 0 for all z € [0,1]. We put

1
(2.1) o, v) = /0 A ()02 ()dz + hu(0)(0),
(2.2) V={veH" :v(1)=0}

Then V is a closed subspace of H' and on V three norms ||v||g1, ||vz|| and
llv]|la = v/a(v,v) are equivalent norms.

Then we have the following lemmas, the proofs of which are straightforward
and are omitted.

Lemma 2.1. The imbedding H' — C°([0,1]) is compact and

(2.3) llollcoo.ayy < V20l for allv € H.

Lemma 2.2. Let h > 0. Then the imbedding V < C°([0,1]) is compact and
[v[leoqo,n)) < [lvzll < \/%HUHCL,

(2.4) Tl < llvall < [Jvllan,
Vaollve|| < [Plla < VAmax + Rllvs]],

for all v € V, where Amax = ||Allcoj0,17)-

Lemma 2.3. Let h > 0. Then the symmetric bilinear form a(-,-) defined by (2.2)
1s continuous on V X V and coercive on V.

Lemma 2.4. Let h > 0. Then there exists the Hilbert orthonormal base {w;} of
L? consisting of the eigenfunctions w; corresponding to the eigenvalue \; such
that

O< <A< <A<, lim A = +oo,
(2'5) - » j—+oo
a(wj,v) = A\j(w;,v) forallveV,j=1,2,...

Furthermore, the sequence {w;/\/\;} is also the Hilbert orthonormal base of V
with respect to the scalar product a(-,-).
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On the other hand, we also have w; satisfying the following boundary value
problem

dw; ~
vy [ BB man
G (0) = @5 (0) = @;(1) = 0, @; € C2(Q).

The proof of Lemma 2.4 can be found in [16, p.87, Theorem 7.7], with H = L?
and V, a(-,-) defined by (2.1), (2.2).

Finally, let us note more that the weak solution u of the initial and boundary
value problem (1.1) — (1.3) will be obtained in Section 3 (Theorem 3.4) in the
following manner:

Find u € W = {v € L®(0,T;V N H?) : v; € L®(0,T; V), vy € L™(0,T;L?)}
such that u verifies the following variational equation
27)  {un(t),0) + p (6 @)%, [Jua (@)]1?) alu(t),0) = (f(t,u),0) Yo €V,
and the initial conditions

(2.8) U(O) = ﬂo, ut(O) = '111.

3. THE N-ORDER ITERATIVE SCHEME

We make the following assumptions:
(H1) h > 0;
(Hg) ug € V N H? and u € V;
(H3) A € C'([0,1]) and there exists a constant ag > 0 such that A(x) > ag for
all z € [0,1];
(Hy) p € C’l(Ri) and there exist constants p > 1, p, > 0, p; > 0,7 € {0, 1,2, 3},
such that

() pe < paltyy, 2) < po (1+yP +2P), for all (t,y,2) € RE,
(i) Dyt 2)] < g (L4 g2 + 22), for all (£, 2) € R,
(i) [ Dapu(t. y,2)| < pa (1471 +29) , for all (t,y,2) € RS,
(iv) |Dap(t,y, 2)| < ps (1 +yP + 2P71) , for all (t,y,2) € RY;
(Hs) f € CN([0,1] x Ry x R).
With f satisfying the assumption (Hs), for each M > 0 and 7' > 0 we put
KO = KO(M7 T7 f) = Sup{|f(:n,t,u)| : (ﬂj‘,t,’LL) € A*} ’

(31) KZ = KZ(M? T7 f) = Z\od:i KO(M7 T7 Daf)v
I?Z- = max Kj,
0<5<i

1=1,2,..., N, where
Ay =AM, T) = {(z,t,u) €ER*:0< 2 <1, 0<t<T, |ul <M}
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For each M > 0 and T > 0 we get

(3.2)
W(M,T)={veL>®0,T;VNH?) :v € L®0,T;V) and vy € L*(Qr),

with [[0]]peeo.vamz)s Nvelloeorvys owllizgm < M},

Wi (M,T) ={veW(M,T) : vy € L>®(0,T; L?)}.
We shall choose as first initial term wg = ug, suppose that

(33) Um—1 € Wl(M, T),

and associate with problem (1.4), (1.6), (1.7) the following variational problem:
Find u,, € Wi(M,T) (m > 1) so that

(54) { (U (1), 0) + gm(t)a(um(t),v) = (F(t),v) Yo €V,
’LLm(O) = ﬂo, um(O) = ﬂl,

where

(3.5) pn (8) = g1 (& [t (O], |[1ma (8)]7)

(3.6) F(z,t) = Zz’]i_ol Z.—I!Dgf(:n,t,um_l) (U, — um_l)i.

Then, we have the following theorem.

Theorem 3.1. Let (Hy1) — (Hs) hold. Then there exist a constant M > 0 de-
pending on A, ug, U1, b and a constant T > 0 depending on A, ug, U1, i, f such
that, for ug = Uy, there exists a recurrent sequence {umy} C Wi (M, T) defined by
(3.4)- (3.6).

Proof. The proof consists of several steps.
Step 1: The Faedo-Galerkin approzimation (introduced by Lions [7]). Consider
the basis for V' as in Lemma 2.4 (w; = w;/+/A;). Put

(3.7) u (1) = Sk W (),
(k)

where the coefficients Crnj satisfy the system of nonlinear differential equations

L (k
(i) (), w5) + 1 (B aw® (), wy) = (F (), 0;), 1< § < K,

(3.8)
~ (k) -
i) (0) = ok, 1y, (0) = U,

where
(3.9) Ugk, = Z?:l ozg-k)wj — W strongly in H?,

‘ Ui = Z?:l ﬁ](-k)wj — %y strongly in H',
and

k k k
i () = o (8 1y ()12, 9s @)1

(3.10)

Féf)(:n,t) = Zﬁgl %Déf(x,t,um_l) (ug,]i) - um_1> .
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Let us suppose that u,,_1 satisfies (3.3). Then it is clear that system (3.8) has
a solution ugi) (t) on an interval 0 <t < T, ,Sf ) < T. The following estimates allow
(k)

one to take constant Ty, = T for all m and k.

Step 2: A priori estimates. Put
fl(t) = f(lv t, 0)7

(k) (k)
s () = [ty (]2 + [[itgy (£)]12

(3.11) i NO) - (k)
o (1l 112 + 115 (A25=0)) 1) + Ji gy ()]s,
(k
5B 1) = XB (1) + vO() + L las (s)]2ds,
where
. (k)
X0 (t) = [y, @1 + i @)||u #)]2,
(3.12)

k . (k) )
YA (1) = gy, (112 + i) (0)]1 2 (A2 |12
Then, it follows from (3.8)-(3. 12) that

S0 = SDO) + i ) [ (12 + 112 (42 ) ) ] s

(3.13) +2 5 (B ),'fn)()dsﬂfo ® (), 0l (5))ds
—2A(1) [} £1(5)Vitg, (1, s)ds + [ [l (5)] s
= 55%0(0) + X0, 1.

We shall estimate respectively the following terms on the right-hand side of
(3.13).
First term I : By (3.10)1, we have

- (k) k k
fim (6) = Dype (£ ) (0)]12, 90 (1))
. (k
(3.14) 2D (1, 1) 012 19085 (0)]12) (0h) 1) i (0)

k - (k)
2D (&, [uld) D12, IVl (O]2) (Tl (), Vi,

(t))-

By using the assumption (Hy, (ii), (iii), (iv)), and the following inequalities
luf? O] < |l @)ooy < IVl (0]

(3.15) gqu mm_7:: s (1),
) LT L /g
(3.16) Va0l < Tl Ol <~/

(317) as (1)]] < /s 1),
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- (k) B u(k) B (k)
(3.18) [V, ()] < \/%H m (Ola < \/%\/ m’ (1),

we deduce from (3.14), that
- (k)
i 1 < g (L4 1 O + 1 7 0B (1))
k)

- (
+ 20 (1 | 012272 1 7w 1) 1ud) O, 0

- (k)
+2u3 (1 + ) 1P + [ 7 ) ()] 2) 17wl DI 7w, ()]

< [1 + apQMp (8%)(75))1

0 *
o |14 (S(k)(t)>p—1+ 1 (S(k)(t)>p 1 st (1)
p=T =1 \*m appl \°™ Vaofi«
® 4" 1 ® )
+2,U3 1 + ag {k) (Sm ( )) + ag—lugz—l (Sm ( )> \//J_*aosm ( )
1
) p 3 ) (N7 ()
= p1+ 2pe + 23 + p g:+2< 2+\/%> (aou*> ] (Sm (t)>
1
2 ) (L) ()
e 22 ()] ()
+1
(3.19) < <1+ (s,g'g><t>)”+ (sﬁf?(ﬂ)p >
where
(3:20) Tiv = pu1 + 201 + 213 + 2L 19 (g + 43 (14 2 Ly
20) fin = gk 2z 24+ T aopts ) \ aops '

Using the inequality
(3.21) 59 <14 5™, Vs >0, Vg e (0,Ng], Ng=max{N —1, 2p+1},
we get from (3.11), (3.12), (3.19), that

f= [ o) |1 )12 + 13 (Aagff) <s>> ||2] ds
<iin [ (14 (s06) + (06)™) Tet sy
i <s;’§)(s) + (S%)(s)>p+l + (sgﬁ)(s))pH) ds

s Jo

B[ ()]

IN
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(3.22) < 353 [T+ /Ot (ngp(s))% ds} .

We shall now require the following lemma.

Lemma 3.2. We have

(3.23) HFr(,f)(t)HSI?N—lzij\;_olai< ﬁﬁ)(t))i,
(3.21) VA0l < Ry st a (Vo)

where Ky = (1+ M)IA(N + (N — 1)[?]\/_1, with a;, 1 = 0,1,...,N — 1 defined as
follows

i
(325) a0—1+ EN 1(2M)7fdz:%(\/a%ﬁ) 712177N_1

Proof. (i) By (2.4), (3.3), (3.10)2, (3.15), and (3.16), we have
1

~ ~ 1 i
B @, 0] < By + Bnva D 5 (110 Olloogoay + lwms ()l cogo)

A L AN VRTINS
< Ry |1+ 22-1<( (Vo) +M’)]
i—1 ! VAL
N-1 N-1 1 1
. 1= (2M)! 1( 2 >< " >]
=Kny_1 |1+ + - Sm (t)
2 o 2t \Vaol
R N-1 i
(3.26) =Kn-1 5i< 355)(0) ;

with a;, ¢ = 0,1,..., N — 1 defined as (3.25). Hence, (3.23) is proved.

(ii) We use the following notations: flu] = f(z,t,u), D;flu] = D;f(x,t,u),
j=1,2,3.

By (3.10)2, we have

VEW (2,t) = le [um 1] + D f [um—1] Vit

+ Z D1D3f Um—1] + D’Hf[um_l]Vum_l) (ug;) — um_l)l
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(3.27) + ]jzz_;l %Déf[um_l] <u£f§) — um_1>i_1 <Vu£f;f) — Vum_l) .

Using the inequalities (2.4), (3.15), (2.6), it follows from (3.1), (3.3), (3.27),
that

IVED (@, 1)]
§ Kl(l + ]Vum_ll)
N— 1

£ 2K (1 Vel (1 Ollogo. + lum1 @ lleogoa)
i=1

+Z 2 5 (10 Olleagoa + lima(lleogony) (1901 + (1)

N—

1 7
§K1(1+|Vum 1 EZ: K 1+|Vum 1|)< oI 3%)(t)+M>
. 1—1
(k)
M m—
+;Z' (Vo ar) (1914 9
1 ISR i
< Ki(1 4 |Vup—1|) + KZ 1+ |[Vuy,— < Sm t—i—M)
1(1+] 1)) ZZ; +1(1+] 1)) Vi (t)
(3.28)
+Z ZK< (k)()+M> ) <|Vu |+ [Vt 1|)
i1 i! \/ QO M

It follows from (2.4), (3.1), (3.3), (3.15), (3.16) and (3.28), that

N-1 7
1 1
IVES (t)]] < Ky(1+ M)+ ) 5KZ-H(HM)< - s;gf>(t)+M>

=1 A0H
LY i ( __\/sf ’(t)+M>H< ! s(k’(t)+M>
i=1 ! A0 fb VAL
N-1 7
< Ky (1+ M)+ .lK2+1(1+M)< ! sﬁfi)(t)JrM)
i—1 il VAL
N 1 [® i
i—1 il VAL ( )
N-1 %
<14+ MKy |1+ l( ! s&'i)(t)JrM)
=1 il 1/ @0 L
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Vaofs

< [+ MRy + (V- 1)I?N_1}

-l 1 ®) i
= Ky sz'( N sm(t)+M>

< Ky 1+221'2Z 1< L )i< sﬁ’;)(t)>i+Mi)]

\/ ao s
r N-1 i i
~ 1 (2M) 1 < 2 > < (k) >
=Ky |1+ 2 — + — | — Sm’(t
N I 2 ZZ:; il ZZ:; 21! \ \J/aolix ®)
N— i
(3.29) = Z <\/ > .
Hence, (3.24) is proved. The proof of Lemma 3.2 is complete. O

We now return to the estimates for Is, I3.

Second term Iy : We again use inequality (3.21) and from (3.17), (3.23), we
have

=2 (EW(s), 0l (5))ds

(3.30) <2Kn_4 > G [T+/Ot (ngb)(s))No ds} :

Third term I3 : We have

LW @ e (5
Iy =2 / a(FP) (s), 0 (s))ds < 2 / ES () Lol [ (5) |odis
0 0

t
(3.31) <2 / ES ()] s®(s)ds
0
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On the other hand, by (2.3), (3.23) and (3.24), we obtain

1
IS (1], = \/ h|ES(0,1)2 + / A@)|VEY) (2, 6)2d
0
< \V2RIER 0112 + Ama IVED (0)]2

< /@0 + Ana) (I @R + IV O1R)
<V F A (IES @) + IVER 0)]])

N-1

(3.32) < /2 + A (KN L+ Ry 1) & < sg’i)(t)> .
1=0
Hence, it follows from (3.21), (3.31), (3.32), that
t
B<2 [ IEDE s s
0
R _ N-1 t i+1
2h + Amax <KN_1 + KN_1> Z Ziz/ < S&)(S)) ds
=0 70
R _ N-1 t No
2h + Amax <KN_1 + KN_1> Z Zil/ |:1 + <s£§)(s)) :| ds
i=0 V0
N-1

(3.33) < 2v/2h + Ay (f{N_l +Ena) Y [T N /t <s(k>(8))No dg] -
; 0

Fourth term I, : Integrating by parts, we have

Iy = —24(1) f! fi(s) Vi (1, 5)ds
— —2A(1)f1(t )Vum)(l t) +2A(1) f1(0) Viox (1)

(3.34) +2A(1 fo fi(s s)Vul (1, s)ds
= —24(1) (fy fi(s)ds) Vul(1,4) - 24(1) f (0)Vul) (1,1)
+ 2A(1)£1(0)Vaior(1) + 24(1) [ fi(5)Vulk) (1, 5)ds.

On the other hand, we have
1
vul) (1,t) = val®(0,1) + / Aulb) (z,t)dz

0
h 1
(3.35) = muﬂf)(o,t)—l— /0 Au®) (z, t)d,

and

aol| Auf) ()] < [|AAuR) (1))

217
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o [ oul
=15, (A o <t>> — VAVuR) ()]

o [ oul
<l (A 2 (t)> |+ IV A ooy [ Vel ()]

L /® 1 (k)
sm’ (1) + ||VA|| 10 Sm’ (t
= ) + [IVA|| L~ @ o (t)
1 1 k)
3.36 = 14+ —||VA|| > s ().
(3.) = (14 =9l ) V)

Hence, we obtain from (3.16), (3.35), (3.36), that

<

2h?
A%(0)
o2
~ A%(0)
2 h? 1 1 2
|+ — [ 1+ —=]||VA| st (¢
| = (1 =Vl (m)] ()

(3.37) = fasP(t),

Vup) (1,)2 < [ul) (0, 8)[* + 2{| Auf) ()]

1Vl ()11 + 21| Auly) ()]

where
~ 2 h? 1 1 2
(338) M4 = T |:A2(0) + @0 (1 + \/—LTO HVA”LOO(Q)) :| .

It follows from (3.34), (3.37), that

sl = 24(1) </0 |11(5)] ds) Vs () + 240) | £10)] Vi s (1)
+2A4(1) | £1(0) Vg (1)] + 2A(1)m/0 1) /5% (5)ds

< 2psM(t) + %A?(lm (T2|£1]2 + £2(0))
(3.39)
T 2A(0) |£1(0) Vo (D] + 240/l 713 [T+ / (s;@><s>>N°ds},

for all 8 > 0.
Fifth term I5 : Equation (3.8); can be rewritten as follows

(340) (it (0)05) — pS () (2 (A1) ) = (BP0 wy), 1< <k
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. (k
Hence, it follows after replacing w; with uin)(t) and integrating that

I = /||u ) [2ds
¢ 2 9 [ ou¥
<2 [IEREIRs 2 [ (196) 12 (A 20 (s) ) 12

(3.41) =10 4+ 1.

We shall estimate step by step two integrals I, él), I 2
Estimate Ié ). : Using the inequalities (3.21) and (Z 0 al> < NEfVOI a?,
for all ag, ay, ..., ay—1 € R, it follows from (3.23), that
=2 [ I (s)|Pds < 2NBZ_, N5 a2 fy (5WW(s)) ds
~ " & No
(3.42) <NRE L 1 (3060) s

<oNEKZ_ SN 2[T+f0( s))NOds]

Estimate [éz) : By using the assumption (Hg, (i)), we deduce from (3.10);,
(3.15), (3.16), that

01 < o (1+ 1 O + 1| 7 ol (1))

(3.43) < 1o [1 + 2 (aops) " <3$§) (t))p} '

Hence, we obtain from (3.21), (3.43), that

t
1§2>:2/< ||—< 8“’” >||ds
0

giig/o [14-2(&0#* ”(sﬁ’,f: ))] s\ (s)ds

2 292 t 2
< 28 (14 o) ] | {H(sﬁ’;)(s)) ] 59 (s)ds
« L 1 Jo

8 2 - 292 t N,

< 2o [y + 4 (agps) " / 1+ (S%)(S)) O] ds
M L 1 Jo

Sud T 12

011+ 4 (agpa) ™

Il
|

(3.44) = 7is [T+ /Ot <sg§>(s)>N°

IN
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where

2
(3.45) fis = [1 + 4 (aops)” 2”]

It follows from (3.41), (3.42), (3.44), that

N
(3.46) Iy <K [T+ fo( )) Ods},
where
(3.47) K =75+ 2NE2_ SN ta2.

Now, we need an estimate on the term Stk )(0). We have
k ~ ~
S (0) = [l + [[7ael 2
(3.48) =2 ~N2Y [ Hara, 112 ) Dok \ 112
+10.(0, oI, 1| 7 0w 2) [Iliton 12 + 115 (A% ) 112]

By means of the convergences (3.9) we can deduce the existence of a constant
M > 0 independent of & and m such that

(3.49) 25%)(0) + 4A(1) | £1(0) Vo (1)] + 8A2(1)fia f2(0) < 1 M2,

Finally, it follows from (3.11)-(3.13), (3.22), (3.30), (3.33), (3.39), (3.46),
(3.49), with 3 = 1, that

~ ~ N
(3.50) st (t) < 3M2 + TDy(M,T) + Dy (M, T) fy (583 (s)) " ds,

forOgthr(,f) < T, where
(3.51)
Dy (M, T) = AA()/Fual | {13 + 2K + O

+2 [QKN_l +V2h + Anax (KN—l + kN—l)} Zii_ol a;,
Do(M,T) = Di(M, T) + 8A*(1) T || ]}

Then, we have the following lemma.
Lemma 3.3. There exists a constant T > 0 independent of k and m such that
(3.52) sgf)(t) < M? Vvt e[0,T), for all k and m.
Proof. Put

~ ~ N
(353) V() = LM? + TDy(M,T) + Dy(M,T) [ (sﬁ’;)(s)> “ds, 0<t<T.
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Clearly

Y(t) >0, 0<sP@)y<v@), o<t <T,
(3.54) Y'(t) < Dl(M T)YNo(t), 0<t<T,
Y (0) = AM? + TDy(M,T).

Put Z(t) = Y1=No(¢), after integrating of (3.54)
1 N 1-No N
202 (M2 +TDLT)) = (Mo - ) DO T
1 _ 1—Np _
(3.55) > <§M2 + TDy(M, T)> — (Np — 1) Dy(M, T)T, vt € [0,T].
Notice that, from (3.51), we have

~ 1 NO ~
Jlim, [(%W + TDy(M, T)> — (No — 1) Dy(M,T)T
—0

(3.56) = <%M2>1_NO > (m2)' N

Then, from (3.56), we can always choose the constant 7" > 0 such that
~ 1-N; ~ _
(3.57) (%Mz + TDo(M, T)) " (No—1) Dy(M,T)T > (M2)' 7N

Finally, it follows from (3.54), (3.55) and (3.57), that

(3.58) 0< sty <vY(t) = i < M2 Ve 0.7,
The proof of Lemma 3.3 is complete. O
Remark 3.1. The function
1 _ 1-No _ NG
S(t) = [<§M2 +TDy(M, T)) — (No — 1) Dy(M, T)t ,0<t<T,

is the maximal solution of the following Volterra integral equation with non-
decreasing kernel (see [6]).

(3.59) S(t) = AM? + TDy(M,T) + Dy (M,T) [ SNo(s)ds, 0 <t < T.

(k)

By Lemma 3.3, we can take constant T}y,
have

=T for all m and k. Therefore, we

(3.60) ulh) e W(M,T) forall m and k.
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From (3.60) we can extract from {uglf)} a subsequence {uyrfj)} such that

uyrfj) — Uy, in L®(0,T;V N H?) weak*ly,
- (kj)

(3.61) w) G in L0, TiV)  weak*ly,
u,(nj) — Uy, In L?(Qr) weakly,
(3.62) um € W(M,T).

We can easily check from (3.8) — (3.10), (3.61), (3.62) that w,, satisfies (3.4) —
(3.6) in L?(0,T). On the other hand, it follows from (3.4); and w,, € W (M,T)

that u, = um(t)a% (Aupmy) + Fr € L(0,T; L?), hence u,, € W1(M,T) and the
proof of Theorem 3.1 is complete. O
Theorem 3.4. Let (Hy) -(Hs) hold. Then

(i) There ezist constants M > 0 and T > 0 satisfying (3.49), (3.57) such that
the problem (1.1) — (1.3) has a local unique weak solution uw € W1(M,T).

(ii) The recurrent sequence {u,,} defined by (3.4 ) — (3.6), converges at a rate
of order N to the solution u strongly in the space Wi(T) = {v € L>(0,T;V) : v
€ L>(0,T; L?)} in the sense

[t — ul| Lo 0,73y + ttm — wl| poc(0,7:12)

< C (lum-1 = ull o) + llim-1 = w0 7:22))
for all m > 1, where C is a suitable constant.

Furthermore, we have also the estimation

(3.63) |t — ul| oo 0,73y + |um — ull oo (0,702) < Cr (ko)™

for all m > 1, where Cr and kr < 1 are positive constants depending only on T.

Proof. First, we note that W7 (7') is a Banach space with respect to the norm (see
[7):
o]l () = V]l Lo 0,750y + ||b||L°°(O,T;L2)-
We shall prove that {u,,} is a Cauchy sequence in Wi (T'). Let vy, = Up+1 — .

Then v, satisfies the variational problem
(3.64)

(O (t),0) + pmi1 (alvn (£),0) = (41 (8) = (b)) (F (Auma(t)) ,v)
+ (Fppi1(t) — Fpo(t),v) Yo €V,

where
pm (t) = o (&, [Jum (O], e ()]]1%)

3.65 _ ) .
( ) Fm(ﬂj‘,t) = Zﬁiol %Déf($at>um—l) (um _um—l)l-
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Taking w = vy, in (3.64)1, after integrating in ¢ we get
Om(t) = Jo tims1(5)l[om (5)] 25
(3.66) 2 5 (1 () = () (2 (A%22(5)) , vu(s) ) ds
2 J3 (Fos1() = Fn(s), 0 (5) ) ds = S5, Ji
where
() = [0m (]2 + o 41(£)a(0m (), vm (1))

(3.67) > {[Om (]2 + pal [om (]2 = Enm(8).

We shall estimate step by step all integrals Ji, k = 1,2, 3.

First, by using the assumption (Hy, (ii), (iii), (iv)), we deduce from (3.3),
(3.62), that

s (1)
< i (1 st O +1 7 s (9] )
241z (L4 [t (12772 4+ 1| 7 e (O a1 ()] i1 (8|
+ 2413 (L s (D1 + 117 st (7)1 7 st DI 7 s (B

142 (\/ia_ouuw(t)ua)?p]
1+ (\/ia_ouuw(t)ua)%_? n (\/ia_ouuw(t)ua)?p] ><

1 .
X —=|lumt1(®)llallwmi1 (2]

NG

+ 2y (1 n (\/La_ouumﬂama)% n (ﬁuuw(tma)%_v ><

1 .
x \/—a—ollumﬂ(t)llall V tmt1 ()]

< p1

+ 242

cofioa (@) rvwem [ () ()]
(3.68)~
= M,

|t 1(8) = i (8)] < 2 (1 + M™% + M?P) M [z [[vm ()| + 43 [|Vom (B)]]]
< 2(1+ M7 4 M) M [pa [[om (@)l + 13 om(@)]])
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(3.69) =2 (14 M*72 4+ M?P) M (2 + p13) [om (8)ll, = Mo [om (D),

0 O, —
o= | A5 @) ) || < [[AAun@)|] + [[VAVuR ()| < M3
Ox Ox

< AmaxHAumHLOO(Q’T:LZ) + ||VA||LOO(Q)||Vum||Loo(07T:L2)
(370) < (Amax + HVAHLOO(Q)) M = Ms.

Hence, it follows from (3.62), (3.67)—(3.70), that

t
| = /O i1 (8) [[om ()12 ds

M t
! / Ern(s)ds,
Hx Jo

61 =2 [ na9) = () {2 (452060} () ) s

O,

<2 [ )~ i 1 (4526)) im0l

) < [ i () lm o <

—_ 1 t
3.72 < 2M5 M. /Em s)ds.
(3.72) N (s)

On the other hand, by using Taylor’s expansion of the function f(x,t,u,,)
around the point u,,_1 up to order N, we obtain

flz,tyum) — f(z,t,um—1)
N1 1 . ) 1
(3.73) => D3 (2t 1) (vm)' + ﬁDévf(a:,t, Am) (V1)
— il !

where A\, = A (2, t) = upm—1 + 01 (U — Upm—1), 0 < 01 < 1.
Hence, it follows from (3.6), (3.73), that

Fri1(z,t) — Fpp(z,t)
N-1 1. ' 1
(3.74) = Z Z-_|Déf(x7t7UM) (vm)" + ﬁDéVf(x,t, Am) (Um—l)N .
— il !

Then we deduce, from (3.62), (3.67) and (3.74), that
[ Fmy1(t) = Fin(t)]]

Sy (i@l + 2 (ol

=1 ! \/a—o \/a—(]
N-1 i N
i 1 i—1 Ky 1 N
< . - — m mt a e — m— t a
<3 B () 1wl o0+ 5 (=) loma 0



ITERATIVE SCHEME FOR A KIRCHHOFF-CARRIER EQUATION 225

() () )

Vao/ ()
(3.75)
N
= A VER®) + 0P (VB ®)
where
() N1k (L' M @ Ky 1
(3.76) P =221 (\/%) = P = M (Jao )™

Then we deduce, from (3.67) and (3.75), that

J5 =2 / (Fony1(5) = Fn(), i (5))ds

<2 [ 1) = Fn (o))
N
<2 /0 {pT VEa® + 2 (VB ®) ]¢Em<s>ds
(3.77) 2pT —I—,oT /E ds—l—,o /

Combining (3.66), (3.67), (3.71) (3.72) and (3.77), we then have
(3.78) E, fo No( ds—i—pT fo s)ds,
where
3.79 (3) M1 2M2M3 2 (1) (2)

(3.79) Pr +2A 200 o7

By using Gronwall’s lemma, we obtain from (3.78) that
(3.80) [vmllw ) < prllvm—1|Ry, 7y

where pr is the constant given by

(3.81) wur (1 + ) \/TpT 1+ py) exp(Tp,EF)).
Hence, we obtain from (3.78) that
—1 m
(3.82) [t = tnapllwy () < (1= k)™ () 37 (k)™

for all m and p where kr = 2M (,uT)ﬁ < 1. It follows that {u,,} is a Cauchy
sequence in W1(T'). Then there exists u € W1(T') such that u,, — wu strongly in
W1 (T). Thus, by applying a similar argument used in the proof of Theorem 3.1,
u € Wi(M,T) is the local unique weak solution of problem (1.1)-(1.3). Passing
to the limit as p — 4oo for fixed m, we obtain the estimate (3.63) from (3.82).
This completes the proof of Theorem 3.4. O
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Remark 3.2. In order to construct a N-order iterative scheme, we need the
condition f € CN(]0,1] x Ry x R). Then, we get a convergent sequence at a rate
of order N to a local unique weak solution of problem and the existence follows.
However, the above condition of f can be relaxed if we only consider the existence
of solution, see [9]-[12].
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