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RANDOM MATRICES I: COMBINATORIAL PROBLEMS

TRAN VINH LINH AND VAN VU

Abstract. This is the first part of a series of surveys on random matrices.
In this part, we focus on problems and results of combinatorial nature.

1. Introduction

The theory of random matrices is a rich topic in mathematics. Beside being
interesting in its own right, random matrices play fundamental role in various
areas such as statistics, mathematical physics, combinatorics, theoretical com-
puter science, etc. A famous example here is the study of the physicist Wigner,
who used the spectrum of random matrices as a model in nuclear physics, and
consequently discovered the fundamental semi-circle law.

In the last ten years or so, we have witnessed considerable progress on several
long standing problems in random matrix theory. This motivates the current
authors for this series of surveys, in which we hope to present the state of the art
of the theory and propose a few directions for future research.

In this (the first) part of the series, we focus on problems with combinatorial
flavors. These problems usually make sense in the discrete setting, when the
random matrix is sampled from a discrete distribution. The most popular models
are:

• (Bernoulli) Mn: random matrix of size n whose entries are i.i.d. Bernoulli
random variables (taking values ±1 with probability 1/2). This is some-
times referred to as the random sign matrix.
• (Symmetric Bernoulli) M sym

n : random symmetric matrix of size n whose
(upper triangular) entries are i.i.d. Bernoulli random variables (taking
values ±1 with probability 1/2).
• (Adjacency matrix of a random graph) Another way to obtain a random

matrix is to look at the adjacency matrix of a random graph. This matrix
is symmetric and at position ij we write 1 if there is an edge and zero
otherwise. Models of random graphs are introduced below.
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• (Laplacian matrix of a random graph) Instead of the adjacency matrix of
a random graph, one can also look at its laplacian. The definition of the
laplacian will appear later in the paper.

Model of random graphs. We will focus on two models: Erdös-Rényi and random
regular graphs. For more information about these models, we refer to [4, 26].

• (Erdös-Rényi) We denote by G(n, p) a random graph on n vertices, gen-
erated by drawing an edge between any two vertices with probability p,
independently.
• (Random regular graph) A random regular graph on n vertices with de-

gree d is obtained by sampling uniformly over the set of all simple d-
regular graphs on the vertex set {1, . . . , n}. We denote this graph by
Gn,d.

It is important to notice that the edges of Gn,d are not independent. Because
of this, this model is usually harder to study, compared to G(n, p).

We denote by A(n, p) (L(n, p)) the adjacency (laplacian) matrix of the Erdös-
Rényi random graph G(n, p) and by An,d (Ln,d) the adjacency (laplacian) matrix
of Gn,d, respectively.

Notation. In the whole paper, we assume that n is large. The asymptotic
notation such as o,O,Θ is used under the assumption that n → ∞. We write
A� B if A = o(B). c denotes a universal constant. All logarithms have natural
base, if not specified otherwise.

2. The singular probability

The most famous combinatorial problem concerning random matrices is per-
haps the “singularity” problem, which asks for the probability that a random
Bernoulli matrix is singular.

Let pn be the probability that Mn is singular. Notice that a matrix is singular
if it has two equal rows and the probability that the first two rows of Mn are
equal is 2−n, it follows that

pn ≥ 2−n.

By choosing any two rows (columns) and also replacing equal by equal up to
sign, one can have a slightly better lower bound

(2.1) pn ≥ (4− o(1))
(
n

2

)
2−n = (

1
2

+ o(1))n.

A famous conjecture in the field asserts that this trivial lower bound is sharp.

Conjecture 2.1. pn = (1/2 + o(1))n.

There are refined versions of the above conjecture (for instance, one can replace
(1
2 +o(1))n by (4+o(1))

(
n
2

)
2−n, see [27]). However, Conjecture 2.1, as formulated,

is still open. The essence of this conjecture is that the dominating reason for
singularity is the dependence between a few rows/columns.
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It is already non-trivial to show that pn = o(1). It was Komlós [30] who first
proved in 1967.

Theorem 2.2.
pn = o(1).

In Section 3, we will give a short proof for this fact. The bound on pn in
[30] tends very slowly to zero. Later, Komlós (see [4]) found a new proof which
showed pn = O(n−1/2). In 1995, a breakthrough by Kahn, Komlós and Szemrédi
[27] yielded the first exponential bound.

Theorem 2.3. [45] p(n) ≤ .999n.

Their arguments were simplified by Tao and Vu in 2004 [44], resulting in a
slightly better bound O(.958n). Shortly afterwards, these authors [45] combined
the approach from [27] with the ideas of inverse theorems (coming from additive
combinatorics) to obtain the following more significant improvement

Theorem 2.4. [45] p(n) ≤ (3/4 + o(1))n.

Very recently, Bourgain et al. [5], improved the bound further to

Theorem 2.5. p(n) ≤ ( 1√
2

+ o(1))n.

The approach from [45, 5] allows one to deduce bound on pn from simple
trigonometrical estimates. For instance, the 3/4-bound comes from the fact that

| cosx| ≤ 3
4

+
1
4

cos 2x,

while the 1/
√

2 bounds come from

| cosx|2 =
1
2

+
1
2

cos 2x.

The main theorem of [5] ([5, Theorem 2.2]) provides a formal connection be-
tween singularity estimates and trigonometrical estimates of this type.

To conclude this section, let us mention a very useful tool, the Littlewood-
Offord-Erdös theorem. Let v = {v1, . . . , vn} be a set of n non-zero real numbers
and ξ1, . . . , ξn be i.i.d. random Bernoulli variables. Define S :=

∑n
i=1 ξivi and

pv(a) = P(S = a) and pv = supa∈Z pv(a).
The problem of estimating pv originated from a paper of Littlewood and Offord

in the 1940s [37]. Erdös, improving a result of Littlewood and Offord, proved
the following theorem, which we will refer to as the Erdös-Littlewood-Offord
inequality.

Theorem 2.6. Let v1, . . . , vn be non-zero numbers and ξi be i.i.d. Bernoulli
random variables. Then

pv ≤

(
n
bn/2c

)
2n

= O(n−1/2).
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Theorem 2.6 is a classical result in combinatorics and has many non-trivial
extensions with far reaching consequences (see [48, Chapter 7] and the references
therein).

To give the reader a feeling about how the Littlewood-Offord problem can be
useful in estimating pn, let us consider the following process. We expose the rows
of Mn one by one from the top. Assume that the first n−1 rows are independent
and form a hyperplane with normal vector v = (v1, . . . , vn). Conditioned on these
rows, the probability that Mn is singular is

P(X · v = 0) = P(ξ1v1 + · · ·+ ξnvn = 0),

where X = (ξ1, . . . , ξn) is the last row.
In Section 3, the reader will see an application of Theorem 2.6 that leads to

Komlós result that pn = o(1). In order to obtain the stronger estimates in The-
orems 2.4 and 2.5, one needs to ebstablish Inverse Littlewood-Offord theorems.
These theorems are motivated by inverse theorems of Freiman type in Additive
Combinatorics, the discussion of which is beyond the scope of this survey. The
interested reader is referred to [48, Chapter 7], [48, Chapter 5] and [45].

3. Simple proof of Komlos’ Theorem

Let us start with a simple fact. Here and later Bernoulli vectors are vectors
with coordinates ±1.

Fact 3.1. Let H be a subspace of dimension 1 ≤ d ≤ n. Then H contains at
most 2d Bernoulli vectors.

To see this, notice that in a subspace of dimension d, there is a set of d coor-
dinates which determine the others. Let Hi be the space spanned by X1, . . . , Xi.
This fact implies

P(singular) ≤
n−1∑
i=1

P(Xi+1 ∈ Hi) ≤
n−1∑
i=1

2i−n ≤ 1− 2
2n
.

While this bound is the opposite of what we want to prove, we notice that the
loss comes at the end. Thus, to obtain the desired upper bound o(1), it suffices
to show that the last log log n terms are bounded by 1

log1/3 n
. To do this, we will

exploit the fact that the Hi are spanned by random vectors. The following lemma
(which is a more effective version of the above fact) implies Komlos’ Theorem 2.2
via the union bound.

Lemma 3.2. Let H be the subspace spanned by d random vectors, where d ≥
n − log log n. Then with probability at least 1 − 1

n , H contains at most 2n

log1/3 n

Bernoulli vectors.

We say that a set S of d vectors is k-universal if for any set of k different indices
1 ≤ i1, . . . , ik ≤ n and any set of signs ε1, . . . , εn (εi = ±1), there is a vector V in
S such that the sign of the ijth coordinate of V matches εj , for all 1 ≤ j ≤ k.
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Fact 3.3. If d ≥ n/2, then with probability at least 1 − 1
n , a set of d random

vectors is k-universal, for k := log n/10.

To prove this, notice that the failure probability is, by the union bound, at
most (

n

k

)
(1− 1

2k
)d ≤ nk(1− 1

2k
)n/2 ≤ n−1.

If S is k-universal, then any non-zero vector V in the orthogonal complement of
the subspace spanned by S should have more than k non-zero vectors (otherwise,
there would be a vector in S having positive inner product with V ). If we fix such
a V , and let X be a random Bernoulli vector, then by Littlewood-Offord-Erdös
Theorem (Theorem 2.6),

P(X ∈ Span(S)) ≤ P(X · V = 0) = O(
1
k1/2

) ≤ 1
log1/3 n

,

proving Lemma 3.2 and Komlos’ Theorem 2.2.

4. The singular probability: symmetric case

As an analogue to the previous section, we try to estimate psymn , the probability
that the symmetric matrix M sym

n is singular.
This problem was mentioned to the first author by G. Kalai and N. Linial

(personal conversations) around 2004. To our surprise, at that point, even an
analogue of Komlos’ 1967 result was not known. The following conjecture, raised
by B. Weiss in the 1980s, was open.

Conjecture 4.1. (Weiss’ conjecture) psymn = o(1).

The main difficulty concerning M sym
n is that its rows are no longer independent.

In particular, the last row is almost determined by the previous ones. Thus, the
row exposing procedure introduced for the non-symmetric case is no longer useful.

Few years ago, Costello, Tao and Vu [15] found a way to circumvent this
problem. It turns out that the right way to build the symmetric matrix M sym

n is
not row by row (as for Mn), but corner to corner. Starting with a single entry,
one, at each step, adds a random row and its transpose to the existing matrix,
increasing its size by one. One is able to prove that with high probability, the
co-rank of the resulting matrix, as its size increases, behaves like the end point of
a bias random walk on non-negative integers which has a strong tendency to go
to the left whenever possible. This leads to a confirmation of Weiss’ conjecture.

Theorem 4.2. [15] psymn = O(n−1/4).

The key technical tool in the proof of Theorem 4.2 is the following (quadratic)
variant of Theorem 2.6.
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Theorem 4.3. (Quadratic Littlewood-Offord) Let aij be non-zero real numbers
and ξi, 1 ≤ i, j ≤ n be i.i.d. Bernoulli random variables. Let Q be the quadratic
form Q :=

∑
1≤i,j≤n aijξiξj. Then for any value a

P(Q = a) = O(n−1/4).

With this tool in hand, let us consider the corner-to-corner building process of
M sym
n . Assume that the (n− 1)× (n− 1) corner M sym

n−1 has been built. To obtain
M sym
n , we add a random row X = (ξ1, . . . , ξn) and its transpose. Conditioning

on M sym
n−1 , the determinant of the resulting n× n matrix can be expressed as∑

1≤i,j≤n−1

aijξiξj + detMn−1,

where aij (up to the signs) are the cofactors of Mn−1. If M sym
n is singular, then

its determinant is 0, which implies

Q :=
∑

1≤i,j≤n−1

aijξiξj = −detMn−1,

which gives ground for an application of Theorem 4.3.
The bound in Theorem 4.3 is not sharp. Taking Q = (ξ1 + · · · + ξn)2, we see

that (for n even)

P(Q = 0) = P(ξ1 + · · ·+ ξn = 0) =

(
n
n/2

)
2n

= Ω(n−1/2).

In a recent paper [12], Costello matched this bound. Among others, he showed

Theorem 4.4. For any fixed ε > 0 the following holds for all sufficiently large n.
Let aij be non-zero real numbers and ξi, 1 ≤ i, j ≤ n be i.i.d. Bernoulli random
variables. Let Q be the quadratic form Q :=

∑
1≤i,j≤n aijξiξj. Then for any value

a

P(Q = a) ≤ n−1/2+ε.

As a corollary, Costello [12] improved the upper bound on psymn to n−1/2+ε.
This is the best bound known at this moment. On the other hand, motivated by
the non-symmetric case, we conjecture

Conjecture 4.5. psymn = (1/2 + o(1))n.

It would already be a major progress to obtain a bound of the form n−C ,
where C can be set arbitrarily large. Another interesting question is to generalize
Costello’s quadratic Littlewood-Offord result for higher degree polynomials.

Conjecture 4.6. (Polynomial Littlewood-Offord) Let d be a fixed positive in-
teger. Consider the polynomial P =

∑
1≤ij≤n ai1,...,idξi1 . . . ξid, where ai1...id , 1 ≤

ij ≤ n are non-zero real numbers. Then for any number a

P(P = a) = O(n−1/2).
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5. Ranks and co-ranks

The singular probability can be seen as the probability that the random matrix
has co-rank at least one. What about a larger co-rank? Let us use pn,k to denote
the probability that Mn has co-rank at least k. It is easy to show that

(5.1) pn,k ≥ (
1
2

+ o(1))kn.

It is tempting to conjecture that this bound is sharp for constants k. In [27],
Kahn, Komlós and Szemerédi showed

Theorem 5.1. There is a function ε(k) tending to zero with k such that

pn,k ≤ εn.

An analogue of this is available for the symmetric case (of course only at
polynomial level). By refining the arguments in [15], one can show that there is
a function C(k) tending to infinity with k such that

psymn,k ≤ n
−C(k).

In fact, one can take C(k) = ck for some positive constant c. (Thanks to Costello
for pointing this out.)

In [5], the authors consider a variant of Mn where the first l rows are fixed and
the next n − l are random. Let L be the submatrix defined by the first l rows
and denote the model by Mn(L). It is clear that corankMn(L) ≥ corankL. The
authors of [5] showed (see [5, Theorem 1.4] for more details)

Theorem 5.2. There is a positive constant c such that

P(corankMn(L) > corankL) ≤ (1− c)n.

Let us now go back to the symmetric model M sym
n and view it from a new angle,

connecting it to the adjacency of the Erdös-Rényi random graph G(n, 1/2). One
can see that

M sym
n = 2A(n, 1/2)− Jn,

where Jn is the all-one matrix of size n. (Here we allow G(n, 1/2) to have loops,
so the diagonal entries of A(n, 1/2) are zero and one. If we fix all diagonal entries
to be zero, the analysis does not change essentially.) Since Jn has rank one, it
follows from Theorem 4.2 that with probablity 1− o(1), A(n, 1/2) has corank at
most one.

One can reduce the co-rank to zero by a slightly trickier argument. Consider
M sym
n+1 instead of M sym

n and normalize so that its first row and column are all-
negative one. Adding this matrix with Jn+1, we obtain a matrix of the form(

0 0
0 M sym

n + Jn

)
Thus we conclude

Corollary 5.3. With probability 1− o(1), corankA(n, 1/2) = 0.
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It is natural to ask if this statement still holds for a smaller density p. The
answer is negative after a certain threshold. Indeed, if p < (1 − ε) log n/n for
some positive constant ε, then G(n, p) has a.s. isolated vertices (see [4, 26]) which
means that its adjacency matrix has all zero rows and so is singular. Costello
and Vu [13] proved that log n/n is the right threshold.

Theorem 5.4. [13] For any constant ε > 0, with probability 1− o(1),

corankA(n, (1 + ε) log n/n) = 0.

For p < log n/n, the co-rank of A(n, p) is no longer zero (with high probability).
The behavior of this random variable is not entirely understood. For the case
when p = c log n/n for some constant 0 < c < 1, Costello and Vu [14] showed that
with probability 1− o(1), the co-rank is determined by small subgraphs. Here is
an example

Theorem 5.5. [13] For any constant ε > 0 and (1/2 + ε) log n/n < p < (1 −
ε) log n/n, with probability 1 − o(1), corankA(n, (1 + p) = I(n, p), where I(n, p)
is the number of isolated vertices in G(n, p).

For the range p = c/n, c > 1, G(n, p) consists of a giant component and many
small components. It makes sense to focus on the giant one which we denote by
Giant(n, p). Since Giant(n, p) has cherries (pair of vertices of degree one with
a common neighbor), the adjacency matrix of Giant(n, p) is singular (with high
probability). However, if we look at the k-core of Giant(n, p), for k ≥ 3, it seems
plausible that this subgraph has full rank.

Conjecture 5.6. Let k be a fixed integer at least 3. With probability 1 − o(1),
the adjacency matrix of the k-core of Giant(n, p) is non-singular.

Let us now consider the random regular graph Gn,d. For d = 2, Gn,d is just
union of disjoint circles. It is not hard to show that with probability 1 − o(1),
one of these circles has length divisible by 4, and thus its adjacency matrix is
non-singular (in fact, the corank will be Θ(n) as the number of circles of length
divisible by 4 is of this order). Somewhat embarrassingly, we know nothing about
the case d ≥ 3.

Conjecture 5.7. For any 3 ≤ d ≤ n/2, with probability 1 − o(1) An,d is non-
singular.

6. Determinant and permanent

We start with a basic question
What is the determinant of Mn?

Komlós 1967 theorem showed that with probability 1−o(1), Mn has full rank,
namely |detMn| > 0. However, this (and other theorems in Section 2) do not
give any non-trivial estimate on |detMn|.
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Notice that all rows of Mn have length
√
n. Hadamard’s inequality thus implies

that |detMn| ≤ nn/2. It has been conjectured that, with probability close to 1,
| detMn| is close to this upper bound.

Conjecture 6.1. Almost surely |detMn| = n(1/2−o(1))n.

This conjecture is supported by the following observation of Turán.

Fact 6.2.
E((detMn)2) = n!.

To verify this, notice that

(detMn)2 =
∑

π,σ∈Sn

(−1) signπ+ signσ
n∏
i=1

ξiπ(i)ξiσ(i).

By linearity of singularity and the fact that E(ξi) = 0, we have

E(detMn)2 =
∑
π∈Sn

1 = n!.

It follows immediately by Markov’s bound that for any function ω(n) tending to
infinity with n, almost surely

| detMn| ≤ ω(n)
√
n!.

In [44], Tao and Vu established the matching lower bound, confirming Conjecture
6.1.

Theorem 6.3. Almost surely

| detMn| ≥
√
n! exp(−29

√
n log n).

We are going to sketch the proof very briefly as it contains a useful lemma.
For a more detailed proofs, we refer to [44].

Proof. We view |detMn| as the volume of the parallelepiped spanned by n ran-
dom {−1, 1} vectors. This volume is the product of the distances from the (d+1)st
vector to the subspace spanned by the first d vectors, where d runs from 0 to n−1.
We are able to obtain a very tight control on this distance (as a random variable),
thanks to the following lemma.

Lemma 6.4. Let W be a fixed subspace of dimension 1 ≤ d ≤ n − 4 and X a
random ±1 vector. Then

(6.1) E(dist(X,W )2) = n− d.

Furthermore, for any t > 0

(6.2) P(|dist(X,W )−
√
n− d| ≥ t+ 1) ≤ 4 exp(−t2/16).
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Observe that in this lemma, we do not need to assume that W is spanned by
random vectors. The lemma, however, is not applicable when d is very close to
n as it does not imply that the distance is positive almost surely. In this case,
we do need to use the assumption that W is random. This assumption allows
us to derive information about the normal vector of W , which, combined with
Erdös-Littlewood-Offord bound (see Theorem 2.6), provides control on the last
few distances. �

Now we turn to the symmetric model M sym
n . Again, by Hadamard’s inequality

| detM sym
n | ≤ nn/2. It seems plausible to conjecture

Conjecture 6.5. With probability 1− o(1)

|detM sym
n | = n(1/2−o(1))n.

Turan’s identity no longer holds because of correlation caused by symmetry.
However, one can still show

E(detM sym
n )2 = n(1+o(1)n).

On the other hand, proving a lower bound for |detMn| is much more difficult.
The above approach (which, similarly to Section 2, expose the matrix row by
row) is no longer useful for the symmetric case.

Conjecture 6.5 was confirmed only very recently, as a corollary of the Four
Moment Theorem [41]. The basic idea is as follows. Let 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn
be the singular values of M sym

n . Basic facts from linear algebra tell us that

| detM sym
n | =

n∏
i=1

σi.

The distribution of the σi is controlled by Wigner’s semi-circle law (see [41, 52]).
As a consequence, we have a good estimate for large σi (say, i ≥ εn for some
small ε). The product of these values is basically n(1/2−o(1))n. To complete the
proof, one would need to control the small singular value. In particular, one
needs to bound them from below. This is not non-trivial. (Recall that to even
show σ1 > 0, which is equivalent to Weiss’ conjecture, required some effort).
However, the method introduced in [41] was sufficiently powerful to enable us to
even compute the limiting distribution of the singular values. This leads to a
confirmation of Conjecture 6.5.

Theorem 6.6. With probability 1− o(1)

|detM sym
n | = n(1/2−o(1))n.

In fact, we can also compute the limiting distribution of |detM sym
n |, properly

normalized (see [41] for more details).
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Let us now turn to a related notation of permanent. The formal definition of
the determinant of a matrix M (with entries mij , 1 ≤ i, j ≤ n) is

detM :=
∑
π∈Sn

(−1) signπ
n∏
i=1

miπ(i).

The permanent of M is defined as

(6.3) PerM :=
∑
π∈Sn

n∏
i=1

miπ(i).

It is easy to see that Turan’s identity still holds, namely

E( PerMn)2 = n!.

It suggests that, similar to |detMn|, | PerMn| is typically n(1/2−o(1))n. How-
ever, this is much harder to show, and the following conjecture, which can be
seen as the permanent variant of Komlós 1967 result, was open for a long time

Conjecture 6.7. With probablity 1− o(1), the permanent of Mn is non-zero.

The source of difficulty here is that despite the similarity between the defini-
tions, unlike determinant, permanent does not really have any good geometric of
linear algebraic interpretation (which play the key roles in all problems considered
so far).

In 2007, Tao and Vu found an entirely combinatorial approach to treat the
permanent problem [47]. This approach relies on the formal definition (6.3) and
makes heavy use of martingale techniques from probabilistic combinatorics. As
a result, they managed to prove an analogue of Theorem 6.3

Theorem 6.8. With probability 1− o(1)

| PerMn| = n(1/2−o(1))n.

The missing (final) piece of the picture is (naturally) the symmetric counterpart
of Theorem 6.8.

Conjecture 6.9. With probability 1− o(1)

| PerM sym
n | = n(1/2−o(1))n.

7. Expansion and the second eigenvalue

Let G be a graph on n points and A its adjacency matrix. Let λ1 ≥ λ2 ≥ · · · ≥
λn be the eigenvalues of A. If G is d-regular, then λ1 = d. In this case, a critical
parameter of the graph is

λ(G) := max{|λ2|, |λn|}.

One can derive many interesting properties of the graph from the value of this
parameter. The general phenomenon here is that if λ(G) is significantly less than
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d, then the edges of G distribute like in a random graph with edge density d/n
[2, 8]. A representative fact is the following [3]. Let A,B be sets of vertices and
E(A,B) the number of edges with one end point in A and the other in B, then

(7.1) |E(A,B)− d

n
|A||B|| ≤ λ(G)

√
|A||B|.

Notice that the term d
n |A||B| is the expectation of the number of edges between

A and B if G is random (in the Erdös-Rényi sense) with edge density d/n. Graphs
with small λ are often called pseudo-random [8, 31].

One can use this information about edge distribution to derive various prop-
erties of the graphs (see [31] for many results of this kind). The whole concept
can be generalized for non-singular graphs. In this case, one needs to consider
the Laplacian rather than the adjacency matrix (see, for example, [9]).

From (7.1), it is clear that the smaller λ is the more similar G is to a random
graph. But how small can λ be?

It was proved by Alon and Boppana [1], that if d is fixed and n tends to infinity,
then

λ(G) ≥ 2
√
d− 1− o(1).

Graphs which satisfy λ(G) < 2
√
d− 1 are called Ramanujan graphs. It is very

hard to construct such graphs, and all known constructions, such as those by
Lubotzky-Phillip-Sarnak [33] and Margulis [34] rely heavily on number theoretic
results.

On the other hand, through numerical experiments, we have reason to believe
that random regular graphs are Ramanujan with a decent probability.

Alon [1] conjectured that for any fixed d, a.s.

λ2(Gn,d) = 2
√
d− 1 + o(1).

Friedman [22] and Kahn and Szemerédi [?] showed that if d is fixed and n tends
to infinity, then a.s. λ(Gn,d) = O(

√
d). Recently, Friedman, in a highly technical

paper [23], proved Alon conjecture. In fact, he proved the stronger statement
that a.s. λ(Gn,d) = 2

√
d− 1 + o(1).

Theorem 7.1. [23] (Second eigenvalue of random regular graphs with fixed de-
gree) For any fixed d and n tending to infinity, a.s.

λ(Gn,d) = (2 + o(1))
√
d− 1.

What happens if d also tends to infinity with n? It is not clear (at least to
us) that the proof in [23] can be extended to this case. On the other hand, it
is not hard to show that λ(G(n, p)), where G(n, p) is the Erdös-Réyi random
graph, is (2 + o(1))

√
np(1− p) for sufficiently large p (e.g., p ≥ n−1+ε for any

fixed 0 < ε < 1). Motivated by the universality principle, we make the following
conjecture
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Conjecture 7.2. Assume that d ≤ n/2 and both d and n tend to infinity. Then
a.s.

λ(Gn,d) = (2 + o(1))
√
d(1− d/n).

Nilli [38] showed that for any d-regular graph G having two edges with distance
at least 2k + 2 between them λ2(G) ≥ 2

√
d− 1 − 2

√
d− 1/(k + 1). If d = no(1)

then Gn,d has diameter ω(1) with probability one. Thus in this case

λ(Gn,d) ≥ λ2(Gn,d) ≥ (2 + o(1))
√
d

with probability one. This proves the lower bound in Conjecture 7.2. For a
general d, it is easy to show (by computing the trace of the square of the adjacency
matrix) that any d-regular graph G on n vertices satisfies

λ(G) ≥
√
d(n− d)/(n− 1) ≈

√
d(1− d/n).

(We would like to thank N. Alon for pointing out this bound.)

Let us now turn to the upper bound. For d = o(n1/2), one can follow Kahn-
Szemerédi approach to show that λ(Gn,d) = O(

√
d) a.s. For larger d, there is a

weaker bound o(d) [32, Theorem 2.8] proved by the trace method. The following
two approaches look promising

• (Suggested by Krivelevich) Combine the sharp concentration result in
the previous section with the probability that a random graph is regular.
Using this, one can show for example that λ(Gn,d) = O(

√
d log n) for d

close to n (d = n/2, for instance).
• The Sandwich Theorem [28] (which basically states that Gn,d has the

same behavior as G(n, p) under some conditions) implies

λ(Gn,d) = λ(G(n, d/n)) +O(
√
d log n).

For most values of d, λ(G(n, d/n)) = O(
√
d). Thus, if the Sandwich

conjecture [28] holds, it would imply upper bound O(
√
d log n) for most

values of d.

We feel confident that we can prove that λ(Gn,d) = O(
√
d log n) for all d using

these approaches. However, removing the log term seems tricky and (in our
opinion) Conjecture 7.2 may be hard. In fact, even the following special and
weakened case looks already challenging

Problem 7.3. Prove that λ(Gn,n/2) = O(
√
d).

8. Properties of eigenvectors

If M is symmetric, then its unit eigenvectors form an orthonormal basis. In
[41, 42], it is shown that

Theorem 8.1. With probability 1− o(1),

max ‖v‖∞ ≤ n−1/2 log20 n,

where the maximum is taken over all unit eigenvectors of M sym
n .



348 TRAN VINH LINH AND VAN VU

Since any unit vector v satisfies ‖v‖∞ ≥ n−1/2, this bound is best possible up
to the logarithmic term. The same result holds for the non-symmetric model Mn,
with respect to singular vectors instead of eigenvectors [43].

The situation with the adjacency matrix of a random graph is somewhat more
complicated. Consider A(n, p) with p = Θ(1). The sum of any rows is close to
np. It suggests that the largest eigenvalue λ1 of A(n, p) is approximately np and
its corresponding eigenvector v1 is close to 1√

n
v0, where v0 is the all-one vector.

This intuition was confirmed by Komlós and Füredi [24]. Recently Mitra [36]
improved the entry-wise bound on the first eigenvector of A(n, p).

Theorem 8.2. Assume p ≥ log6 n/n, then for all i ∈ [n] there is a constant c
such that ∣∣v1(i)− 1√

n

∣∣ ≤ c 1√
n

log n
log(np)

√
log n
np

with probability 1− o(1).

In [16], Dekel, Lee and Linial, motivated by the study of nodal domains, raised
the following question.

Question 8.3. Is it true that almost surely every eigenvector u of G(n, p) has
||u||∞ = n−1/2+o(1)?

The bound n−1/2+o(1) was also conjectured by the second author of this paper
in an NSF proposal (submitted Oct 2008). He and Tao [41] proved this bound for
eigenvectors corresponding to the eigenvalues in the bulk of the spectrum for the
case p = 1/2. If one defines the adjacency matrix by writing −1 for non-edges,
then this bound holds for all eigenvectors [41, 42].

The above two questions were raised under the assumption that p is a constant
in the interval (0, 1). For p depending on n, the statements may fail. If p ≤
(1−ε) logn

n , then the graph has (with high probability) isolated vertices and so one
cannot expect that ‖u‖∞ = o(1) for every eigenvector u.

Numerical evidence suggests the conjecture to be true. Additionally, we can
make an even stronger conjecture

Conjecture 8.4. Assume p ≥ (1+ε) logn
n for some constant ε > 0. Let v be

a random unit vector whose distribution is uniform in the n-dimensional unit
square. Let u be a unit eigenvector (not corresponding to the largest eigenvector)
of G(n, p) and w be a constant n-dimensional vector. Then for any δ > 0

P(|w · u− w · v| > δ) = o(1).

The proof of Theorem 8.1 does not apply directly to the model A(n, p). If p is a
constant, then it is shown in [41] that almost surely all eigenvectors corresponding
to eigenvalues in the bulk of the spectrum do satisfy the above bound.

The situation with sparser random graphs is less clear. Komlós and Füredi
proved that all other eigenvalues of A(n, p) have absolute value at most (2 +



RANDOM MATRICES I: COMBINATORIAL PROBLEMS 349

o(1))
√
np (almost surely). Furthermore, it is not hard to show that they dis-

tributed according to Wigner’s semi-circle law. All these results extend to the
case p ≥ n−1+ε with no difficulty.

By modifying the arguments from [41, 42], Tran, Vu and Wang [49] proved
that

Theorem 8.5. [(Infinity norm of eigenvectors)] For p = ω(log n/n), there exists
an orthonormal basis of eigenvectors of A(n, p), {u1, . . . , un}, such that for every
1 ≤ i ≤ n, ||ui||∞ = o(1) almost surely.

For Questions 8.3, they obtain a good quantitative bound for those eigenvectors
which correspond to eigenvalues bounded away from the edge of the spectrum.

Theorem 8.6. Assume p = g(n) log n/n ∈ (0, 1), where g(n) can tend to ∞
arbitrarily slowly. Let Bn = 1√

nσ
An. For any κ > 0, and any 1 ≤ i ≤ n with

λi(Bn) ∈ [−2 + κ, 2 − κ], there exists a corresponding eigenvector ui such that

||ui||∞ = Oκ(
√

log g(n)2.2 logn
np )with overwhelming probability.

Let us now consider random regular graphs. Recently Dimitriu and Pal [17]
proved the following result. Let d = logγ n for a constant 0 < γ < 1, and set
ηn := 6(log d)1+σ√

logn
where σ > 0 is a constant. A unit vector v = (v1, . . . , vn) is

(T, ε)-localized if there is a set X of size T such that
∑

i∈X v
2
i ≥ ε.

Theorem 8.7. For any fixed ε > 0, almost surely, no eigenvector of A(n, d) is
(o(η−1

n ), ε)-localized.

A more recent result of Brooks and Lindenstrauss [6] showed

Theorem 8.8. Let d, ε be constants. Then there is a constant δ = δ(d, ε) > 0
such that the following holds. Almost surely, no eigenvector of A(n, d) is (nδ, ε)
localized.

In fact, Brooks and Lindenstrauss result holds for deterministic graphs, under
a condition on short cycles, which hold almost surely for regular random graphs
with constant degree.

Problem 8.9. Can we replace the (nδ, ε) -localization in Theorem 8.8 by (δn, ε)-
localization?

9. Random regular graphs

The random d-regular graph Gd(n) is obtained by taking a graph uniformly at
random from the set of all simple d-regular graphs on n vertices. While this defi-
nition looks simple, it, unfortunately, does not posses the powerful features of the
previous one. In particular, there is no obvious relation to probability theory as
in the Erdös-Rényi model. Consequently, compared to the study of Erdös-Rényi
model, the study of random regular graphs relies on different techniques, usually
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of enumerative nature.

We now discuss the spectral properties of the adjacency matrix of regular
random graph. In 1950s, Wigner [52] discovered the famous semi-circle for the
limiting distribution of the eigenvalues of random matrices. His proof extends,
without difficulty, to the adjacency matrix of G(n, p), given that np → ∞ with
n. (See Figure 1 for a numerical simulation).

Theorem 9.1. For p = ω( 1
n), the empirical spectral distribution (ESD) of the

matrix 1√
nσ
An converges in distribution to the semicircle law which has a density

ρsc(x) with support on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.
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Figure 1. The probability density function of the ESD of G(2000, 0.2)

If np = O(1), the semicircle law no longer holds. In this case, the graph almost
surely has Θ(n) isolated vertices, so in the limiting distribution, the point 0 will
have positive constant mass.

The case of random regular graph, Gn,d, was considered by McKay [35] about
30 years ago. He proved that if d is fixed, and n→∞, then the limiting density
function is

fd(x) =


d
√

4(d−1)−x2

2π(d2−x2)
, if |x| ≤ 2

√
d− 1;

0 otherwise.

This is usually referred to as McKay or Kesten-McKay law. It is easy to verify
that as d → ∞, if we normalize the variable x by

√
d− 1, the above density
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converges to the semicircle law on [−2, 2]. It is thus natural to conjecture that
Theorem 9.1 holds for Gn,d with d → ∞. Let A′n be the adjacency matrix of
Gn,d., and the normalized version

M ′n =
1√
d

(A′n −
d

n
J).

Conjecture 9.2. If d → ∞ then the ESD of 1√
n
M ′n converges to the standard

semicircle law.

Dimitriu and Pal [17] showed that the conjecture holds for d tending to infinity
very slowly, d = no(1). Their proof which used trace method does not seem to
work for larger d because it depends on the ”local tree-like” property, which states
that with high probability, most vertices in a random regular graph will have an
increasing neighborhood which is free of any cycles. But when d is large (d ∼ nc)
the graph Gn,d will have many short cycles and the local tree-like property will
fail.

Very recently, Tran, Vu and Wang [49] proved Conjecture 9.2 in full generality,
using a completely different method.

Theorem 9.3. If d tends to infinity as n goes to infinity, then the empirical spec-
tral distribution of 1√

n
M ′n converges in distribution to the semicircle distribution.

The idea of the proof is in order to show that an event in Gn,d has probability
o(1), one needs to compare the probability of the same event in G(n, p) with
the probability that G(n, p) is np−regular. If the latter is much larger than the
former then we are done. This method allows one to take advantage of various
probabilistic tools developed for G(n, p) to prove some results in Gn,d.

10. Miscellany

About 10 years ago, Krivelevich asked us the following question: Is it true that
(with probability 1− o(1)), A(n, 1/2) does not have any multiple eigenvalues?

We do not know how to settle this problem, but strongly believe that the answer
is affirmative, and the same must hold for other models of random matrices.

Conjecture 10.1. With probability 1− o(1),

• A(n, 1/2) does not have multiple eigenvalues.
• Mn does not have multiple eigenvalues.
• Mn does not have multiple singular values.
• M sym

n does not have multiple eigenvalues.
• M sym

n does not have multiple singular values.

Conjecture 10.2. With probability 1−o(1), the characteristic polynomial of Mn

is irreducible.

With P. Wood, we came up with this conjecture few years ago. Recently, L.
Babai informed us he made the same conjecture (unpublished) in the 1970s.



352 TRAN VINH LINH AND VAN VU

Given {−1, 1}matrixM , we denote by Res(M) the minimum number of entries
we need to switch (from 1 to −1 and vice versa) in order to make M singular. If
M is a sample of Mn, it is easy to show that Res(M) is, a.s. at most (1/2+o(1))n,
as we can, a.s. change that many entries in the first row to make the first two
rows equal. We conjecture that this is the best one can do.

Conjecture 10.3. Almost surely Res(Mn) = (1/2 + o(1))n?

A closely related question (motivated by the notion of local resilience from [40]) is
the following. Call a {−1, 1} (n by n) matrix M good if all matrices obtained by
switching (from 1 to −1 and vice versa) the diagonal entries of M are non-singular
(there are 2n such matrices).

Conjecture 10.4. Almost surely Mn is good.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (2) (1986), 83–96.
[2] N. Alon and V. Milman, λ1- isoperimetric inequalities for graphs, and supercon- centrators,

J. Combin. Theory Ser. B 38 (1) (1985), 73–88.
[3] N. Alon and J. Spencer, The Probabilistic Method, 3rd ed., John Wiley & Sons Inc.,

Hoboken, NJ, 2008.
[4] B. Bollobás, Random Graphs, Second edition, Cambridge Studies in Advanced Mathemat-

ics, 73. Cambridge University Press, Cambridge, 2001.
[5] J. Bourgain, V. Vu and P. M. Wood, On the singularity probability of discrete random

matrices, J. Funct. Anal. 258 (2) (2010), 559–603.
[6] S. Brooks and E. Lindenstrauss, Non-localization of eigenfunctions on large regular graphs,

arXiv 912.
[7] F. Chung, L. Lu and V. Vu, The spectra of random graphs with expected degrees, Proc.

Nat. Acad. Sci. U.S.A. 100 (11) (2003), 6313–6318.
[8] F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combinatorica

9 (4) (1989), 345–362.
[9] F. Chung, Spectral graph theory, CBMS series, no. 92, 1997.

[10] C. Cooper, A. Frieze, M. Molloy and B. Reed, Perfect matchings in random r-regular,
s-uniform hypergraphs, Combin. Probab. Comput. 5 (1996), 1–14.

[11] C. Cooper, A. Frieze and B. Reed, Random regular graphs of non-constant degree: con-
nectivity and Hamiltonicity, Combin. Probab. Comput. 11 (3) (2002), 249–261.

[12] K. Costello, Bilinear and quadratic variants on the Littlewood-Offord problem, submitted.
[13] K. Costello and V. Vu, The ranks of random graphs, Random Structures and Algorithm.

33 (2008), 269–285.
[14] K. Costello and V. Vu, The rank of sparse random matrices, submitted.
[15] K. Costello, T. Tao and V. Vu, Random symmetric matrices are alsmot surely singular,

to appear in Duke Math. Journal.
[16] Y. Dekel, J. Lee and N. Linial, Eigenvectors of random graphs: Nodal domains, Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
4627 (2007), 436–448.

[17] I. Dimitriu and S. Pal, Sparse regular random graphs: spectral density and eigenvectors,
submitted.

[18] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix
Anal. Appl. 9 (4) (1988), 543–560.

[19] A. Edelman and B. Sutton, Tails of condition number distributions, submitted.
[20] P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898–

902.



RANDOM MATRICES I: COMBINATORIAL PROBLEMS 353

[21] P. Erdös, Extremal problems in number theory, Proc. Sympos. Pure Math. VIII (1965),
181–189. Amer. Math. Soc., Providence, R.I.

[22] J. Friedman, On the second eigenvalue and random walks in random d-regular graphs,
Technical Report CX-TR-172-88, Princeton University, August 1988.

[23] J. Fiedman, A proof of Alon’s second eigenvalue conjecture and related problems (English
summary), Mem. Amer. Math. Soc. 195 (910) (2008), viii+100 pp.
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