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STABILITY ANALYSIS FOR LINEAR NON-AUTONOMOUS

SYSTEMS WITH CONTINUOUSLY DISTRIBUTED MULTIPLE

TIME-VARYING DELAYS AND APPLICATIONS

T. T. ANH1, L. V. HIEN2 AND V. N. PHAT3

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. In this paper, the exponential stability problem of a class of linear
non-autonomous systems with continuously distributed multiple time-varying
delays is studied. Based on the Lyapunov-Krasovskii functional approach,
sufficient conditions for the exponential stability of the system are established
via the solution of Riccati differential inequalities. By using this general-
ized result, new sufficient conditions are derived for the robust stability and
stabilization of the systems subjected to uncertainties and external controls.
Illustrative numerical examples are given to indicate significant improvements
of the results.

1. Introduction

The problems of Lyapunov stability of time-delay systems are of practical and
theoretical interest since time delay is often encountered in many industrial and
engineering processes [5, 6, 7]. The stability criteria are often developed for linear
time-invariant (LTI) systems based on the Lyapunov function method involves the
solution of some linear matrix inequalities or algebraic Riccati equations [8, 10, 16,
19, 20]. However, this approach may not be readily applied to linear time-varying
(LTV) systems, which are frequently encountered in process dynamics, control,
filtering and mobile communication systems. The difficulty is that the solution of
a Riccati-type differential inequality is, in general, not uniformly positive definite
to be used in a Lyapunov-Krasovskii functional candidate, and hence, the stability
analysis becomes more complicated, in particular when the system delay and
uncertainties are also time-varying. Moreover, unlike the LTI systems, stability
of LTV systems may not be determined by the spectral property of the nominal
system matrix as there may exist a stable LTV system with a positive real part
of some eigenvalues [11]. In the case of no delay, the definition of stability for LTI
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systems is naturally extended to LTV ones with the use of a suitable time-varying
Lyapunov-Krasovskii functional. This leads to conditions for the stability, usually
expressed in terms of solutions of differential Riccati-type inequalities [3, 12, 15].
Some existing conditions for the stability for LTV delay systems, obtained in [1,
12, 13, 14], involve a special assumption on the global null-controllability of the
nominal system. To the best of our knowledge, there has not been available in the
literature a unified approach that addresses the problem of exponential stability
for a general class of LTV systems subject to mixed time-varying delays, as dealt
with in this paper.

In this paper, we consider LTV systems with time-varying case of continu-
ously distributed multiple delays. By using an improved Lyapunov-Krasovskii
functional combined with Riccati equation approach, we propose new criteria for
the exponential stability of the system. The delay-dependent conditions are for-
mulated in terms of the solution of Riccati-type differential inequalities, which
allow to compute simultaneously the two bounds that characterize the exponen-
tial stability rate of the solution. The results are applied to robust stability and
stabilization of linear time-varying control systems with mixed delays. Compared
to other stability criteria, our result have its own advantages. First, our results
can deal with the case of continuously distributed multiple time-varying delays.
Second, our approach allows us to apply in robust stability and stabilization of the
system subjected to uncertainties and external controls. Therefore, our results
extend many related previous ones [3, 8, 10, 13-15, 20].

The paper is organized as follows. Section 2 presents notations, definitions
and some auxiliary propositions used in the proof of main results. New delay-
dependent sufficient conditions for the exponential stability and applications to
robust stability and stabilization are presented in Section 3 and Section 4, respec-
tively. Numerical examples illustrating the obtained results are given in Section
5.

2. Preliminaries

The following notations will be used throughout this paper: R
+ denotes the

set of all real nonnegative numbers; R
n denotes the n-dimensional space with

the scalar product 〈·, ·〉 and the vector norm ‖ · ‖; AT denotes the transpose of
the matrix A, matrix A is symmetric if A = AT; I denotes the identity matrix;
λ(A) denotes the set of all eigenvalues of A, λmax(A) = max{Re λ : λ ∈ λ(A)}
and λmin(A) = min{Re λ : λ ∈ λ(A)}. Matrix A is called semi-positive definite
(A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ R

n; A is positive definite (A > 0) if 〈Ax, x〉 > 0
for all x 6= 0; A > B means A − B > 0; M+ denotes the set of all constant
symmetric positive definite matrices; SM+[0,∞) denotes the set of all symmetric
semi-positive definite matrix functions on [0,∞); C([a, b], Rn) denotes the set of
all continuous functions on [a, b].

Consider a linear non-autonomous system with continuously distributed mul-
tiple time-varying delays of the form:
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(2.1)






ẋ(t) = A0(t)x(t) +

p∑

i=1

Ai(t)x(t − hi(t))

+

q∑

k=1

Dk(t)

∫ t

t−rk(t)
x(s)ds, t ∈ R

+

x(t) = φ(t), t ∈ [−τ, 0],

where x(t) ∈ R
n is the state, Ai(t), i = 0, 1, . . . , p, Dk(t), k = 1, 2, . . . , q are given

continuous matrix functions on R
+, hi(t), rk(t) are delay functions which satisfy

(2.2)
0 ≤ hi(t) ≤ hi, ḣi(t) ≤ δi < 1, i = 1, 2, . . . , p,

0 ≤ rk(t) ≤ rk, ṙk(t) ≤ µk < 1, k = 1, 2, . . . , q

and τ = max
1≤i≤p,1≤k≤q

{hi, rk}; φ(t) ∈ C([−τ, 0], Rn) is the initial function with the

norm
‖φ‖ = sup

t∈[−τ,0]
‖φ(t)‖.

Definition 2.1. For given α > 0, system (2.1) is said to be α−exponentially
stable if there exists a number N > 0 such that every solution x(t, φ) of the
system satisfies the inequality

‖x(t, φ)‖ ≤ N‖φ‖e−αt, t ≥ 0.

The following well-known propositions will be used in the proof of our main
results.

Proposition 2.1. (Schur complement lemma [2]) For any matrices X,Y,Z with

appropriate dimensions, where X = XT, Y = Y T > 0, then X + ZTY −1Z < 0 if

and only if [
X ZT

Z −Y

]
< 0 or

[
−Y Z
ZT X

]
< 0.

Proposition 2.2. (Matrix Cauchy inequality) Let N ∈ R
n×n be a symmetric

positive definite matrix. Then for any x, y ∈ R
n, we have

2xTy ≤ xTNx + yN−1y.

Proposition 2.3. [4] For any constant matrix W ∈ R
n×n, W = WT > 0, scalar

σ > 0 and vector function ω : [0, σ] → R
n such that the integrals concerned are

well defined, then
(∫ σ

0
ω(s)ds

)T

W

(∫ σ

0
ω(s)ds

)
≤ σ

∫ σ

0
ωT(s)Wω(s)ds.

Proposition 2.4. [6] Consider the time-delay system

ẋ(t) = f(t, xt), x(t) = φ(t), t ∈ [−h, 0].

If there exist a Lyapunov-Krasovskii functional V (t, xt) and positive numbers

λ1, λ2, λ3 such that for every solution x(t) of the system the following conditions

hold
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(i) λ1‖x(t)‖2 ≤ V (t, xt) ≤ λ2‖xt‖2,

(ii) V̇ (t, xt) ≤ −2λ3V (t, xt),

then the system is exponentially stable, i.e.

∃N > 0 : ‖x(t, φ)‖ ≤ N‖φ‖e−λ3t, t ≥ 0.

Proposition 2.5. [18] For any x, y ∈ R
n and matrices A,P,E, F,H with appro-

priate dimensions, P > 0, FTF ≤ I and scalar ρ > 0, we have

(i) EFH + HTFTET ≤ ρ−1EET + ρHTH;

(ii) If ρI − HPHT > 0, then

(A+EFH)P (A+EFH)T ≤ APAT +APHT(ρI −HPHT)−1HPAT + ρ−1EET.

3. Main results

Given numbers α > 0, ε > 0, hi > 0, i = 1, 2, . . . , p, rk > 0, k = 1, 2, . . . , q, we
consider the following Riccati differential inequality (RDI):

(3.1) Ṗε(t) + AT

0 (t)Pε(t) + Pε(t)A0(t) + 2αPε(t) + Pε(t)R(t)Pε(t) + Q ≤ 0

where

Pε(t) = P (t) + εI, Q = (p +

q∑

k=1

rk)I,

R(t) =

p∑

i=1

e2αhi

1 − δi

Ai(t)A
T

i (t) +

q∑

k=1

rke
2αrk

1 − µk

Dk(t)D
T

k (t).

Denote

p0 = λmax(P (0)), ε1 = p0 + ε +

p∑

i=1

1 − e−2αhi

2α
+

q∑

k=1

e−2αrk + 2αrk − 1

4α2
.

We have the following result for the α−exponential stability of system (2.1).

Theorem 3.1. For given α > 0, system (2.1) is α−exponentially stable if there

exist ε > 0 and P ∈ SM+[0,∞) such that the RDI (3.1) holds. Moreover, the

solution x(t, φ) of system (2.1) satisfies the following exponential condition

‖x(t, φ)‖ ≤ N‖φ‖e−αt, t ≥ 0,

where, N =

√
ε1

ε
.

Proof. Let ε > 0 and P ∈ SM+[0,∞) be a solution of RDI (3.1) . Consider the
following Lyapunov-Krasovskii functional

V (t, xt) = V1 + V2 + V3 + V4, t ≥ 0,
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where

(3.2)

V1 = 〈P (t)x(t), x(t)〉
V2 = ε‖x(t)‖2

V3 =

p∑

i=1

t∫

t−hi(t)

e2α(s−t)‖x(s)‖2ds

V4 =

q∑

k=1

t∫

t−rk(t)

t∫

s

e2α(ξ−t)‖x(ξ)‖2dξds.

It is easy to see that the function V (t, xt) is positive definite and

(3.3) ε‖x(t)‖2 ≤ V (t, xt), t ∈ R
+.

Taking the derivative of V1 and V2 respectively along the solution of system
(2.1), we have

V̇1 = 〈Ṗ (t)x(t), x(t)〉 + 2〈P (t)ẋ(t), x(t)〉
= 〈(Ṗ (t) + AT

0 (t)P (t) + P (t)A0(t))x(t), x(t)〉

+ 2

p∑

i=1

〈P (t)Ai(t)x(t − hi(t)), x(t)〉

+ 2

q∑

k=1

〈P (t)Dk(t)

∫ t

t−rk(t)
x(s)ds, x(t)〉

V̇2(t) = 2ε〈(A0(t)x(t), x(t)〉

+ 2ε

p∑

i=1

〈Ai(t)x(t − hi(t)), x(t)〉

+ 2ε

q∑

k=1

〈Dk(t)

∫ t

t−rk(t)
x(s)ds, x(t)〉.

Therefore,

(3.4)

V̇1 + V̇2 = 〈(Ṗε(t) + AT

0 (t)Pε(t) + Pε(t)A0(t))x(t), x(t)〉

+ 2

p∑

i=1

〈Pε(t)Ai(t)x(t − hi(t)), x(t)〉

+ 2

q∑

k=1

〈Pε(t)Dk(t)

∫ t

t−rk(t)
x(s)ds, x(t)〉.

Using Propositions 2.2 and 2.3, we have the following estimates

2〈Pε(t)Ai(t)x(t − hi(t)), x(t)〉 ≤ e2αhi

1 − δi

〈Pε(t)Ai(t)A
T

i (t)Pε(t)x(t), x(t)〉
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+ (1 − δi)e
−2αhi‖x(t − hi(t))‖2, 1 ≤ i ≤ p.

2〈Pε(t)Dk(t)

∫ t

t−rk(t)
x(s)ds, x(t)〉 ≤ rke

2αrk

1 − µk

〈Pε(t)Dk(t)D
T

k (t)x(t), x(t)〉

+
1

rk

(1 − µk)e
−2αrk

(∫ t

t−rk(t)
x(s)ds

)
T
(∫ t

t−rk(t)
x(s)ds

)

≤ rke
2αrk

1 − µk

〈Pε(t)Dk(t)D
T

k (t)x(t), x(t)〉

+ (1 − µk)e
−2αrk

∫ t

t−rk(t)
‖x(s)‖2ds, 1 ≤ k ≤ q.

Therefore, from (3.4) we have

(3.5)

V̇1 + V̇2 ≤ 〈(Ṗε(t) + Pε(t)A0(t) + AT

0 (t)Pε(t) + Pε(t)R(t)Pε(t))x(t), x(t)〉

+

p∑

i=1

(1 − δi)e
−2αhi‖x(t − hi(t))‖2

+

q∑

k=1

(1 − µk)e
−2αrk

∫ t

t−rk(t)
‖x(s)‖2ds.

Next, the derivative of V3 and V4 along the solution of system (2.1) are given
by

(3.6)

V̇3 =

p∑

i=1

‖x(t)‖2 −
p∑

i=1

(1 − ḣi(t))e
−2αhi(t)‖x(t − hi(t))‖2 − 2αV3

≤ p‖x(t)‖2 −
p∑

i=1

(1 − δi)e
−2αhi‖x(t − hi(t))‖2 − 2αV3.

(3.7)

V̇4 =

q∑

k=1

rk(t)‖x(t)‖2 −
q∑

k=1

(1 − ṙk(t))

∫ t

t−rk(t)
e2α(s−t)‖x(s)‖2ds − 2αV4

≤
q∑

k=1

rk‖x(t)‖2 −
q∑

k=1

(1 − µk)e
−2αrk

∫ t

t−rk(t)
‖x(s)‖2ds − 2αV4.

Combining (3.4)-(3.7) gives

(3.8)
V̇ (t, xt) + 2αV (t, xt) ≤ 〈(Ṗε(t) + AT

0 (t)Pε(t) + Pε(t)A0(t) + 2αPε(t)

+ Pε(t)R(t)Pε(t) + Q)x(t), x(t)〉.

Then

(3.9) V̇ (t, xt) + 2αV (t, xt) ≤ 0, t ≥ 0.
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Therefore, by Proposition 2.4, the system is α− exponential stable. To find the
stability factor, integrating both sides of (3.9) from 0 to t gives

V (t, xt) ≤ V (0, x0)e
−2αt, t ∈ R

+.

Taking the estimation (3.3) into account, we finally obtain

‖x(t, φ)‖ ≤
√

V (0, x0)

ε
e−αt, t ≥ 0.

We now estimate the value V (0, x0) as follows.

V (0, x0) = 〈P (0)x(0), x(0)〉 + ε‖x(0)‖2

+

p∑

i=1

0∫

−hi(0)

e2αs‖x(s)‖2ds +

q∑

k=1

0∫

−rk(0)

0∫

s

e2αξ‖x(ξ)‖2dξds

≤ (p0 + ε)‖φ‖2 +
[ p∑

i=1

0∫

−hi

e2αsds +

q∑

k=1

0∫

−rk

0∫

s

e2αξdξds
]
‖φ‖2

= (p0 + ε)‖φ‖2 +
[ p∑

i=1

1 − e−2αhi

2α
+

q∑

k=1

e−2αrk + 2αrk − 1

4α2

]
‖φ‖2

= ε1‖φ‖2,

where

(3.10) ε1 = p0 + ε +

p∑

i=1

1 − e−2αhi

2α
+

q∑

k=1

e−2αrk + 2αrk − 1

4α2
.

Hence

‖x(t, φ)‖ ≤ N‖φ‖e−αt, t ≥ 0,

where N =

√
ε1

ε
. This completes the proof of the theorem. �

Remark 3.2. Theorem 3.1 provides sufficient conditions for the exponential
stability, which includes the results of [10, 14] as special cases.

Remark 3.3. The exponential stability conditions are given in terms of the
solution of RDIs. Various efficient methods for solving RDIs can be found in [9,
17].

4. Applications

In this section, we apply the obtained results to the robust stability and stabi-
lization of uncertain linear control systems with discrete and distributed multiple
delays .
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4.1. Robust stability. Consider the following uncertain LTV system with mixed
multiple delays

(4.1)






ẋ(t) = (A0 + ∆A0(t))x(t) +

p∑

i=1

(Ai + ∆Ai(t))x(t − hi(t))

+

q∑

k=1

(Dk + ∆Dk(t))

∫ t

t−rk(t)
x(s)ds, t ∈ R

+

x(0) = φ(t), t ∈ [−τ, 0],

where hi(t), rk(t) are time-varying delay functions satisfying (2.2) and A0, Ai,Dk,
1 ≤ i ≤ p, 1 ≤ k ≤ q are given constant matrices and ∆A0(t), ∆Ai(t), ∆Dk(t)
are uncertainties of the form

∆A0(t) = E0F0(t)H0, ∆Ai(t) = Ea
i F a

i (t)Ha
i , ∆Dk(t) = Ed

kF d
k (t)Hd

k ,

where E0,H0, E
a
i ,Ha

i , 1 ≤ i ≤ p and Ed
k ,Hd

k , 1 ≤ k ≤ q are given real matrices

and F0(t), F
a
i (t), 1 ≤ i ≤ p, F d

k (t), 1 ≤ k ≤ q are uncertainties satisfying the
following conditions

FT

0 (t)F0(t) ≤ I, F aT

i (t)F a
i (t) ≤ I, F dT

k (t)F d
k (t) ≤ I, i = 1, 2, ..., p, k = 1, 2, ..., q.

Then, we have the following result for the α−exponentially stable of the system
(4.1).

Theorem 4.1. For given α > 0, system (4.1) is α−exponentially stable if there

exist a symmetric positive definite matrix P and positive numbers ρ0, ρi, νk, 1 ≤
i ≤ p, 1 ≤ k ≤ q such that ρiI −Ha

i HaT

i > 0, νkI −Hd
kHdT

k > 0 and the following

LMI holds:

(4.2)





Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17

∗ −Ω22 0 0 0 0 0
∗ ∗ −Ω33 0 0 0 0
∗ ∗ ∗ −Ω44 0 0 0
∗ ∗ ∗ ∗ −Ω55 0 0
∗ ∗ ∗ ∗ ∗ −Ω66 0
∗ ∗ ∗ ∗ ∗ ∗ −Ω77





< 0

where

Ω11 = AT

0 P + PA0 + 2αP + ρ0H
T

0 H0 +
(
p +

q∑

k=1

rk

)
I,

Ω12 =
[
PA1H

aT
1 . . . PApH

aT
p

]
,

Ω13 =
[
PD1H

dT
1 . . . PDqH

dT
q

]
,

Ω14 =
[
PE0 PEa

1 . . . PEa
p

]
,

Ω15 =
[
PEd

1 PEd
2 . . . PEd

q

]
,

Ω16 =
[
PA1 PA2 . . . PAp

]
,

Ω17 =
[
PD1 PD2 . . . PDq

]
,
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Ω22 = diag
{

(1 − δ1)e
−2αh1(ρ1I − Ha

1 HaT

1 ), . . . , (1 − δp)e
−2αhp(ρpI − Ha

p HaT

p )
}

,

Ω33 = diag
{

(1 − µ1)r
−1
1 e−2αr1(ν1I − Hd

1HdT

1 ), . . . , (1 − µq)r
−1
q e−2αrq(νqI − Hd

q HdT

q )
}

,

Ω44 = diag
{

ρ0I, (1 − δ1)e
−2αh1ρ1I, . . . , (1 − δp)e

−2αhpρpI
}

,

Ω55 = diag
{

(1 − µ1)r
−1
1 e−2αr1ν1I, . . . , (1 − µq)r

−1
q e−2αrqνqI

}
,

Ω66 = diag
{

(1 − δ1)e
−2αh1I, . . . , (1 − δp)e

−2αhpI
}

,

Ω77 = diag
{

(1 − µ1)r
−1
1 e−2αr1I, . . . , (1 − µq)r

−1
q e−2αrqI

}
.

Proof. Let us denote

A0(t) = A0 + ∆A0(t), Ai(t) = Ai + ∆Ai(t),Dk(t) = Dk + ∆Dk(t).

Using Proposition 2.5, we have

PE0F0(t)H0 + HT

0 FT

0 (t)ET

0 P ≤ ρ−1
0 PE0E

T

0 P + ρ0H
T

0 H0,

Ai(t)A
T

i (t) ≤ AiA
T

i + AiH
aT

i

(
ρiI − Ha

i HaT

i

)−1
Ha

i AT

i + ρ−1
i Ea

i EaT
i ,

Dk(t)D
T

k (t) ≤ DkD
T

k + DkH
dT
k

(
νkI − Hd

kHdT

k

)−1
Hd

kDT

k + ν−1
k Ed

kEdT

k ,

1 ≤ i ≤ p, 1 ≤ k ≤ q.

Applying Theorem 3.1 to the case Pε(t) = P, we reduce the RDI (3.1) to

AT

0 (t)P + PA0(t) + 2αP + PR(t)P + (p +

q∑

k=1

rk)I ≤ 0.

We have

(4.3)

AT

0 (t)P + PA0(t) + 2αP + PR(t)P + (p +

q∑

k=1

rk)I

≤ AT

0 P + PA0 + 2αP + Q + ρ−1
0 PEa

0EaT

0 P + ρ0H
aT

0 Ha
0

+

p∑

i=1

e2αhi

1 − δi

PAiA
T

i P +

p∑

i=1

e2αhi

1 − δi

ρ−1
i PEa

i EaT

i P

+

p∑

i=1

e2αhi

1 − δi

PAiH
aT

i

(
ρiI − Ha

i HaT

i

)−1
Ha

i AT

i P

+

q∑

k=1

rke
2αrk

1 − µk

PDkD
T

k P +

q∑

k=1

rke
2αrk

1 − µk

ν−1
k PEd

kEdT

k P

+

q∑

k=1

rke
2αrk

1 − µk

PDkH
dT

k

(
νkI − Hd

kHdT

k

)−1
Hd

kDT

k P.
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Using Schur complement lemma (Proposition 2.1) and from (4.2), (4.3) we
obtain the similar estimation (3.9) for system (4.1) and hence the α−exponential
stability of the system (4.1) is derived. Moreover, in this case, the stability factor

is given by N =

√
λ2

λ1
, where λ1 = λmin(P ), λ2 = λmax(P ) +

∑p
i=1

1 − e−2αhi

2α
+

∑q
k=1

e−2αrk + 2αrk − 1

4α2
. The proof is complete. �

Remark 4.2. The robust stability conditions are obtained in terms of LMIs,
which can be easily determined by utilizing MATLABs LMI Control Toolbox
[2]. Moreover, it is worth noting that the results on the asymptotic stability of
uncertain time-delay systems obtained in [3, 8, 20] are derived from Theorem 4.1
as a special case.

4.2. Stabilization. Consider the following linear time-varying control system
with mixed multiple delays

(4.4)






ẋ(t) = A0(t)x(t) +

p∑

i=1

Ai(t)x(t − hi(t)) + B(t)u(t)

+

q∑

k=1

Dk(t)

∫ t

t−rk(t)
x(s)ds, t ∈ R

+,

x(t) = φ(t), t ∈ [−τ, 0],

where u(t) ∈ R
m is the control, A0(t), Ai(t),Dk(t), 1 ≤ i ≤ p, 1 ≤ k ≤ q and B(t)

are given continuous matrix functions on [0,∞), hi(t), rk(t) are delay functions
satisfying (2.2).

We recall that system (4.4) is α−exponentially stabilizable if there is a feedback
control u(t) = K(t)x(t) such that the closed-loop system

(4.5)






ẋ(t) = [A0(t) + B(t)K(t)]x(t) +

p∑

i=1

Ai(t)x(t − hi(t))

+

q∑

k=1

Dk(t)

∫ t

t−rk(t)
x(s)ds, t ∈ R

+,

x(t) = φ(t), t ∈ [−τ, 0]

is α−exponentially stable.

For numbers α > 0, ε > 0, hi, rk > 0, 1 ≤ i ≤ p, 1 ≤ k ≤ q, we denote

Pε(t) = P (t) + εI, Q = (p +

q∑

k=1

rk)I,

R(t) =

p∑

i=1

e2αhi

1 − δi

Ai(t)A
T

i (t) +

q∑

k=1

rke
2αrk

1 − µk

Dk(t)D
T

k (t),

R̂(t) =
1

2

[
B(t)BT(t) − I

]
R(t) +

1

2
R(t)

[
B(t)BT(t) − I

]
,
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and consider the following RDI

(4.6) Ṗε(t) + AT

0 (t)Pε(t) + Pε(t)A0(t) + 2αPε(t) − P (t)R̂(t)P (t) + Q ≤ 0.

Theorem 4.3. For given α > 0, system (4.4) is α−exponentially stabilizable

if there exist ε > 0 and P ∈ SM+[0,∞) such that the RDI (4.6) holds. The

feedback stabilizing control is given by

u(t) = −1

2
BT(t)R(t)Pε(t)x(t), t ≥ 0.

Proof. With the feedback control u(t) = K(t)x(t), where K(t) = −1
2BT(t)R(t)Pε(t),

the closed-loop system of (4.4) is given by
(4.7)

ẋ(t) =
[
A0(t) + B(t)K(t)

]
x(t) +

p∑

i=1

Ai(t)x(t − hi(t)) +

q∑

k=1

Dk(t)

∫ t

t−rk(t)
x(s)ds.

Denote A0(t) = A0(t) + B(t)K(t), then system (4.7) can be written as

ẋ(t) = A0(t)x(t) +

p∑

i=1

Ai(t)x(t − hi(t)) +

q∑

k=1

Dk(t)

∫ t

t−rk(t)
x(s)ds.

From (4.6), we have

Pε(t)R̂(t)Pε(t) =
1

2
Pε(t)[B(t)BT(t) − I]R(t)Pε(t) +

1

2
Pε(t)R(t)[B(t)BT(t) − I]Pε(t)

= −
[
Pε(t)B(t)K(t) + KT(t)BT(t)Pε(t)

]
− Pε(t)R(t)Pε(t).

It follows that

AT

0 (t)Pε(t) + Pε(t)A0(t) − Pε(t)R̂(t)Pε(t) =
[
AT

0 (t) + KT(t)BT(t)
]
Pε(t)

+ Pε(t)
[
A0(t) + B(t)K(t)

]
+ P (t)R(t)P (t)

= A
T

0 (t)Pε(t) + Pε(t)A0(t) + Pε(t)R(t)Pε(t).

Therefore,

Ṗε(t) + A
T

0 (t)Pε(t) + Pε(t)A0(t) + 2αPε(t) + Pε(t)R(t)Pε(t) + Q ≤ 0.

Applying Theorem 3.1, we conclude that the closed-loop system (4.7) is α−
exponentially stable. The proof is complete. �

Remark 4.4. Theorem 4.2 provides sufficient conditions for the exponential
stabilization, which includes the results in [13, 14, 15].
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5. Examples

Example 5.1. (Exponential stability) Consider a linear time-varying system
with discrete and distributed delays of the form

(5.1) ẋ(t) = A0(t)x(t)+A1(t)x(t−h1(t))+A2(t)x(t−h2(t))+D(t)

∫ t

t−r(t)
x(s)ds,

where

A0(t) =

[
a0(t) b0(t)
b0(t) c0(t)

]
, A1(t) =

1

2
e−1+t

[
−1 1
0 1

]
,

A2(t) =
1

2
e−1+t

[
1 1
0 −1

]
, D(t) = et−0.5

[
1 1
0 1

]
,

a0(t) = −3(1 + e2t) − 5e2t

2(1 + e2t)
, b0(t) = 1 + e2t,

c0(t) = −3

2
(1 + e2t) − 5e2t

2(1 + e2t)

and h1(t) = sin2 t
2 , h2(t) = cos2 t

2 , r(t) = 1/2 cos2 3t
2 .

Note that we cannot apply the approach used in [8, 19, 20] because their
conditions lead to an unsolvable infinite system of LMIs. Indeed, the Lyapunov-
Krasovskii functional used, for example, in [19] leads to the LMI conditions in
Theorem 3.1 therein, which is of a function of the time t and hence to solve a
system of time-varying LMIs of the form

Ψ[A0(t), A1(t), P,Q,R] < 0 ∀t ≥ 0.

Clearly, the Matlab LMI toolbox cannot be applied to solve this time-varying
LMI with respect to the positive definite matrix solutions P,Q,R. However, we
can find the solution of RDI (3.1) associated to system (5.1) . We have h1 =
h2 = 1, r = 0.5 and δ1 = δ2 = 0.5, µ1 = 0.75. Taking α = 1, ε = 1, then we can
verify that

P (t) =

[
e−2t 0
0 e−2t

]

is a solution of RDI (3.1). By Theorem 3.1, the system (5.1) is exponentially
stable with decay rate α = 1. By simple computation, we obtain p0 = 1, ε1 =
3− e−2 + 1

4e−1. From (3.10), we have the stability factor N =
√

ε1 ' 1.7195 and
the solution of system of (5.1) satisfies

‖x(t, φ)‖ ≤ 1.72e−t‖φ‖, t ≥ 0.

Example 5.2. (Stabilization) Consider control system (4.4), where p = q = 1
and

A0(t) =




− 3

2(1 + e−t)
3
2e−t(1 + e−t)

3
2e−t(1 + e−t) − 3

2(1 + e−t)



 , A1(t) =
1

2
e0.5t−1

[
1 −1
0 1

]
,
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D(t) =
1

2
e0.5(t−1)

[
1 1
0 1

]
, B(t) =

√
1 + e−t

[
1
1

]
,

h(t) = 2 sin2 3

8
t, r(t) = cos2 3

4
t.

We have h = 2, r = 1 and δ1 = µ1 = 0.75. Taking α = 0.5, ε = 1, then we
verify that

P (t) = e−t

[
1 0
0 1

]

is a solutions of RDI (4.6). By Theorem 4.2, system (4.4) is 0.5−exponentially
stabilizable. The feedback controller is given by

u(t) = −e−t(1 + e−t)
3

2

[
2 1

]
x(t), t ≥ 0.

Moreover, the solution of the closed-loop system satisfies

‖x(t, φ)‖ ≤ 1.798e−0.5t‖φ‖, t ≥ 0.

Example 5.3. (Robust stability) Consider system (4.1), where p = q = 2 and

A0 =

[
−10 0
1 −12

]
, A1 =

[
1 1
0 1

]
, A2 =

[
1 0.5
1 1

]
,

D1 =

[
1 0
1 2

]
, D2 =

[
1 0.5
0 −1

]
,

E0 = Ea
i = Ed

i =

[
1 0
0 1

]
, H0 = Ha

i = Hd
i =

[
0.2 0
0 0.2

]
, i = 1, 2,

h1(t) = 0.5 sin2 t, h2(t) = 0.5 cos2 t, r1(t) = 0.2 sin2 2.5t, r2(t) = 0.2 cos2 2.5t.

We have, h1 = h2 = 0.5, r1 = r2 = 0.2, δ1 = δ2 = 0.5 and µ1 = µ2 = 0.5.
For given α = 0.5, by using LMI Matlab Toolbox, we find that all conditions in
Theorem 4.1 are feasible with ρ0 = 10, ρi = 10, νi = 10, i = 1, 2 and

P =

[
1.2528 −0.9050
−0.9050 1.3518

]
.

By Theorem 4.1, system (4.1) is robust exponentially stable with decay rate
α = 0.5. Moreover, every solution x(t, φ) of the system satisfies the following
inequality

‖x(t, φ)‖ ≤ 2.768‖φ‖e−0.5t, t ≥ 0.

Conclusions

In this paper, new sufficient conditions for the exponential stability of LTV
systems with continuously distributed multiple time-varying delays have been
established by employing an augmented Lyapunov-Krasovskii functional. The
conditions are formulated in terms of the solution of certain Riccati differen-
tial inequalities, which allow us to compute simultaneously the two bounds that
characterize the exponential stability rate of the solution. The results have been
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applied to obtain new conditions for robust stability and stabilization of uncer-
tain linear time-varying control systems with mixed multiple delays. Illustrative
numerical examples are given to indicate significant improvements and the appli-
cation of the results.
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