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RANDOM MATRICES: LOCALIZATION OF THE
EIGENVALUES AND THE NECESSITY OF FOUR MOMENTS

TERENCE TAO AND VAN VU

Dedicated to Tran Duc Van on the occasion of his siztieth birthday

ABSTRACT. Consider the eigenvalues A; (M) (in increasing order) of a random
Hermitian matrix M, whose upper-triangular entries are independent with
mean zero and variance one, and are exponentially decaying. By Wigner’s
semicircular law, one expects that A;(M,) concentrates around ’Yi\/ﬁ, where
fj;o psc(z)dr = % and psc is the semicircular function.

In this paper, we show that if the entries have vanishing third moment,

then forall 1 <i<n
E|Xi(M,) — vyl = O(min(n ™ min(i,n + 1 — i)~ 2/?n?3 nl/3+e)),
for some absolute constant ¢ > 0 and any absolute constant ¢ > 0. In partic-
ular, for the eigenvalues in the bulk (min{i,n — i} = O(n)),
B\ (M) — vim|? = 0(n ™).
A similar result is achieved for the rate of convergence.

As a corollary, we show that the four moment condition in the Four Moment
Theorem is necessary, in the sense that if one allows the fourth moment to
change (while keeping the first three moments fixed), then the mean of \;(M,,)
changes by an amount comparable to n /2 on the average. We make a precise

conjecture about how the expectation of the eigenvalues vary with the fourth
moment.

1. INTRODUCTION

This note is concerned with the local eigenvalue statistics of the following
random matrix model.

Definition 1.1 (Wigner matrices). A Wigner matriz is a random hermitian
matrix M, = (Cij)lgi,jgn such that
e The (;; for 1 < i < j < n are independent with mean zero and variance
one, and (j; = @,
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e For 1 < i < j < n, (; are identically distributed, with the real and
imaginary parts of ¢;; being independent and identically distributed with
distribution 7;

e For 1 <1 < n, the (;; are identically distributed with distribution ;

e (Uniform exponential decay) There exist constants C, C’ > 0 such that

(1) P(|¢ij| > 1) < exp(—t)
forallt>C"and 1 <1i,j <n.
We refer to n,n as the atom distributions of M,.

A classical example of a Wigner matrix is the Gaussian unitary ensemble
(GUE), in which n and 7 are the normal distributions with mean zero and vari-
ances 1/2, 1 respectively.

Remark 1.2. Wigner’s matrices are not the most general random matrix model
for which the results here are applicable, but we restrict to this case for simplicity.
The results, for example, hold for real matrices, in particular Bernoulli matrices.

A Wigner matrix M, has n real eigenvalues
AM(My) < .00 < (M),

The global distribution of these eigenvalues has been known since the 1950s,
and is described by the famous Wigner semicircular law, which asserts that the
empirical spectral measure

1 n
n VR
i=1

converges almost surely (in the vague topology) to the semicircular distribution
psc(x) dx, where

1
puc(a) = —(4 -2/

It is of interest to understand the distribution of individual eigenvalues \;(M,,).
If for each 1 < ¢ < n we define the classical location -; of the normalised ith
eigenvalue by the formula

&) | pctorin =2,

then the Wigner semicircular law (combined with an almost sure bound of (2 +
0(1))+/n for the operator norm of M,,, due to Bai and Yin[4]) is equivalent to the
assertion that one has

(3) Ai(My) = ~viv/n + o(v/n)

uniformly for 1 < i < n, almost surely as n — oo. If we ignore the o(y/n) error
in (3), we are thus led to the heuristic

(4) Air1(My) — Ai(My,) ~ min(i,n — i)~ "/3p~1/6

for the it eigenvalue spacing. In particular, this spacing should be comparable
to n~%/2 in the bulk region dn < i < (1 — é)n (for any fixed 6 > 0), and as
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large as n~1/% at the edge of the spectrum. Note though that this derivation is
non-rigorous as the o(y/n) error could be much larger than the expected gap size
(4).

In the last few years, there has been much progress in formalising the above
heuristics and obtaining more precise control on the distribution of the eigenvalues
and their spacings: see e.g. [16], [5], [17], [6], [18], [14]. A recent survey of these
topics can be found in [10].

It is natural to ask whether the o(y/n) error in (3) can be improved. In [1], the
Talagrand concentration inequality was used to establish (among other things)
that

(5) Xi(My,) = MM;(M,) + O(n® min(i,n + 1 — 1))

with probability at least 1 — O .(n™4) (say) for any A,e > 0, where M\;(M,,) is
the median of \;(M,,); see also [11] for closely related results. This was improved
in [15] to

(6) Xi(My) = MA(M,,) 4 O(nf min(i,n 4+ 1 — i)1/2)

with the same probability of 1 —O4.(n~4). In the bulk region dn < i < (1—§)n,
the concentration of measure arguments in [11] gives the bound

(7) Xi(My) = Vi + O e min(i,n + 1 — i)~ /3n~1/%)
with probability 1 —Oa. s(n~4) whenever min(i,n + 1 —i) > n'/?* (see Section
2 for further discussion of this bound).

In all the above estimates, the error term is larger than 1. In the recent paper

[8, Theorem 7.1], the bound
(8) >_ENi(My) = v/nf* = O(n' ™)
i=1

was established for some absolute constant ¢ > 0. (See also the earlier result in [7,
Theorem 6.3], which established (8) under an additional log-Sobolev hypothesis
on the distribution.) In the bulk region én < i < (1—9)n, a significantly stronger
localisation was obtained in [8] (see the equation preceding (7.8) in that paper),
namely that \;(M,) = viv/n + O(n~1/%+%) with probability O, 4 s(n~4) for any
e, A, with variants of this result also being obtained closer to the edge. This result
was established via a strong bound on the convergence of the Stieltjes transform,
which in turn was obtained by a lengthy moment method computation.

Our first main result gives an alternate method to establish eigenvalue localisa-
tion, based on the three moment theorem rather than on combining the Stieltjes

IStrictly speaking, the results in [1], [15] only establish the bounds (5), (6) implicitly, and
require in addition that the matrix entries are uniformly bounded, rather than exponentially
decaying. However, the arguments in these papers can be easily extended to the exponentially
decaying case, after a standard truncation argument to reduce to the case when the entries are
bounded in magnitude by n°/? (say), and replacing the median with a slightly shifted variant.
We omit the details.
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transform method with the moment method, and which gives a non-averaged
version (8) (in the case when the third moment vanishes):

Theorem 1.3 (Localisation). There is an absolute constant ¢ > 0 such that the
following holds for any constant € > 0. Let M,, be a Wigner matrix whose atom
distribution 1 has vanishing third moment En3 = 0. Then for all 1 <i < n,

9)  E|N(M,) — vVry]? = O(min(n = min(i, n 4+ 1 — i) "2/3p2/3 nl/3+ey),

One can set ¢ to be 1/1000 (say) and we make no attempt to optimize this
constant. By summing over ¢, one obtains (8). Furthermore, in the bulk region
on < i < (1—9)n, the theorem implies

E|Xi(My) = v/mif* = O5(n™).
This is not as strong as the recent localisation result obtained in [8], but the
proof is shorter (assuming the three moment theorem) and will suffice for our
applications. In view of (4), the optimal bound on the right-hand side of (9)
should be O(min(i,n — )~2/3n~1/3+¢),

Let N; be the number of eigenvalues (of ﬁMn) in I, and define F,(z) =
LEN|_5,). The quantity A :=sup, |F(z) — [*__ psc(t)dt| is of interest and has
been investigated by many researchers (see [3, Chapter 8], [9] and the references
therein). In these papers, it has been shown that A = O(n~'/2) under various
assumptions (the most general one seems to be in [9] which only requires bounded
fourth moment).

The arguments in the proof of Theorem 1.3 can be used to break the n
barrier, under the extra third moment condition:

—-1/2

Theorem 1.4. There is an absolute constant ¢ > 0 such that the following holds.
Let M, be a Wigner matrix whose atom distribution n has vanishing third moment
En® =0. Then A = O(n~/?7¢).

We prove this theorem in Section 2.1. The bound n~'/27¢ can be improved

to n~1*¢ if we use median instead of expectation in the definition of F, (see
Remark 2.6). A related result was proven (using different methods) recently in
[8, Theorem 6.3], namely that

x
lNH,x] = / pse(t) dit +O(n™ 2|z —2)
n —0o0
with probability 1 —O(n~4) for any fixed A, without a third moment hypothesis.
Next, we give an application of Theorem 1.3 to demonstrate the sharpness (in
some sense) of the four moment theorem, introduced by the authors in [17, 18]
in order to study the distribution of eigenvalues of random matrices. We state a
special case of this theorem here:

Theorem 1.5 (Four Moment Theorem). For all sufficiently small co > 0 the
following holds. Let M,,, M), be two Wigner random matrices whose atom dis-
tributions n,n' have matching moments to fourth order, thus En? = E(n')? for
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j=3,4. Let G : R — R be a smooth function obeying the derivative bounds
(10) 1G9 (2)| < ne

for all0 < j <5 and x € R. We abbreviate \; := \;(M,,) and X, :== X\;(M]).
Then for n sufficiently large (depending on ¢y and the constants C,C" in (1))
and all1 <1 <mn one has

(1) [EG(vn\,) - BG(VaX)| <n~.

If the atom distributions n,m’ have matching moments only to order 3 rather than
4 (i.e. En® = E(1)3), then (11) still holds provided that one strengthens (10) to

(12) GV ()] < =0
for all 0 < 7 <5 and x € R, and some absolute constant C.

Proof. See [17, Theorem 15] (which handled the bulk case when on < i < (1—0)n)
and [18, Theorem 1.13] (which handled the edge case). These theorems can also
handle the joint distribution of several eigenvalues at once, as well as somewhat
more general ensembles than those in Definition 1.1, but we will not discuss these
generalisations here. O

We will refer to the second part of Theorem 1.5 as the three moment theorem.
Roughly speaking, Theorem 1.5 asserts that the distributions of \;(M,,) and
M\i(M) differ by O(n~1/27¢) for some ¢ > 0 if the atom distributions have match-
ing moments to order 4, and by Oc(nfl/ 2+e) for any ¢ > 0 if the atom distributions
only have matching moments to order 3. For instance, for sufficiently large n one
has
P\ <a) <P\ <a+n /2 4pnc
for some ¢ > 0 if one has matching moments to order 4, and
P\ <a) <P, <a+n Y2 4 n=c

for all ¢ > 0 (with n sufficiently large depending on ¢) if one has matching
moments to order 3. Morally speaking, this means that the medians MA;, MLX]
of A\;, A, differ by O(n_l/ 2=¢) when there are four matching moments and by
Oc(nfl/ 2+¢) when there are three matching moments, although this is not quite
rigorous due to the presence of the n~¢ error in the above bounds. (For some
rigorous bounds on the median of \;, see Section 2.)

The matching moment conditions are essential to the method of proof of Theo-
rem 1.5, which uses a Taylor expansion argument. But it is natural to ask if these
conditions are in fact necessary. Indeed, if one is not interested in the distribution
of individual eigenvalues \;(M,,), but instead in the k-point correlation functions
of these eigenvalues, then in the asymptotic limit n — oo (and with appropriate
normalisations), these correlation functions have a universal distribution regard-
less of how many matching moments there are; see [17, 6] (with earlier partial
results in this direction in [13], [5]). It is not hard to see that the universality for
the limiting distributions (or joint distributions) of individual eigenvalues imply
the universality of the k-point correlation function.
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Our second main result below is evidence that the four moment hypothesis is
indeed necessary if one wishes to control individual eigenvalues at the scale of the
eigenvalue spacing (4).

Theorem 1.6 (Necessity of fourth moment hypothesis). Let M, M/, be Wigner
matrices whose atom wvariables n,n’ satisfy En® = E(1')3 = 0 but their fourth
moments are different En* # E(n')*. As before, write \; := \(M,,) and N, :=
Xi(M)). Then for all sufficiently large n, one has

n
Z |EX; — EX)| > kn!/?
i=1
for some Kk depending only on the atom distributions. In particular (by the pi-
geonhole principle), there exists 1 < i < n such that

[EX; — EX| > &' min(i,n + 1 — i)~ /*n 716,
where k' > 0 depends only on the atom distributions.

Theorem 1.6 is not exactly comparable to the four moment theorem, as it
pertains to the mean of the eigenvalues \;, whereas the four moment theorem
instead controls quantities such as the median. However, it is expected that
the mean and median of \; should be quite close (in particular, closer than the
expected eigenvalue spacing (4)), but the best known concentration results for
Ai (such as Theorem 1.3) are not strong enough to establish this yet. If one
assumes that the mean and median are sufficiently close, then Theorem 1.6 is
strong evidence that the four moment theorem breaks down if one only assumes
three matching moments.

The three moment theorem implies (roughly speaking) that the medians of
Ai, A} should only differ by O(n~1/?*c0)  for arbitrarily small ¢y > 0. In view of
this, one expects the index ¢ provided by Theorem 1.6 to lie in the bulk region
dn < i < (1 —46)n, and indeed the conclusion of Theorem 1.6 should in fact hold
for most i in this bulk region. However, we were unable to demonstrate this.
Nevertheless, concentration bounds such as those given earlier in this section
should be able to establish some non-trivial lower bound on min(i,n 4+ 1 — 7).

The question that how each particular eigenvalue reacts to a change in the
forth moment looks very interesting. By utilising higher moments and making
some heuristic arguments (see the last section of the paper) we are led to the
following precise conjecture.

Conjecture 1.7 (Conjectured asymptotic). For én < i < (1 — d)n with § > 0
fized, one has

E\ = /2y + nil/zci,n + (72 — 29)En* + O5(n~4/27¢)

1
4y/n
for some absolute constant ¢ > 0, where C; ,, is some bounded quantity depending
only on i,n (and is in particular independent of ). The same statement should
also be true for the median MM;.
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We ran a numerical test to check the conjecture. We generated two random
matrices models whose entry’s distributions are Gaussian N(0,1) and Laplace
(0,1/4/2), and investigated the behaviour of the difference EX; —E\, as a function
of 4.

—fl

_E 1 1 1 1 | | 1 1 1
1] 50 100 150 200 250 300 350 400 450 500

Figure 1: Comparison between 2 curves f; = 4\/77% and fo = 'y? — 27;.

(n = 500)

This conjecture would imply that if one increases the forth moment, then
(in expectation) those \; with v; < —v2 or 0 < ; < V2 are shift to the left
(decreasing), while those \; with 7; > v/2 or 0 > 7; > —+/2 are shifted to the
right (increasing). In other words, the eigenvalues in the middle move toward the
center of the spectrum, while those closer to the edge move outward.

We prove Theorem 1.6 in Section 3. Apart from Theorem 1.3, the main ingre-
dient is a standard moment computation (Lemma 3.1) that compares Y i ; A}
with D7 (A)".

Notation. We use the usual asymptotic notation as n — oo, thus O(f(n))
denotes a quantity g(n) bounded in magnitude by C'f(n), and o(f(n)) denotes a
quantity g(n) bounded in magnitude by ¢(n)f(n), where ¢(n) — 0 as n — oo. If
we need, ¢, C' to depend on additional parameters, we indicate this by subscripts,
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e.g. ox(f(n)) is a quantity bounded in magnitude by cx(n)f(n), where cx(n) — 0
as n — oo for each fixed k.

2. PROOFS OF THEOREMS 1.3 AND 1.4

We now prove Theorem 1.3. We may assume without loss of generality that
€ > 0 is small; all implied constants can depend on e, and we assume that n is
sufficiently large depending on ¢.

We first observe that the claim is true in the edge cases ¢ = 1,n. Indeed, in
those cases the estimate (6) (or (5)) gives

Xi(My,) = MX;(M,,) + O(n®)

with probability 1 — O(n~1%). On the other hand, the Tracy-Widom law for
Wigner matrices (see [18]) gives

MM (M,,) = ~yiv/n + O(n~ /%)

at the edge, and the claim follows (with plenty of room to spare).

We may now reduce to the bulk case min(i,n — ) > n'/2*¢. Indeed, one can
deduce the edge case 1 < i < n!/?*¢ from the bulk case by setting iy to be the
least integer greater than n'/?2*¢ and using the crude pointwise bound

INi (M) — vVnvil < A (M) — V| + [ Nig (M) — Vi | + 1V — Vi |

and observing that \/ny; — v/nyi, = O(n'/t4/3). Similarly to deal with the case
n—nta/2 < < .

Henceforth, we fix ¢ with min(i,n — i) > n'/?*¢. The next step is to verify the
theorem in the model case that M, is the GUE random matrix ensemble. In this
case, much sharper concentration results are known. Indeed, we have

Lemma 2.1 (Concentration for GUE). Let M,, be a GUE matriz, and let I C R
be an interval. Let N be the counting function Ny := {1 <i<mn: =X\ (M,) €

/n
I}. Then one has
P(|N; — n/psc(x) dx| > n) < n~100
I

(say) uniformly in I, if n is sufficiently large depending on e.

Proof. This follows from the fact that the number of eigenvalues of GUE in [
can be expressed? as the sum of independent random variables (see [2, Corollary
4.2.24]), with variance of logarithmic size (see [12, Lemma 2.3]) and thus strongly
concentrated. For details, see [2]. In the bulk region I C [—-2+ 6,2 — ], this type
of result (for more general Wigner ensembles) was established in [8, Theorem
6.3]. O

’In fact, in the GUE case N; has a binomial distribution, though we will not need this fact
here.
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From this lemma and a standard computation, we conclude that in the GUE
case one has

(13) Xi(M,) = vy + O(nf min(i,n + 1 — i)~ /3p~1/6)

with probability 1 — O(n~1%). From this bound (and using very crude estimates
to control the tail event of probability O(n=1%), e.g. controlling \;(M,,) by the
Frobenius norm of M,,), we have

E|\i(M,) — vnyi|> = O(nf min(i,n + 1 — i) "/3n1/6)2 4 O(n=10)
(say), which easily implies (9) (with some room to spare).

Remark 2.2. In the bulk case on < i < (1 — d)n, a result of Gustavsson [12]
shows the related statement that \;(M,) for GUE is asymptotically normally
distributed around /n+y; with variance (fi(;g??n
concentration results. Using the four moment theorem, the result of Gustavsson
was extended to other Wigner matrices in [17]. In particular, this gives a bound

Vviogn

NG )
for the median uniformly in the bulk region dn < ¢ < (1 — d)n for fixed § >
0, whenever the atom distribution of M, has vanishing third moment. As a
consequence of the recent results in [8], a similar result (with n° instead of v/log n)
holds without the vanishing third moment hypothesis.

, which is consistent with the above

MA; (M) = v/nyi + o

Now we pass from the GUE case to more general Wigner matrices with vanish-
ing third moment. The main tool here is the three moment theorem (the second
part of Theorem 1.5). We will also need a weak version of Lemma 2.1 in the
non-GUE case:

Lemma 2.3 (Weak concentration for Wigner). Let M,, be a Wigner matriz, and
let I C R be an interval. Let Ny be the counting function Ny := {1 < i <mn:
ﬁ&(Mn) € I}. Then for any fized € > 0, one has

P(|N[ - n/psc($) d$| Z n1/2+€) S n_loo
I

(say) uniformly in I, if n is sufficiently large depending on e.

Proof. This follows from the concentration of measure approach first developed
n [11], and then modified in [19, Appendix F| to deal with exponentially decay-
ing entries and with the discontinuous nature of the indicator function 1;. As
mentioned earlier, in the bulk case I C [—-2 + 4,2 — 4], stronger results of this
type have also recently been obtained in [8, Theorem 6.3]. O

As a consequence of this lemma and our hypothesis min(é,n —i) > nl/2te one
has the bound (7) with probability 1 — O(n~1%). In other words, we can find a
quantity R comparable to n'/2+¢ min(i,n + 1 — i)~'/3n=/6 such that

(14) P(\(M,) — Vil > R) <.
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We now introduce the function

z —nyi
G(x) =

(2) = o
where ¢ : R — [0, 1] is a smooth cutoff function supported on [—2, 2] that equals
Y(z) = {52% on [-1,1]. Note that v/nR > /n. As such, for sufficiently small

cp > 0 (independent of ¢), one easily verifies that

|VjG(x)| < n~Cico

)

for 0 < j < 5 and all z € R, where C is the constant in the three moment
theorem. We may thus apply that theorem and conclude that

EG(vVn)i(My)) = EG(vnAi(My)) + O(n™®)

for some absolute constant ¢y > 0, where M, is drawn from GUE. On the other
hand, from (13) one easily sees that

1
EG(vn\i(M,)) = @EP\KMQ) — VP +0(n™ 1)
(say), and similarly from (14) one has
1 -
EG(VrX(My)) = 757z B(My) = Vayl* + O(n 1),

We conclude that
E|\(M,) — vnyil? = BN (M) — vnyi> + O(nmR?) + O(n™19).
Substituting in the definition of R, we obtain Theorem 1.3.

Remark 2.4. From (13) and the three moment theorem one can also show
that for any Wigner matrix M,, whose atom distribution has the third vanishing
moment, and any 1 < i < n, one has

(15) (M) = Vi + O(nf min(i,n + 1 — i)~ /3p~1/%)

with probability 1 — O.(n™¢) for some absolute constant ¢ > 0; in particular, one
has

MM (M) = vy + O-(n° min(i,n + 1 — i)~ /3p71/6),

We omit the details,which are similar to the above calculations and also to the
proof of [17, Theorem 32] (which is essentially the bulk case of (15)). Heuristically,
this suggests that one can take ¢ = 1 — ¢ in (9), which would be consistent with
the results in [8]; however, the available bound O(n™¢) of the tail probability
for (15) is too weak to make this heuristic rigorous. Unfortunately, even if one
assumes more than three matching moments, the methods of proof in [17], [18] do
not seem strong enough to establish this conjecture; the main technical obstacle
arises from the need to truncate away the event that an eigenvalue gap such as
Ait1(My) — Ni(M,,) is unexpectedly small, such events occur with a probability
of size O(n™°) but no better.
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Remark 2.5. The vanishing third moment was needed since we compare to
GUE. One can omit this assumption if one can extend Lemma 2.1 to Johansson
matrices (i.e. Wigner matrices whose atom distribution is gauss divisible, see
[13]). In fact, one only needs this lemma with some ¢ < 1/2. A similar remark
applies to the proof of Theorem 1.4 below. The techniques in the recent paper [8]
also imply a version of Theorem 1.3 in which no condition on the third moment
is required (but with a slightly different right-hand side).

2.1. Proof of Theorem 1.4. We now prove Theorem 1.4. The method of proof
is only a slight variant of that used above.

Fix x, and let € > 0 be a small absolute constant to be chosen later. From
Lemma 2.3 one has

iy — R < N[—Q,z} <iz+ R
with probability 1 — O(n~19), where R = O(n'/?*¢) and

x
Ip 1= n/ psc(t) dt.

—00
Inside the interval I, := [i, — R, i, — R]N[1,n], we locate m = O(n'/*+%) integers
i1, ..., 4m such that every integer in I, lies within O(n1/4*5) of one of the 7;. Then

with probability 1 — O(n~1%), one has

. 1
N[f2,x] =1y — R + Z I(%)\% (Mn) S 1,‘)
ie—R<j<iz+R

where I(E) is the indicator of an event E, and we adopt the conventions that

Ai(My,) = —oo for i < 1 and A\;(M,,) = +oo for i > n. Taking expectations, we
conclude that

Fu(z)= (i —R)+—- >  P(

Ni(My) <) +0(n™')
M o= R<j<io+R

NG
(say). Let M/ be sampled using GUE. Using the three moment theorem as in
[17, Corollary 21], we have
1 1 14 _
P(,0(My) < ) < P(Zod (M) €2 4n7H4) 4 0(n ™)
uniformly in j, for some small absolute ¢,¢’ > 0 independent of €. Using this
bound, we conclude that

L. 1 R
Faw) < i =B+ 0 ), PoA() <ot )
ip—R<j<iz+R

+ O(%n_c) +0(n™10).

Sks

The second error term is O(n_1/2_5) if € is small enough depending on ¢. On the
other hand, using Lemma 2.3 for M/, instead of M,,, we conclude from a variant
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of the above arguments that

e 1 1 1 . 10
E,(x+n Hc):”(%_RH”i_R;i +RP(\/ﬁAj(M7;)§x+n )+0(n~10),

where F), is the counterpart of F,, for M/, instead of M,,. We conclude that
Fo(z) < Fli(z 4+ n ) + O(n~1/?7%);

a similar argument also gives
Fp(z) > Fl(x —n ') —O(n~1/?79).

On the other hand, from Lemma 2.1 one easily sees that

Fl(x) = / pee(t) dt + O(n=1+)
for all z, and the claim follows.

Remark 2.6. Using the three moment theorem, one can control the median
MN|_3 ;) with much higher accuracy than the mean EN[_5 ;). Indeed, using (15)
it is not difficult to show that

MN; = n/psc(a:) dx 4+ O:(n°)
I

uniformly for all intervals I and any € > 0, assuming vanishing third moment of
the atom distribution; we leave the details to the interested reader. In view of
this, it is reasonable to conjecture that one can take c¢ arbitrarily close to 1 in
Theorem 1.4. In [8], this claim is established in the bulk region I C [-2+446,2—/].

3. PROOF OF THEOREM 1.6

We now begin the proof of Theorem 1.6. Let M,, M/ \;,\; be as in that

(2
theorem. The starting point is the following fourth moment calculation:

Lemma 3.1 (Fourth moment calculation). Set ro := E(n*) — E((n)*), thus
ko # 0 by hypothesis. Then

Y EN) —E((A\)*) = 2r0(n” —n).
i=1
Proof. We expand

Z E(\}) = E(trace M)
i=1

= > E¢uwCcCedCia-
1<a,b,c,d<n
Of course, there is a similar formula for " , E/\g‘l7 in which the ¢;; are replaced
by (s
Consider the four sets {a,b},{b,c},{c,d},{d,a}. If one of these sets occurs
with multiplicity one, then the expectation E(,,(pcCcdCiq vanishes from the mean
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zero and independence properties of the coefficients of M,,. If instead one has two
pairs of sets occuring with multiplicity two, then the expectation of E(,,(peCedCda
is equal to that of EC,(; (¢, From this we see that

YDEQH =Y BN =2 > E(dwl) —E(G").
=1 =1

1<a<b<n

But a short calculation (using the fact that 7, n" match to the third order) reveals
that

E([¢al") = E(I¢Y) = 2(E(n*) — (1))
The claim follows. (|

The value max{|\1|, |\n|} is called the spectral norm of M,, and will be denoted
by |[My||. The following result is well-known:

Lemma 3.2 (Concentration of the spectral norm). For any A > 0, one has
P([|M,|| > 3n'/?) = Oa(n™?).
In particular,
P(\(My)] > 3n'/?) = Oa(n™?)
and
E|\i (M)A = 04(n/?).

Proof. This follows easily from (5) or (6), combined with (3) (as well as using
crude estimates, such as Holder’s inequality, to deal with the rare tail event in
which the estimates (5) or (6) fail). Note that this argument allows us to replace
the coefficient 3 in the above large deviation inequality by 2 + o(1), but we will
not need this improvement here. For even sharper concentration results, see the
recent paper [8]. O

We can now invoke Theorem 1.3 to establish

Proposition 3.3 (Fourth moment concentration). We have
n
1Y EO) - (Vi) = 4(Vi) Y (BA — Vi) | = O(n?7)
i=1

for some absolute constant ¢ > 0, and similarly for \,.

Proof. We begin with the Taylor expansion

A= (V) 4+ 4WVn)? (s — EX) + O(IA — vy 2(Ihi] + Vi) ).

From Lemma 3.2, we see that with probability 1 — O(n~1%) (say), we have
|Ail + v/nvi = O(y/n). Taking expectations and summing using Theorem 1.3
(and using crude estimates, such as Holder’s inequality, to deal with the tail
event of probability O(n~1%%)) we obtain the claim. O
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Combining Proposition 3.3 with Lemma 3.1 and the triangle inequality, we
conclude (for n large enough) that

n
| >4 (BA - EX))| > |roln'/?.
i=1
Since v; = O(1), Theorem 1.6 now follows from the triangle inequality.

Remark 3.4. One can use [8, Theorem 7.1] as a substitute for Theorem 1.3 in
the arguments above.

4. HIGHER MOMENT COMPUTATIONS

In this section we discuss a higher moment computation that lead to Conjecture
4.2. We will restate this conjecture at the end of this section for the reader’s
convenience.

Lemma 4.1 (Higher moment computations). Let M,, M} X\, \; be as in The-
orem 1.6. Set kg := E(n*) — E((7')*), and let k > 0 be an integer. Then we
have

Z E(\Y) — E((\)¥) = (2D _a) 250 + O(n™1))nk/?
=

where the modified Catalan number Dy, is defined to be equal to

2m 42 (2m + 2)!
16 D,, = =
(16) " <m—1) (m —1)!(m + 3)!
when m = 1,2, ... is a positive integer, and D,, = 0 otherwise, thus

DO = 0; D1 = 1; D2 = 6; D3 = 28; D4 = 120;

Proof. This is a standard moment method computation (which was the method
used by Wigner to prove the semi-circle law [3]; this is also related to the genus
expansion from string theory). We have

Z E(Az)k = Z ECalag e Cakm
i=1

1<ai,...,ax<n

and similarly for "1 E(\))*.

Consider the k sets {a1,as}, {a2,as},...,{ag,a1}. If one of these sets appears
with multiplicity one, then the expectation vanishes. If none of the sets ap-
pears with multiplicity at least four, then the contributions to Y, E(\)F —
S E(M)* cancel each other out. Thus the only terms that survive are those
in which each set appears with multiplicity at least two, and at least one set
appears with multiplicity four. In particular, there are at most (k —2)/2 distinct
sets {a;,a;41} (with the convention ajy; = a1), and thus at most k/2 distinct
values of a;.

If there are fewer than k/2 distinct values of a;, then the total contribution
here is easily seen to be Ok(nk/ 2=1) which is acceptable. Thus we may restrict
attention to the case when there are exactly k/2 distinct values of a;, which
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forces there to be exactly (k — 2)/2 distinct sets {a;,a;1+1}, and furthermore
the (connected) graph formed by these edges cannot contain any cycles and is
thus a tree. Finally, each set {a;, a;+1} must appear with multiplicity two, with
the exception of one set that appears with multiplicity four. The summand
ECaya; - - - Capa, is then equal to 2En?, and similarly EC, ,, ... apa, 18 then equal
to 2E(n)*.

We now assign each a; a label 7 = j(a;) from 1 to k/2 by order of appearance;
thus a1 will be assigned a label j(aq) of 1, the first a; that is distinct from aq will be
assigned a label of j(a;) = 2, the first a; has not already been labeled 1 or 2 will be
labeled 3, and so forth. The closed path v = ((j(a1),j(az2)), ..., (j(axr/2),j(a1)))
then traverses a tree T, of (k — 2)/2 edges spanning the vertices {1,...,k/2},
where the path 7 traverses each edge of T, with multiplicity two, with the excep-
tion of one edge of T, that is traversed four times. Furthermore, the path ~ only
encounters a vertex j in {1,...,k/2} after it has first encountered 1,...,5 —1; in
particular, the starting (and ending) vertex of v is necessarily 1.

Call a closed path v = ((j1,J2)- -, (Jr/2,J1)) of length k/2 in {1,...,k/2}
4-admissible if it traverses a tree of (k — 2)/2 edges spanning {1,...,k/2}, so
that each edge is traversed twice with the exception of one edge that is traversed
four times, and such that each vertex j is encountered only after encountering
1,...,7 — 1. It is not hard to see that each such 4-admissible path contributes

(nk/2 + Ok(nk/2fl)) « 2E’I’]4
to >.r | E(\)¥, and similarly contributes
(nk/Q + Ok(nk/Qfl)) « 2E(T}’)4
to Y., E(A)k. Subtracting, we see that each ~ contributes
(n*/% 4+ 0, (n*271Y)) x 250

to Yo E(\)F =3 | E(N)*. Thus, it will suffice to show that for any m, the
number of 4-admissible paths on trees of m edges is equal to D,,.
The claim is trivial unless m is a positive integer. We observe the recurrence

m—1
(17) Dn=2 Y  CDj+ > CiCiCiCy
4,j>0:i4j=m—1 0,5,k >0+ j+k+Hl=m—1
for m=1,2,..., where
(2m)!
Cpi=——"—
T ml(m A+ 1)!

are the Catalan numbers, thus
Co=0;, Ci=1;, Cy=2; (C3=5; Cy=14;

Indeed, writing

> 1—+1— 4z
2x
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and
= m (=T —4z)!
(18) d(z) := mzopmx = e

a brief calculation shows that
d(z) = 2zc(z)d(x) + zc(x)?

whence the claim.

Call a path ((j1,72),- - -, (J2m, j1)) 2-admissible if it traverses a tree of m edges
spanning {1,...,m+ 1}, such that each edge is traversed exactly twice, and each
vertex j is encountered only after encountering 1,...,7 — 1. It is a classical fact
that the number of 2-admissible paths is Cp,.

Now suppose inductively that there are D; 4-admissible paths on trees of j
edges for all j < m. It suffices to show that the number of 4-admissible paths on
trees of m edges is given by the right-hand side of (17). To do this, consider the
first edge (j1,j2) of an admissible path v on a tree with m edges. This edge is
traversed either two or four times. Suppose first that it is traversed two times.
Then one can split 7 into the following pieces: the first edge (j1,j2), a (relabeled)
2-admissible or 4-admissible path on a tree with ¢ edges that starts and ends at
Jjo2, a return edge (j2,71), and a (relabeled) 4-admissible or 2-admissible path on
a tree with j edges that is disjoint from the first tree that starts and ends at ji,
where 7,5 > 0 add up to m — 1. This case gives a net contribution of

4, >0:i4j=m—1 4,5 >0:i+j=m—1
which is the first term of (17).

Now suppose that (j1,j2) is traversed four times. Then we can split v into
the following pieces: the first edge (j1,j2), a (relabeled) 2-admissible path on a
tree with ¢ edges that starts and ends at ja, a return edge (jo, j1), a (relabeled)
2-admissible path with j edges that starts and ends at ji, a repeated edge (71, j2),
a (relabeled) 2-admissible path with k edges that starts and ends at ja, a repeated
return edge (jo2,71), and a (relabeled) 2-admissible path on a tree with ! edges
that starts and ends at j;, where all trees are disjoint (except at their roots) and
1,7, k,1 > 0 add up to m—1. This gives the second contribution to the right-hand
side of (17). O

We now repeat the arguments from the previous section. A routine generali-
sation of Proposition 3.3 yields the bound

D EG) = (Vi)' — k() THEN = V)| = Og(n0)
=1

for any £ > 1 and some absolute constant ¢ > 0 (note that the left-hand side
vanishes for k = 1). We conclude from this and Lemma 4.1 that

1 — _ .
(19) - Z k:’yf 1\/ﬁ<E/\z — E)\;) = 2D(k,2)/2,‘€0 + Ok(n )
=1
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Next, we observe from (18) that

o0

(=T B kil 1)t

S 16v/22 — 4

for z near infinity, where we pick the branch of the square root of v/22 — 4 that
equals z near infinity and is analytic away from the interval [—2,2]. Then the
right-hand side continues analytically to the exterior of this interval. Calling this
analytic function f(z), we compute the jump formula

lim f(x +1ib) — f(x —ib) (@),

b—0 27
where g : R — R vanishes outside of the interval [—2,2], and is equal to
1 z* — 422 +2
2 4 — g2

on this interval. From the Cauchy integral formula we conclude the moment
formula

g(x) =

2
D_9y/2 = /29($)9€k dx

for k =0,1,2,.... The antiderivative of g(z) is

—%(1‘3 — 2:6)\/@ = *é( P 22) pse(T)

so by an integration by parts we have

2
1 _
D(k’—?)/? = /2 g(x?) — Qx)ka:k 1 psc(x)dl'

By Riemann integration (or more precisely, the trapezoid rule), the right-hand
side is equal to

11 _ e
;Zg(ﬁ—?’h‘)kﬁ Y Op(n™)
=1

for some absolute constant ¢ > 0.
Thus if we introduce the normalised shift

1
si = Vn(EAN — EX}) — Z(’Y? — 27i)Ko
we can rewrite (19) as
1 n
(20) - Zl kyEls; = Op(n™°).
—

This suggests (but does not rigorously prove®) that the s; are small, of size O(n~¢),
at least in the bulk region on < ¢ < (1 — d)n. In particular, we are led to the

3Speciﬁcally, the difficulty is that there could be cancellation between nearby values of s;. If
one could show some assertion to the effect that s; ~ s;; when 4,4’ are close together, then this
would go a long way towards establishing Conjecture 4.2 below.
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conjecture (Conjecture 4.2) that
1 _1/9—
(EX; — EX) = m(%s — 29;)k0 + O(n~1/27°)
and this in turn suggests the following asymptotic for the expected value of A;:
Conjecture 4.2 (Conjectured asymptotic). For dn < i < (1 — §)n with § > 0
fized, one has

EN =n'?y; +n 20 + ? —27)En' + O5(n~1/*7)

1
m(%
for some absolute constant ¢ > 0, where C; ,, is some bounded quantity depending
only on i,n (and is in particular independent of n). The same statement should
also be true for the median MM\;.

The bound on Cj, is plausible in view of results such as Lemma 2.1. It
should in fact be possible to obtain (at least conjecturally) a precise value for
C;n from an analysis of the GUE case. Such an asymptotic would demonstrate
more precisely the dependence of the i** eigenvalue on the fourth moment En*
at the scale ©(n~'/2) of the mean eigenvalue spacing.
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