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A NEW REGULARIZATION METHOD FOR THE CAUCHY

PROBLEM OF THE HELMHOLTZ EQUATION WITH

NONHOMOGENEOUS CAUCHY DATA

PHAM HOANG QUAN AND PHAN TRUNG HIEU

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. In this paper, we investigate the Cauchy problem for the Helmholtz
equation in the infinite strip {(x, y) | x ∈ R, 0 < y < 1} with nonhomoge-
neous Cauchy data given at y = 0. The problem is severely ill-posed. We
shall use the Fourier transform to get an integral equation and give a reg-
ularized solution by directly perturbing this equation in combination with
truncating high frequencies. The error estimate between the regularization
solution and the exact solution is given. Finally, a numerical example shows
the effectiveness of the proposed method.

1. Introduction

The Cauchy problem of the Helmholtz equation is often encountered in many
branches of science and engineering. It is used to describe the vibration of a
structure [1], the acoustic cavity problem [2], the radiation wave [6], and the
heat conduction in fins [14]. The direct problems, i.e., Dirichlet, Neumann or
mixed boundary value problems for the Helmholtz equation have been studied
extensively in the past century. However, in some practical problems, the bound-
ary data on the whole boundary cannot be obtained. We only know the noisy
data on a part of the boundary or at some interior points of concerned domain.
This is called an inverse problem. The Cauchy problem for the Helmholtz equa-
tion is known to be severely ill-posed in the sense that a small change in the
Cauchy data may result in a dramatic change in the solution [8]. Hence it is
impossible to solve that problem by using classical numerical methods and it re-
quires special techniques, for example, regularization methods. In recent years,
the Cauchy problems associated with the Helmholtz equation have been stud-
ied by using different numerical methods, such as the Landweber method with
boundary element method (BEM) [11], the conjugate gradient method [10], the
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method of fundamental solutions (MFS) [15] and so on. In the present paper, we
consider the following Cauchy problem for the modified Helmholtz equation with
nonhomogeneous Cauchy conditions

∆u(x, y) + k2u(x, y) = 0, x ∈ R, 0 < y < 1,(1.1)

uy(x, 0) = ϕ(x), x ∈ R,(1.2)

u(x, 0) = ψ(x), x ∈ R,(1.3)

where ∆ denotes the Laplace operator, ϕ(x), ψ(x) ∈ L2(R) are given data, and
k is a real number. We note that if the boundary condition uy(x, 0) = ϕ(x) = 0,
the problem (1.1)–(1.3) has been considered by many authors, such as [9, 12, 13].
However, their methods cannot be applied easily to solve (1.1)–(1.3) when the
boundary condition is replaced by uy(x, 0) = ϕ(x).

Recently, in [6], Chu-Li Fu et al. approximated the problem (1.1)–(1.3) by the
Fourier regularization method. Furthermore, in that paper, the error between
the regularization solution and the exact solution is given as follows

∥∥u(·, y) − uδ,ξmax
(·, y)

∥∥ ≤ (2E1)
yδ1−y

(
ln

2E1

δ

)−py
(2 + o(1))

+(E2)
yδ1−y

(
ln
E2

δ

)−py
(2 + o(1)) ,

where E1, E2 are the priori bound, p ≥ 0. However, it is easy to see that the
convergence of the approximate solution is very slow when p = 0 and y is in a
neighborhood of 1. Moreover, the error in case p = 0 and y = 1 is not given here.
In the present paper, we will improve that result by using a new regularization
method.

First, we define

f̂(ξ) =
1√
2π

+∞∫

−∞

f(x)e−iξxdx,

the Fourier transform of function f(x).

Next, applying the Fourier transform with respect to variable x ∈ R, we trans-
form the problem (1.1)–(1.3) to the following one

(1.4) ûξξ(ξ, y) + ûyy(ξ, y) + k2û(ξ, y) = 0, ξ ∈ R, 0 < y < 1,

(1.5) ûy(ξ, 0) = ϕ̂(ξ), ξ ∈ R,

(1.6) û(ξ, 0) = ψ̂(ξ), ξ ∈ R.

Without loss of generality, we can assume that k ≥ 0. If u is the solution of the
problem (1.1)–(1.3), then its Fourier transform û is the solution of the problem
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(1.4)–(1.6) and has the following form

û(ξ, y) =






ψ̂(ξ)
2

(
e
√
ξ2−k2y + e−

√
ξ2−k2y

)

+ ϕ̂(ξ)

2
√
ξ2−k2

(
e
√
ξ2−k2y − e−

√
ξ2−k2y

)
,

|ξ| ≥ k,

ψ̂(ξ) cos
(√

k2 − ξ2y
)

+
ϕ̂(ξ)√
k2 − ξ2

sin
(√

k2 − ξ2y
)
, |ξ| < k

=






ψ̂(ξ)
2

(
e
√
ξ2−k2y + e−

√
ξ2−k2y

)

+

(
e2
√

ξ2−k2y−1

2
√
ξ2−k2e2

√
ξ2−k2y

)
e
√
ξ2−k2yϕ̂(ξ),

|ξ| ≥ k,

ψ̂(ξ) cos
(√

k2 − ξ2y
)

+
ϕ̂(ξ)√
k2 − ξ2

sin
(√

k2 − ξ2y
)
, |ξ| < k.

(1.7)

In the present paper, we shall approximate problem (1.7) by the following
problem

ûε(ξ, y) =

[
ψ̂(ξ)

2

(
1

α(ε)+e−
√

ξ2−k2y
+ e−

√
ξ2−k2y

)

+

(
e2
√

ξ2−k2y−1

2
√
ξ2−k2e2

√
ξ2−k2y

)
e
√
ξ2−k2yϕ̂(ξ)

]
χ[−β(ε),−k]∪[k,β(ε)](ξ)

+

[
ψ̂(ξ) cos

(√
k2 − ξ2y

)
+ ϕ̂(ξ)√

k2−ξ2
sin

(√
k2 − ξ2y

)]
χ(−k,k)(ξ)(1.8)

or

uε(x, y) =
1√
2π

∫

R

[
ψ̂(ξ)

2

(
1

α(ε) + e−
√
ξ2−k2y

+ e−
√
ξ2−k2y

)

+

(
e2
√
ξ2−k2y − 1

2
√
ξ2 − k2e2

√
ξ2−k2y

)

e
√
ξ2−k2yϕ̂(ξ)

]

χ[−β(ε),−k]∪[k,β(ε)](ξ)e
iξxdξ

+ 1√
2π

∫

R

[
ψ̂(ξ) cos

(√
k2 − ξ2y

)
+ ϕ̂(ξ)√

k2−ξ2
sin

(√
k2 − ξ2y

)]
×

× χ(−k,k)(ξ)e
iξxdξ,(1.9)

where α(ε) and β(ε) depend on ε, α(ε) ∈ (0, 1) is a regularization parameter, and
β(ε) > 0 will be chosen later such that β(ε) tends to infinity when ε tends to zero.
For convenience, we denote α(ε) by α, and β(ε) by β.

The rest of the article is divided into three sections. In Section 2, we shall give
the main results. The proofs will be presented in Section 3. Finally, a numerical
experiment will be given in Section 4, which proves the efficiency of our method.
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2. The main results

Assume that uex is the exact solution of (1.1)–(1.3), vex is the solution of
problem (1.9) corresponding to the exact data ϕex, ψex and vε is the solution
of problem (1.9) corresponding to the measured data ϕε, ψε, where ϕex, ψex,
and ϕε, ψε are in the right-hand side of (1.9) such that ‖ϕε − ϕex‖L2(R) ≤ ε,

‖ψε − ψex‖L2(R) ≤ ε, where ‖·‖L2(R) is the norm on L2(R). Then, we have

(2.1)

ûex(ξ, y) =






ψ̂ex(ξ)

2

(
e
√
ξ2−k2y + e−

√
ξ2−k2y

)

+

(
e2
√
ξ2−k2y − 1

2
√
ξ2 − k2e2

√
ξ2−k2y

)

e
√
ξ2−k2yϕ̂ex(ξ),

|ξ| ≥ k,

ψ̂ex(ξ) cos
(√

k2 − ξ2y
)

+
ϕ̂ex(ξ)√
k2 − ξ2

sin
(√

k2 − ξ2y
)
, |ξ| < k,

v̂ex(ξ, y) =

[
ψ̂ex(ξ)

2

(
1

α+e−
√

ξ2−k2y
+ e−

√
ξ2−k2y

)

+

(
e2
√

ξ2−k2y−1

2
√
ξ2−k2e2

√
ξ2−k2y

)
e
√
ξ2−k2yϕ̂ex(ξ)

]

χ[−β,−k]∪[k,β](ξ)

+

[
ψ̂ex(ξ) cos

(√
k2 − ξ2y

)
+ ϕ̂ex(ξ)√

k2−ξ2
sin

(√
k2 − ξ2y

)]
χ(−k,k)(ξ),(2.2)

v̂ε(ξ, y) =

[
ψ̂ε(ξ)

2

(
1

α+e−
√

ξ2−k2y
+ e−

√
ξ2−k2y

)

+

(
e2
√

ξ2−k2y−1

2
√
ξ2−k2e2

√
ξ2−k2y

)
e
√
ξ2−k2yϕ̂ε(ξ)

]
χ[−β,−k]∪[k,β](ξ)

+

[
ψ̂ε(ξ) cos

(√
k2 − ξ2y

)
+ ϕ̂ε(ξ)√

k2−ξ2
sin

(√
k2 − ξ2y

)]
χ(−k,k)(ξ).(2.3)

We have the estimate

(2.4) ‖vε − uex‖L2(R) = ‖v̂ε − ûex‖L2(R) ≤ ‖v̂ε − v̂ex‖L2(R) + ‖v̂ex − ûex‖L2(R) .

We first have the following lemma.

Lemma 2.1 (The stability of a solution of problem (1.8)). Suppose that ϕex,

ψex, ϕε, ψε ∈ L2(R) and ‖ϕε − ϕex‖L2(R) ≤ ε, ‖ψε − ψex‖L2(R) ≤ ε. Then we

have

‖v̂ε(·, y) − v̂ex(·, y)‖L2(R) ≤
2

α
ε+

√
2(eβ + 1)ε

for all y ∈ (0, 1].

The main conclusion of the present paper is as follows
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Theorem 2.2. Let ϕex, ψex, ϕε, ψε ∈ L2(R) and ‖ϕε − ϕex‖L2(R) ≤ ε,

‖ψε − ψex‖L2(R) ≤ ε, ε ∈ (0, 1). Suppose that there are two non-negative constants

E1 and E2 such that ‖ψex‖L2(R) ≤ E1 and
∥∥ ∂
∂xuex(·, y)

∥∥
L2(R)

≤ E2. Then, with

α = ε
1

2 and β = ln 1
ε1/8

, we have, for every 0 < y ≤ 1,

‖vε(·, y) − uex(·, y)‖L2(R) ≤
C√
ln

1

ε

,

where C = 6 + E1 + 8E2.

3. Proofs of the main results

Proof of Lemma 2.1. First, from (2.2) and (2.3), we have

‖v̂ε(·, y) − v̂ex(·, y)‖2
L2(R)

=

∫

R

|v̂ε(ξ, y) − v̂ex(ξ, y)|2 dξ

=

∫

R

|v̂ε(ξ, y) − v̂ex(ξ, y)|2 χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

|v̂ε(ξ, y) − v̂ex(ξ, y)|2 χ(−k,k)(ξ)dξ

=

∫

R

∣∣∣∣∣
1

2

(
1

α+e−
√

ξ2−k2y
+ e−

√
ξ2−k2y

) [
ψ̂ε(ξ) − ψ̂ex(ξ)

]

+

(
e2
√

ξ2−k2y−1

2
√
ξ2−k2e2

√
ξ2−k2y

)
e
√
ξ2−k2y [ϕ̂ε(ξ) − ϕ̂ex(ξ)]

∣∣∣∣∣

2

χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

∣∣∣∣∣

[
ψ̂ε(ξ) − ψ̂ex(ξ)

]
cos

(√
k2 − ξ2y

)

+ 1√
k2−ξ2

[ϕ̂ε(ξ) − ϕ̂ex(ξ)] sin

(√
k2 − ξ2y

)∣∣∣∣∣

2

χ(−k, k)(ξ)dξ.(3.1)

Using the inequality
e|x| − 1

|x| ≤ e|x|, we have

(3.2)

∣∣∣∣∣
e2
√
ξ2−k2y − 1

2
√
ξ2 − k2e2

√
ξ2−k2y

∣∣∣∣∣ ≤ 1, for 0 < y ≤ 1.
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Note that e−
√
ξ2−k2y ≤ 1, e

√
ξ2−k2y ≤ e|ξ|, for |ξ| ≥ k, and

∣∣∣cos
(√

k2 − ξ2y
)∣∣∣ ≤

1,
∣∣∣sin

(√
k2 − ξ2y

)∣∣∣ ≤
√
k2 − ξ2 for |ξ| < k, 0 < y ≤ 1, α ∈ (0, 1), then from

(3.1), (3.2) we get

‖v̂ε(·, y) − v̂ex(·, y)‖2
L2(R)

≤
∫

R

[
1
2

(
1
α + 1

) ∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣+ e|ξ| |ϕ̂ε(ξ) − ϕ̂ex(ξ)|

]2
χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

(∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣+ |ϕ̂ε(ξ) − ϕ̂ex(ξ)|

)2
χ(−k, k)(ξ)dξ

≤
∫

R

(
1
α

∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣+ e|ξ| |ϕ̂ε(ξ) − ϕ̂ex(ξ)|

)2
χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

(∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣+ |ϕ̂ε(ξ) − ϕ̂ex(ξ)|

)2
χ(−k, k)(ξ)dξ.

By the inequality (a+ b)2 ≤ 2(a2 + b2), we deduce

‖v̂ε(·, y) − v̂ex(·, y)‖2
L2(R)

≤ 2

∫

R

(
1

α2

∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣
2
+ e2|ξ| |ϕ̂ε(ξ) − ϕ̂ex(ξ)|2

)
χ[−β,−k]∪[k,β](ξ)dξ

+2

∫

R

(∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣
2
+ |ϕ̂ε(ξ) − ϕ̂ex(ξ)|2

)
χ(−k, k)(ξ)dξ

≤ 2

α2

∫

R

∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣
2
χ[−β,−k]∪[k,β](ξ)dξ

+2e2β
∫

R

|ϕ̂ε(ξ) − ϕ̂ex(ξ)|2 χ[−β,−k]∪[k,β](ξ)dξ

+2

∫

R

(∣∣∣ψ̂ε(ξ) − ψ̂ex(ξ)
∣∣∣
2
+ |ϕ̂ε(ξ) − ϕ̂ex(ξ)|2

)
χ(−k,k)(ξ)dξ

≤ 2

α2

∥∥∥ψ̂ε − ψ̂ex

∥∥∥
2

L2(R)
+ 2e2β ‖ϕ̂ε − ϕ̂ex‖2

L2(R)

+2

(∥∥∥ψ̂ε − ψ̂ex

∥∥∥
2

L2(R)
+ ‖ϕ̂ε − ϕ̂ex‖2

L2(R)

)

≤ 4

α2

∥∥∥ψ̂ε − ψ̂ex

∥∥∥
2

L2(R)
+ 2(e2β + 1) ‖ϕ̂ε − ϕ̂ex‖2

L2(R) .
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Applying the inequality
√
a2 + b2 ≤ a+ b for a, b ≥ 0, we obtain

‖v̂ε(·, y) − v̂ex(·, y)‖L2(R) ≤ 2

α

∥∥∥ψ̂ε − ψ̂ex

∥∥∥
L2(R)

+
√

2(eβ + 1) ‖ϕ̂ε − ϕ̂ex‖L2(R)

≤ 2

α
ε+

√
2(eβ + 1)ε.

This completes the proof of Lemma 2.1. �

Proof of Theorem 2.2. Taking into account (2.1) and (2.2), we have

‖v̂ex(·, y) − ûex(·, y)‖2
L2(R)

=

∫

R

|v̂ex(ξ, y) − ûex(ξ, y)|2 dξ

=

∫

R

|v̂ex(ξ, y) − ûex(ξ, y)|2 χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

|v̂ex(ξ, y) − ûex(ξ, y)|2 χ(−k,k)(ξ)dξ

+

∫

R

|v̂ex(ξ, y) − ûex(ξ, y)|2 χ(−∞,−β)∪(β,+∞)(ξ)dξ

=

∫

R

|v̂ex(ξ, y) − ûex(ξ, y)|2 χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

|ûex(ξ, y)|2 χ(−∞,−β)∪(β,+∞)(ξ)dξ.(3.3)

Moreover, one has, for |ξ| ≥ k and 0 < y ≤ 1,

(3.4)

∣∣∣∣∣
1

α+ e−
√
ξ2−k2y

− e
√
ξ2−k2y

∣∣∣∣∣ ≤ αe2|ξ|.

From (2.1), (2.2), (3.3) and (3.4), we deduce

‖v̂ex(·, y) − ûex(·, y)‖2
L2(R)

≤ 1

4

∫

R

∣∣∣∣∣
1

α+ e−
√
ξ2−k2y

− e
√
ξ2−k2y

∣∣∣∣∣

2 ∣∣∣ψ̂ex(ξ)
∣∣∣
2
χ[−β,−k]∪[k,β](ξ)dξ

+

∫

R

1

|ξ|2
|ξûex(ξ, y)|2 χ(−∞,−β)∪(β,+∞)(ξ)dξ
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≤ 1

4
α2e4β

∥∥∥ψ̂ex
∥∥∥

2

L2(R)
+

1

β2

∥∥∥∥
∂

∂x
ûex(·, y)

∥∥∥∥
2

L2(R)

.

Applying the inequality
√
a2 + b2 ≤ a+ b for a, b ≥ 0, we get

(3.5) ‖v̂ex(·, y) − ûex(·, y)‖L2(R) ≤
1

2
αe2β

∥∥∥ψ̂ex
∥∥∥
L2(R)

+
1

β

∥∥∥∥
∂

∂x
ûex(·, y)

∥∥∥∥
L2(R)

.

From (2.4), using Lemma 2.1 and (3.5), we obtain the error estimate

‖vε(·, y) − uex(·, y)‖L2(R)

≤ 2

α
ε+

√
2(eβ + 1)ε+

1

2
αe2β

∥∥∥ψ̂ex
∥∥∥
L2(R)

+
1

β

∥∥∥∥
∂

∂x
ûex(·, y)

∥∥∥∥
L2(R)

.

The choice of α = ε
1

2 and β = ln 1
ε1/8

leads to

‖vε(·, y) − uex(·, y)‖L2(R) ≤
C√
ln

1

ε

,

where

C = 6 + E1 + 8E2.

The proof of Theorem 2.2 is complete. �

4. A numerical experiment

In this section, we give a numerical example demonstrating how the suggested
method works. We consider the equation

∆u+ u = 0, x ∈ R, 0 < y < 1,

where u satisfies

uy(x, 0) = ϕ(x),

u(x, 0) = ψ(x).

Consider the exact data ϕex(x) =
12

x2 + 36
, ψex(x) = e−

1

4
x2

. Then

(4.1) ϕ̂ex(ξ) =
1√
2π

+∞∫

−∞

12

x2 + 36
e−iξxdx =

√
2πe−6|ξ|

and

(4.2) ψ̂ex(ξ) =
1√
2π

+∞∫

−∞

e−
1

4
x2

e−iξxdx =
√

2e−ξ
2

.
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From (4.1), (4.2) and (2.1), we have

ûex(ξ, y) =






e−ξ
2

√
2

(
e
√
ξ2−1y + e−

√
ξ2−1y

)

+

√
2πe−6|ξ|

2
√
ξ2 − 1

(
e
√
ξ2−1y − e−

√
ξ2−1y

)
,

|ξ| ≥ 1,

√
2e−ξ

2

cos
(√

1 − ξ2y
)

+

√
2πe−6|ξ|
√

1 − ξ2
sin
(√

1 − ξ2y
)
, |ξ| < 1.

Consider the measured data

(4.3) ϕε(x) =

(√
3

π
ε+ 1

)

ϕex(x),

(4.4) ψε(x) =

(
1√
2

4

√
2

π
ε+ 1

)
ψex(x)

we have

‖ϕε − ϕex‖L2(R) = ‖ϕ̂ε − ϕ̂ex‖L2(R) =




+∞∫

−∞

6ε2e−12|ξ|dξ




1/2

= ε

and

‖ψε − ψex‖L2(R) =
∥∥∥ψ̂ε − ψ̂ex

∥∥∥
L2(R)

=




+∞∫

−∞

√
2

π
ε2e−2ξ2dξ




1/2

= ε.

From (4.1), (4.2), (4.3), (4.4), (2.3) and taking into account that α = ε
1

2 ,
β = ln 1

8
√
ε
, we obtain the regularized solution

v̂ε(ξ, y) =

[
e−ξ

2

√
2

(
1√
2

4

√
2

π
ε+ 1

)(
1

ε
1
2 +e−

√
ξ2−1y

+ e−
√
ξ2−1y

)

+

(√
2πe−6|ξ|

2
√
ξ2 − 1

)(√
3

π
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√
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+
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√
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Let ε be ε1 = 10−5, ε2 = 9 × 10−7, ε3 = 10−10 respectively. If we put

y = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

we get the following tables

ε1 = 10−5

y ‖vε − uex‖L2(R)

0 1.0012 × 10−1

0.1 1.0090 × 10−1

0.2 1.0324 × 10−1

0.3 1.0718 × 10−1

0.4 1.1280 × 10−1

0.5 1.2022 × 10−1

0.6 1.2959 × 10−1

0.7 1.4109 × 10−1

0.8 1.5498 × 10−1

0.9 1.7152 × 10−1

1 1.9107 × 10−1

ε2 = 9 × 10−7

y ‖vε − uex‖L2(R)

0 5.3438 × 10−2

0.1 3.5884 × 10−2

0.2 3.7231 × 10−2

0.3 3.9516 × 10−2

0.4 4.2804 × 10−2

0.5 4.7188 × 10−2

0.6 5.2790 × 10−2

0.7 5.9769 × 10−2

0.8 6.8319 × 10−2

0.9 7.8683 × 10−2

1 9.1155 × 10−2

ε3 = 10−10

y ‖vε − uex‖L2(R)

0 1.4491 × 10−4

0.1 1.5248 × 10−4

0.2 1.7016 × 10−4

0.3 2.0117 × 10−4

0.4 2.4798 × 10−4

0.5 3.1428 × 10−4

0.6 4.0532 × 10−4

0.7 5.2833 × 10−4

0.8 6.9306 × 10−4

0.9 9.1259 × 10−4

1 1.2044 × 10−3

where ‖vε − uex‖L2(R) = ‖v̂ε − ûex‖L2(R) and we have the graphics displayed in

figures 2, 3, and 4 on the rectangular domain [−10, 10] × [0, 1]

Figure 1: The Fourier transform
of the exact solution

Figure 2: The Fourier transform
of the regularized solution with
ε1 = 10−5
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Figure 3: The Fourier transform
of the regularized solution with
ε2 = 9 × 10−7

Figure 4: The Fourier transform
of the regularized solution with
ε3 = 10−10
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