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A NEW REGULARIZATION METHOD FOR THE CAUCHY
PROBLEM OF THE HELMHOLTZ EQUATION WITH
NONHOMOGENEOUS CAUCHY DATA
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ABSTRACT. In this paper, we investigate the Cauchy problem for the Helmholtz
equation in the infinite strip {(z,y) | z € R, 0 < y < 1} with nonhomoge-
neous Cauchy data given at y = 0. The problem is severely ill-posed. We
shall use the Fourier transform to get an integral equation and give a reg-
ularized solution by directly perturbing this equation in combination with
truncating high frequencies. The error estimate between the regularization
solution and the exact solution is given. Finally, a numerical example shows
the effectiveness of the proposed method.

1. INTRODUCTION

The Cauchy problem of the Helmholtz equation is often encountered in many
branches of science and engineering. It is used to describe the vibration of a
structure [1], the acoustic cavity problem [2], the radiation wave [6], and the
heat conduction in fins [14]. The direct problems, i.e., Dirichlet, Neumann or
mixed boundary value problems for the Helmholtz equation have been studied
extensively in the past century. However, in some practical problems, the bound-
ary data on the whole boundary cannot be obtained. We only know the noisy
data on a part of the boundary or at some interior points of concerned domain.
This is called an inverse problem. The Cauchy problem for the Helmholtz equa-
tion is known to be severely ill-posed in the sense that a small change in the
Cauchy data may result in a dramatic change in the solution [8]. Hence it is
impossible to solve that problem by using classical numerical methods and it re-
quires special techniques, for example, regularization methods. In recent years,
the Cauchy problems associated with the Helmholtz equation have been stud-
ied by using different numerical methods, such as the Landweber method with
boundary element method (BEM) [11], the conjugate gradient method [10], the
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method of fundamental solutions (MFS) [15] and so on. In the present paper, we
consider the following Cauchy problem for the modified Helmholtz equation with
nonhomogeneous Cauchy conditions

(1.1) Au(z,y) + Ku(z,y) = 0, z€R, 0<y<1,
(1.2) uy(z,0) = o¢(x), zeR,
(1.3) u(z,0) = ¢(z), z € R,

where A denotes the Laplace operator, p(z), ¥(z) € L*(R) are given data, and
k is a real number. We note that if the boundary condition wu,(z,0) = ¢(z) =0,
the problem (1.1)—(1.3) has been considered by many authors, such as [9, 12, 13].
However, their methods cannot be applied easily to solve (1.1)—(1.3) when the
boundary condition is replaced by u,(x,0) = ¢(z).

Recently, in [6], Chu-Li Fu et al. approximated the problem (1.1)—(1.3) by the
Fourier regularization method. Furthermore, in that paper, the error between
the regularization solution and the exact solution is given as follows

Jut) —ssg ] < @B (25) T @0t

+(Bp)?6' Y <ln %) - (2+40(1)),

where Eq, Es are the priori bound, p > 0. However, it is easy to see that the
convergence of the approximate solution is very slow when p = 0 and y is in a
neighborhood of 1. Moreover, the error in case p = 0 and y = 1 is not given here.
In the present paper, we will improve that result by using a new regularization
method.

First, we define

+oo
f@)Z;%i/f@k”&ma

the Fourier transform of function f(x).

Next, applying the Fourier transform with respect to variable z € R, we trans-
form the problem (1.1)—(1.3) to the following one

(1.4) Uee (£, y) + Uyy (&, y) + K206, y) =0, E€R, 0<y <1,
(15) ay(fao) = @(5)7 g € R,
(1.6) U(E,0) = P(€), E€R.

Without loss of generality, we can assume that k& > 0. If u is the solution of the
problem (1.1)—(1.3), then its Fourier transform u is the solution of the problem



A NEW REGULARIZATION METHOD FOR THE CAUCHY PROBLEM... 421

(1.4)—(1.6) and has the following form

L gf(\/—m\/fz_—kzy\)g_—kz 1| > F,
Ay = ¢g— (¢ )

cos (VEZ— %) + %mn( By, ld <k

e e\/s —K%y 4 . \/52—k2y>

( 2V ) NERe). &l > &,

20/€2— k2e2V/E2—k2y

(&) co <\/ff2y)+ﬂsin< k2—£2y>, &l < k.

In the present paper, we shall approximate problem (1.7) by the following
problem

~ 7 [e2_
u6(§7y) = [@ <oc(e) 6711/52 52 +e ¢ k2y>

24/€2 k2 /€2 |2~
<2\/§2 R >€ ¢ Wf)]X[—ﬁ(sx—k]u[kﬁ(en(f)

(1.8) + cos< — &%y ) %sin( k2 —&,ﬂ X(—k k) (&)
or
L r[ae 1 T,
s R/ [ < (O+eVET )
2V E -k _q iy~ icx
+ RN e P(E) | X[=B(e), kUl B(e)) (§) €™ dE
+\/%/ [1/1 cos< k2 — &2 >+ igs_)gsm< k2 §2y>]x
R
(1.9) X X (i iy (€)€S7dE,

where a(e) and ((e) depend on €, a(e) € (0,1) is a regularization parameter, and
B(€) > 0 will be chosen later such that 3(e) tends to infinity when € tends to zero.
For convenience, we denote a(€) by «, and [(e) by .

The rest of the article is divided into three sections. In Section 2, we shall give

the main results. The proofs will be presented in Section 3. Finally, a numerical
experiment will be given in Section 4, which proves the efficiency of our method.
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2. THE MAIN RESULTS

Assume that wue, is the exact solution of (1.1)—(1.3), vey is the solution of
problem (1.9) corresponding to the exact data ¢.,, 1., and v, is the solution
of problem (1.9) corresponding to the measured data ¢, ¥, where ¢ ., V.,
and ¢, 1, are in the right-hand side of (1.9) such that [l¢. — @e,llr2r) < €
Ve = Yeall2m) < € where -] 2g) is the norm on L?*(R). Then, we have
(2.1)

Ver (6) (e\/SQ——’nyJr _\/Ez_—kzy>

R 2 £2—k2y i, ‘5‘ > k?
Uex(§7y) = ( \/7]@ 9 §2—k2 ) ( )
¢em ) cos %x sin (k2 —E%y), || <k,
(ViF =€) + i )
Vez (€, Y) wez(@ <a+e*\}§2*k2 ¢k >
<2\/§z — e > B¢ )]X[—ﬁ,—k}u[k,m@
(2.2) [ ) cos < > %””(5 > Sin <\/ k? — §2y>] X(—k k) (€);
6= [ 49 (e +VFT)

€2 22 /2
* (2 NaEV > ch %(f)lx[—ﬁ,—k}uw,m(@

(2.3) + [ ( cos< — &%y > \/a%sin <\/k:2 —§2y>] X(—k k) (&)

We have the estimate
(24)  lve — uewHLZ(R) = [[oe — aeﬂcHLZ(]R) < |ve = i)\ewHLZ(R) + [[Vex — aeﬂcHLZ(]R) :
We first have the following lemma.

Lemma 2.1 (The stability of a solution of problem (1.8)). Suppose that ¢.,,

wew Pes 1/}5 S Lz(R) and ”(106 _(pex”L2(R) <6 ”ws _wexHL2(R) < € Then we
have

_ _ 2
oeCsy) = Vea (5 W)l L2y < €+ V2(e? +1)e
for all y € (0,1].

The main conclusion of the present paper is as follows
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Theorem 2'2' Let ('IDGZE’ ’l)[)ewl ('IDE’ ’IIZ)E e L2(R) and H('lpﬁ - (peZEHLZ(R) é 6’
Ve = Yeall L2y < € € € (0,1). Suppose that there are two non-negative constants
Ey and Ey such that ||V, 2@y < E1 and ||%u6x("y)HL2(R) < E5. Then, with

1
a=¢€2 and f=1n 61%, we have, for every 0 <y <1,

C
[ve(-sy) — uex('ry)”H(R) < 1’
In -
€

where C' =6+ Fy + 8Es.

3. PROOFS OF THE MAIN RESULTS

Proof of Lemma 2.1. First, from (2.2) and (2.3), we have
~ ~ 2
Ve, y) — Uex('vy)”H(R)

:/ ’66(67 y) - 6650(67 y)‘2 df
R
2/ 10e(&,y) — Dew (& )1 X[ —juph, 3 ()€
R
+ [ 060) ~ Do) x (@)
R

~[15 (e + € VET) [0 - 9a(9)

R

2
X[ 8,k ulk,3 () dE

VT —
" <2¢§_;efézlkzy) VEFY[B(6) - Beal£)]

# [ [P = Bea(®)] cos (mg>

R

B o RO~ Pul@lsin (Vi - &)

2
X(=k, k) (&)dE.

elol — 1
|z
e2VE Ry _q

21/€2 — k2e2VE Ky

< el*l, we have

Using the inequality

(3.2)

<Il,for0<y<1.
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Note that e~V ~* < 1, eVE kY < ¢kl for ¢| > k, and \cos k2 — 529>( <

L,

sin <

v/ k2 —§2y)‘ < VE2 - for || <k, 0<y <1, ac(0,1), then from

(3.1), (3.2) we get

IN

IN

IN

IA

IN

IN

~

”66(’, y) - Uex(’a y)H%Q(R)

/1

(é + 1) 1715(5) - @ex(f)‘ + elf‘ ‘@6(5) - @ex(&)‘]2 X[—8,—k]Ulk,8] (f)df

N[ —

DO) ~ Beal®)] +1206) ~ 2al©)]) X, (€1

~ ~ 2
Bel€) = D] + ¢ [2(6) = Peal ) X1 b1 1 (€

BE) = Beal®)] +1206) ~ 2ual®)]) X, (€1

o~

3 2L 25 5 ()2
548 = Te®f + 93U = 3uaOF ) 1wt (©6

o~

B0~ D0+ 12ul0) - %(5)!2) X(—k, 1(€)d€

De(€) = eu (€) X[—8,—Kulk,8 (§)d€

~ ‘ 2

+26% [ 18(€) = Bea(©)1 X[, —juiig ()&

o

2 I~ ~
@ ¢5 - ¢e:c

B

4 |1~ ~
1/}5 - wex

a?

e

17}5 (5) - wex (g)

+12.(6) — %(5)!2) X (ko (€)dE

2
~ ~ 2
+ 2626 ||(706 - ('pexHL2(R)

L2(R)
ie - iew

2

2
2
[2(R) + ||(70€ - (pexHLz(]R)>

~ ~ 2
+ 2(62’6 + 1) ”(,05 - Qoex”LQ(R) '

L2(R)
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Applying the inequality va? + b2 < a + b for a,b > 0, we obtain

@e - @ew

~ ~ 2 .
59 = Tea )2y < 2| o T VIS D18~ Bl

L2(
2
< Ze+V2(ef + e
o
This completes the proof of Lemma 2.1. O
Proof of Theorem 2.2. Taking into account (2.1) and (2.2), we have

[Bea -+ y) = Tea(, 1) T2y

- / Boa(62y) — a6, )P de
R

- / e (E14) — B (€92 X110 (€)IE

R

+ / B (€9) — Beals ) X (€)dE
R

+/ ‘6650(57 y) - aex(g, y)’2 X(—oo,—ﬁ)U(ﬁ,+oo)(€)d§
R

- / e (E1) — B (€92 X111 (€)E
R

(3.3) 4 / e (€)1 X051 00) (E)E.
R

Moreover, one has, for |{| > k and 0 <y < 1,

1 e /é—2_k2y
o+ e~ VE-RY

From (2.1), (2.2), (3.3) and (3.4), we deduce

(3.4) < aelél,

||i)\ex('7 y) - aew(') y)“iz(R)

< i/ ! Ve
R

o+ e~ VERY
| R 2
+ @‘guex(€7y)‘ X (—o0,—B)U(8,+00) (§)dE
R

2

o~

2
T/Jez(ﬁ)‘ X[ 8,k ulk,3 (§)dE
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2 2

re® " 8

1 5 up ‘ - 9
< = .
> 4Oé € Tflex axuem( 7y)

12R)

Applying the inequality va? + b2 < a + b for a, b > 0, we get

~ N 1 ~ 0
(35) Vel y) — uem(‘ay)HLZ(R) < 5046% ‘ Yey %uaw(',y)

1
+ .
2R ‘ L2(R)

From (2.4), using Lemma 2.1 and (3.5), we obtain the error estimate

[ve(, y) — vea (-, y)HH(R)

2 1 ~ 110
< —e+\/§eﬁ—|—1e+—a62ﬁ‘ - +—H—ﬂex : :
T« ( ) 2 v L2R) (|| 0x (+) L2(R)
The choice of a = €3 and G =1In el% leads to
C
[ve(-sy) — uex('ry)”H(R) < 1’
In -
€
where
C =6+ F; + 8Fs.
The proof of Theorem 2.2 is complete. O

4. A NUMERICAL EXPERIMENT

In this section, we give a numerical example demonstrating how the suggested
method works. We consider the equation

Au+u=0,z€R, 0<y<1,

where u satisfies
uy(.ﬁl’,O) = QO(J?),

u(z,0) = ¥(x).
Consider the exact data ¢,,(z) = 12 Yep(x) = e~1%". Then
Pex - xg 4 367 exr - .
1T 1
4.1 3. () = itz g, _ /o blé]

-~ 1

+00
L T g e
(4.2) Vo (&) = \/%_/e e 8%y = \/2e7C.
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From (4.1), (4.2) and (2.1), we have

—£2

e\/i (e VE-ly 4 v 52_1@/)

R 271-6_6'6‘ 2_ _ 2

Uem(gyy): +2£72_1<6V5 ly _ e=VE 1|y|>,
2 0¢

V2e7€ cos <my) + %sin( 1= £2y)  lel< 1.

§l=1,

Consider the measured data

(4.3) Pe(T) = <\/§6 + 1) Pex(T),

1 4/2
(44) wm):(ﬁ ;e+1> Yeal)

we have

oo 1/2
||(706 - ('pexHLz(]R) = H@E - @exHLQ(R) = (/662612§d£) =€

— 00

and

@5 - ;Zjex

”ws - wezHLz(R) = ‘

+0o0 1/2
= (/\/5626252615) = €.
L2(R) m

From (4.1), (4.2), (4.3), (4.4), (2.3) and taking into account that a = e%,
G =1In BLE, we obtain the regularized solution

& (1,2 o
—~ € _\Je2_
ve(&y) = [—\/5 (ﬁ Y ;e + 1) <7E%+el /21y +e VE 1y>

+ (72 27;__651|> (\/ge + 1) (e\/éz—_ly - e_\/g—_ly>] X
XX 1 118
_m\%,_l}u{m%}

=€ <</ge + \/§> cos <\/1—7§2y>
+% <\/§e + 1> sin <\/1—7§2y>] X(—1,1)(§)~

+
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Let e be e = 1075, €3 =9 x 1077, e3 = 10710 respectively. If we put
y={0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

we get the following tables

e =107 e2=9x10"" e3=10""
y | llve — uexHLQ(R) y | llve — uexHLQ(R) y | llve — UexHLQ(R)
0 | 1.0012 x 1071 0 | 5.3438 x 1072 0 | 1.4491 x 1072

0.1] 1.0090 x 10~ T 0.1 3.5884 x 102 0.1 1.5248 x 1072
0.2 ] 1.0324 x 1071 0.2 ] 3.7231 x 1072 0.2 ] 1.7016 x 1072
0.3 ] 1.0718 x 1071 0.3 | 3.9516 x 102 0.3 2.0117 x 10~*
0.4 1.1280 x 1071 0.4 | 4.2804 x 102 0.4 2.4798 x 102
0.5 1.2022 x 1071 0.5 | 4.7188 x 102 0.5 | 3.1428 x 10~ %
0.6 | 1.2959 x 10~ T 0.6 | 5.2790 x 102 0.6 | 4.0532 x 10~*
0.7 1.4109 x 1071 0.7 | 5.9769 x 102 0.7] 5.2833 x 10~
0.8 1.5498 x 1071 0.8 6.8319 x 102 0.8 6.9306 x 102
0.9 ] 1.7152 x 1071 0.9 7.8683 x 102 0.9 9.1259 x 10~°%
1 | 1.9107 x 1071 1 | 9.1155 x 10~2 1 | 1.2044 x 1073

where [|ve — Uea|[p2(r) = [[Ve = Uex||[2(r) and we have the graphics displayed in
figures 2, 3, and 4 on the rectangular domain [—10, 10] x [0, 1]

18—

Figure 2: The Fourier transform
Figure 1: The Fourier transform of the regularized solution with
of the exact solution e =1077
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Figure 3: The Fourier transform Figure 4: The Fourier transform
of the regularized solution with of the regularized solution with
€2=9x1077 e3 =10710
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