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SOLVABILITY OF A SYSTEM OF DUAL INTEGRAL

EQUATIONS OF A MIXED BOUNDARY VALUE PROBLEM

FOR THE BIHARMONIC EQUATION IN A STRIP

NGUYEN VAN NGOC AND NGUYEN THI NGAN

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. The aim of the present work is to consider a mixed boundary
value problem of the biharmonic equation in a strip. The problem may be
interpreted as a deflection surface of a strip plate with the edges y = 0, y = h

having clamped conditions on intervals |x| 6 a and hinged support conditions
for |x| > a. Using the Fourier transform, the problem is reduced to studying a
system of dual integral equations on the edges of the strip. The uniqueness and
existence theorems of a solution of the system of dual integral equations are
established in appropriate Sobolev spaces. A method for reducing the system
of dual integral equations to an infinite system of linear algebraic equations is
also proposed.

1. Introduction

Mixed boundary value problems for the biharmonic equation in a strip have
been considered by many authors (see for example, [22,1,6]). V. B. Zelentsov [22]
considered the problem of pending of Kirchhoff-Love plate in the shape of a strip
under the impression of a thin liner rigid inclusion fastened at one of the edges
of the plate when the other edge of the plate is rigidly clamped. The problem
is reduced to the solution of convolution-type integral equations of the first kind
in a finite segment with a regular kernel. In [1] some problems of the impression
of one or two inclusions in the form of stiffner ribs into an infinite lying on an
elastic foundation were considered. It follows from the properties of the kernel of
the integral equations that their solutions have a non-integrable singularity. In
[6] A. I. Fridman and S. D. Eidelman considered some boundary value problems
for the biharmonic equation in a strip. New uniqueness theorems for nonnegative
solutions of these problems are proved.

The aim of the present work is to consider a mixed boundary value problem
of the biharmonic equation in a strip by the dual integral equation method.
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The problem may be interpreted as a deflection surface of a strip plate with
the edges y = 0, y = h having clamped conditions on intervals |x| 6 a and
hinged support conditions for |x| > a. Using the Fourier transform, we reduce
the problem to studying a system of dual integral equations on the edges of a
strip. The uniqueness and existence theorems of a solution of the system of
dual integral equations are established in appropriate Sobolev spaces. A method
for reducing the dual integral equation to an infinite system of linear algebraic
equations is also proposed.

Note that the theory of dual integral equations recently became very developed
and is the subject of numerous investigations. Formal analytical methods for
finding solutions to dual equations have been studied by many authors (see [11]
and [18]), but much less attention has been paid to the solvability question of these
equations. The dual integral equations of Titchmarsh’s type were investigated
in [21,5] by the distributional approach and in [3] on Lebesgue spaces. Recently,
P. K. Banerji and Deshna Loonker [2] obtained the solution of dual integral
equations involving Legendre functions in distributional spaces. Some results on
the solvability and validity of solutions of dual integral equations involving Fourier
transforms based on the Dirichlet problems for pseudo-differential operators have
been considered in [12-16]. Note that dual integral equations for convolutions
may be reduced to the dual equations involving Fourier transforms. Some classes
of those equations on semi-axes of the real axis were considered in [7].

Our work is constructed as follows: In Section 2 we formulate the mixed bound-
ary value problem for the biharmonic equation in a strip and reduce it to a system
of dual integral equations. Section 3 is intended for the solvability of a system
of dual integral equations involving Fourier transforms with decreasing symbols
in appropriate Sobolev spaces. Finally in the last section, Section 4 we present
a manner reducing the system of dual integral equations to a system of integral
equations with logarithmic kernels, and reducing the latter to an infinite system
of linear algebraic equations.

2. Formulation of the problem

We study the solutions Φ = Φ(x, y) of a boundary-value problem for the bi-
harmonic equation

(2.1) ∆2Φ(x, y) =
∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2
+

∂4Φ

∂y4
= 0

in the strip

Π = {(x, y) : −∞ < x < ∞, 0 < y < h}.

Let R be the real axis, (−a, a) denotes a certain bounded interval on R. Con-
sider the following mixed boundary value problem:
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Find a solution Φ(x, y) of equation (2.1) in the strip Π that satisfies the bound-
ary conditions

Φ
∣∣
y=0

= r1(x), x ∈ R,(2.2)

Φ
∣∣
y=h

= r2(x), x ∈ R,(2.3)

(2.4)





∂Φ

∂y

∣∣∣
y=0

= f1(x), x ∈ (−a, a),

M [Φ]
∣∣
y=0

= 0, x ∈ R \ (−a, a),

(2.5)





∂Φ

∂y

∣∣∣
y=h

= f2(x), x ∈ (−a, a),

M [Φ]
∣∣
y=h

= 0, x ∈ R \ (−a, a),

where

(2.6) M [Φ] = M [Φ](x, y) =
∂2Φ

∂y2
+ ν

∂2Φ

∂x2
, 0 < ν < 1.

This problem may be interpreted as a deflection surface of a strip plate with the
edges y = 0, y = h having clamped conditions on intervals |x| 6 a and hinged
support conditions for |x| > a. Physically, M [Φ] is the bending moment with
respect to the axis Oy.

We shall solve the formulated problem by the method of Fourier transforms and
reduce it to a system of dual equations involving inverse Fourier transforms. It
is well-known that, for a suitable function f(x), x ∈ R (for example, f ∈ L1(R)),
direct and inverse Fourier transforms are defined by the formulas

(2.7) f̂(ξ) = F [f ](ξ) =

∫ ∞

−∞
f(x)eixξdx,

(2.8) f̆(ξ) = F−1[f ](ξ) =
1

2π

∫ ∞

−∞
f(x)e−ixξdx.

The theory of the Fourier transforms of tempered generalized functions can be
found, for example, in [4,19].

Taking the Fourier transform with respect to the variable x of the biharmonic
equation (2.1), we obtain

(2.9)
d4Φ̂(ξ, y)

dy4
− 2ξ2 d2Φ̂(ξ, y)

dy2
+ ξ4Φ̂(ξ, y) = 0,

where Φ̂(ξ, y) = Fx[Φ(x, y)](ξ) is the Fourier transform with respect to x of the
function Φ(x, y). The general solution of the differential equation (2.9) for ξ 6= 0
is taken in the form
(2.10)

Φ̂(ξ, y) = A∗(ξ) cosh(|ξ|y)+B∗(ξ)y cosh(|ξ|y)+C∗(ξ) sinh(|ξ|y)+D∗(ξ)y sinh(|ξ|y),
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where A∗(ξ), B∗(ξ), C∗(ξ),D∗(ξ) are arbitrary functions of the variable ξ. The

value Φ̂(0, y) is understood in the sense

(2.11) Φ̂(0, y) = lim
ξ→0

Φ̂(ξ, y).

Taking the Fourier transforms of the conditions (2.2), (2.3) due to (2.10) we have

(2.12) Φ̂(ξ, 0) = A∗(ξ) = r̂1(ξ),

Φ̂(ξ, h) = A∗(ξ) cosh(|ξ|h) + B∗(ξ)h cosh(|ξ|h) + C∗(ξ) sinh(|ξ|h)

(2.13) +D∗(ξ)h sinh(|ξ|h) = r̂2(ξ).

Denote

(2.14) û1(ξ) = M̂ [Φ](ξ, 0) = Φ̂yy(ξ, 0)−νξ2Φ̂(ξ, 0) = (1−ν)ξ2A∗(ξ)+2|ξ|D∗(ξ),

û2(ξ) = M̂ [Φ](ξ, h) = Φ̂yy(ξ, h) − νξ2Φ̂(ξ, h) = (1 − ν)ξ2 cosh(|ξ|h)A∗(ξ)

+
[
2|ξ| sinh(|ξ|h)+(1−ν)ξ2h cosh(|ξ|h)

]
B∗(ξ)+(1−ν)ξ2 sinh(|ξ|h)C∗(ξ)

(2.15) +
[
2|ξ| cosh(|ξ|h) + (1 − ν)ξ2h sinh(|ξ|h)

]
D∗(ξ).

Using the relations (2.12) –(2.15) we express the unknown functions A∗(ξ), B∗(ξ),
C∗(ξ),D∗(ξ) in terms of û1(ξ), û2(ξ), r̂1(ξ) and r̂2(ξ). For ξ 6= 0 after some
transformations we obtain

(2.16) A∗(ξ) = r̂1(ξ),

(2.17) D∗(ξ) =
û1

2|ξ| −
(1 − ν)|ξ|r̂1(ξ)

2
,

B∗(ξ) = − cosh(|ξ|h)

2|ξ| sinh(|ξ|h)
û1(ξ) +

û2(ξ)

2|ξ| sinh(|ξ|h)

(2.18) +
(1 − ν)|ξ| cosh(|ξ|h)

2 sinh(|ξ|h)
r̂1(ξ) −

(1 − ν)|ξ|
2 sinh(|ξ|h)

r̂2(ξ),

C∗(ξ) =
h

2|ξ| sinh2(|ξ|h)
û1(ξ) −

h cosh(|ξ|h)

2|ξ| sinh2(|ξ|h)
û2(ξ)

(2.19)

−sinh(2|ξ|h) + (1 − ν)|ξ|h
2 sinh2(|ξ|h)

r̂1(ξ) +
(1 − ν)|ξ|h cosh(|ξ|h) + 2 sinh(|ξ|h)

2 sinh2(|ξ|h)
r̂2(ξ).

Substituting (2.16)–(2.19) into (2.10) we obtain

Φ̂(ξ, y) = û1(ξ)
[h sinh(|ξ|y) − y sinh(|ξ|h) cosh(|ξ|(h − y))

2|ξ| sinh2(|ξ|h)

]

+û2(ξ)
[y cosh(|ξ|y) sinh(|ξ|h) − h sinh(|ξ|y) cosh(|ξ|h)

2|ξ| sinh2(|ξ|h)

]

+r̂1(ξ)
[2 sinh(|ξ|h) sinh(|ξ|(h − y))

2 sinh2(|ξ|h)

]
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+r̂1(ξ)
[ (1 − ν)|ξ|

[
y sinh(|ξ|h) cosh(|ξ|(h − y)) − h sinh(|ξ|y)

]

2 sinh2(|ξ|h)

]

+r̂2(ξ)
[(1 − ν)|ξ|(h − y) sinh(|ξ|y) cosh(|ξ|h)

2 sinh2(|ξ|h)

]

(2.20) +r̂2(ξ)
[2 sinh(|ξ|y) sinh(|ξ|h) − (1 − ν)y|ξ| sinh(|ξ|(h − y))

2 sinh2(|ξ|h)

]
.

From (2.20) it is easy to see that the terms in the big brackets have the asymp-
totical behavior

(2.21) O(|ξ|e−|ξ|(h−y)), |ξ| → ∞,

and besides, in the sense (2.11) we have
(2.22)

Φ̂(0, y) = α1(y) lim
ξ→0

û1(ξ) + α2(y) lim
ξ→0

û2(ξ) + β1(y) lim
ξ→0

r̂1(ξ) + β2(y) lim
ξ→0

r̂2(ξ),

where

α1(y) = − y(h2 − y2) + 3y(h − y)2

12h
,(2.23)

α2(y) =
y(y2 − h2)

6h
,(2.24)

β1(y) =
h − y

h
,(2.25)

β2(y) =
y

h
.(2.26)

Substituting (2.16)-(2.19) into the following relations

dΦ̂(ξ, 0)

dy
= |ξ|C∗(ξ) + B∗(ξ),

dΦ̂(ξ, h)

dy
= [A∗(ξ)|ξ| + D∗(ξ)] sinh(|ξ|h) + [C∗(ξ)|ξ| + B∗(ξ)] cosh(|ξ|h)

+B∗(ξ)|ξ|y sinh(|ξ|h) + D∗(ξ)|ξ|h cosh(|ξ|h),

we get

dΦ̂(ξ, 0)

dy
= −a11(ξ)û1(ξ) − a12(ξ)û2(ξ) − a1(ξ)r̂1(ξ) + a2(ξ)r̂2(ξ),(2.27)

dΦ̂(ξ, h)

dy
= a21(ξ)û1(ξ) + a22(ξ)û2(ξ) − a2(ξ)r̂1(ξ) + a1(ξ)r̂2(ξ),(2.28)
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where

a1(ξ) =
|ξ|[(1 + ν) sinh(|ξ|h) cosh(|ξ|h) + (1 − ν)|ξ|h]

2 sinh2(|ξ|h)
,(2.29)

a2(ξ) =
|ξ|[(1 + ν) sinh(|ξ|h) + (1 − ν)|ξ|h cosh(|ξ|h)]

2 sinh2(|ξ|h)
,(2.30)

a11(ξ) = a22(ξ) =
sinh(|ξ|h) cosh(|ξ|h) − |ξ|h

2|ξ| sinh2(|ξ|h)
,(2.31)

a21(ξ) = a12(ξ) =
|ξ|h cosh(|ξ|h) − sinh(|ξ|h)

2|ξ| sinh2(|ξ|h)
.(2.32)

In order to determine the unknown functions û1(ξ) and û2(ξ), we use the
mixed conditions (2.4) and (2.5). Satisfying these conditions, from (2.14), (2.15),
(2.27) and (2.28), we have the system of dual integral equations with respect to
û1(ξ), û2(ξ) :

(2.33)

{
F−1[A(ξ)û(ξ)](x) = f̃(x), x ∈ (−a, a),

F−1[û(ξ)](x) = 0, x ∈ R \ (−a, a),

where

u1(x) = M [Φ](x, 0), u2(x) = M [Φ](x, h), u(x) = (u1(x), u2(x))T ,(2.34)

û(ξ) = F [u(x)](ξ), f̃(x) = (f̃1(x), f̃2(x))T ,(2.35)

f̃1(x) = −f1(x) − F−1[a1(ξ)r̂1(ξ)](x) + F−1[a2(ξ)r̂2(ξ)](x),(2.36)

f̃2(x) = f2(x) + F−1[a2(ξ)r̂1(ξ)](x) − F−1[a1(ξ)r̂2(ξ)](x),(2.37)

A(ξ) =

(
a11(ξ) a12(ξ)
a21(ξ) a22(ξ)

)
.(2.38)

3. Solvability of systems of dual equations

3.1. Functional spaces. Let S = S(R) and S ′ = S ′(R) be the Schwartz spaces
of basic and generalized functions, respectively [4,19,20]. Denote by F and F−1

the Fourier transform and inverse Fourier transform defined on S ′. It is known
that these operators are automorphisms on S ′. For a suitable ordinary function
f(x) (for example, f ∈ L1(R)), the direct and inverse Fourier transforms defined
by formulas (2.7) and (2.8), respectively [19]. The symbol < f,ϕ > denotes the
value of the generalized function f ∈ S ′ on the basic function ϕ ∈ S, besides,
(f, ϕ) :=< f,ϕ > .

Definition 3.1. Let Hs := Hs(R)(s ∈ R) be the Sobolev-Slobodeskii space
defined as a closure of the set C∞

o (R) of infinitely differentiable functions with
compact support with respect to the norm [4, 19, 20]

(3.1) ||u||s :=
[ ∫ ∞

−∞
(1 + ξ2)s|û(ξ)|2dξ

]1/2
< ∞, û = F [u].
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The space Hs is a Hilbert space with the following scalar product

(3.2) (u, v)s :=

∫ ∞

−∞
(1 + ξ2)sû(ξ)v̂(ξ)dξ.

Let Ω be a certain interval in R. The subspace of Hs(R) consisting of functions
u(x) with support in Ω is denoted by Hs

o(Ω) [20], while the space of functions
v(x) = pu(x), where u ∈ Hs(R) and p is the restriction operator to Ω is denoted
by Hs(Ω). The norm in Hs(Ω) is defined by

||v||Hs(Ω) = inf
l
||lv||s,

where the infimum is taken over all possible extensions lv ∈ Hs(R).

Let X be a linear topological space. We denote the direct product of two
elements X by X2. Topology in X2 is given by the usual topology of the direct
product. We shall use bold letters for denoting vector-values and matrices. De-
note by u a vector of the form (u1, u2), and S2 = S × S, (S′)2 = S ′ × S ′. For
the vectors u ∈ (S ′)2, ϕ ∈ S2 we set

< u,ϕ >=

2∑

j=1

< uj, ϕj > .

The Fourier transform and inverse Fourier transform of a vector u ∈ (S′)2 are
the vectors û = F±1[u] = (F±1[u1], F

±1[u2])
T , defined by the equalities [19]:

(3.3)

< F [u],ϕ >=< u, F [ϕ] >, < F−1[u],ϕ >=
1

2π
< u, F [ϕ](−x) >, ϕ ∈ S2.

Let Hsj , H
sj
o (Ω), Hsj(Ω) be the Sobolev spaces, where j = 1, 2; Ω is a certain

set of intervals in R. We put ~s = (s1, s2)
T and

H~s = Hs1 × Hs2 , H~s
o(Ω) = Hs1

o (Ω) × Hs2

o (Ω), H~s(Ω) = Hs1(Ω) × Hs2(Ω).

The scalar product and the norm in H~s and H~s
o(Ω) are given by the formulas

(u,v)~s =

2∑

j=1

(uj , vj)sj , ||u||~s =
( 2∑

j=1

||uj ||2sj

)1/2
,

where ||uj ||sj and (uj , vj)sj are given by formulas (3.1) and (3.2), respectively.

The norm in H~s(Ω) is defined by the equality

||u||
H~s(Ω) :=

( 2∑

j=1

inf
lj

||ljuj ||2sj

)1/2
,

where lj are extension operators of the uj ∈ Hsj(Ω) from Ω to R.

Theorem 3.1. Let Ω ⊂ R,u = (u1, u2)
T ∈ H~s(Ω), f ∈ H−~s(Ω) and lf =

(l1f1, l2f2)
T be an extension of f from Ω to R belonging to H−~s(R). Then the
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integral

(3.4) [f ,u] := (lf ,u)o :=

2∑

j=1

∫ ∞

−∞
l̂jfj(ξ)ûj(ξ)dξ

does not depend on the choice of the extension lf . Therefore, this formula defines

a linear continuous functional on H~s
o(Ω). Conversely, for every linear continuous

functional Φ(u) on H~s
o(Ω) there exists an element f ∈ H−~s(Ω) such that Φ(u) =

[u, f ] and ||Φ|| = ||f ||
H−~s(Ω).

Proof. Let l′f be another extension of the element f . Then we have lf − l′f = 0

on Ω, i.e.

(3.5) (lf − l′f ,w)o = 0 ∀w ∈ (C∞
o (Ω))2.

Since (C∞
o (Ω))2 is dense in H~s

o(Ω), then from (3.5) it follows that

(lf − l′f ,u)o = 0 ∀u ∈ H~s
o(Ω),

that is (l′f ,u)o = (lf ,u)o. Thus the integral in (3.4) does not depend on the
choice of the extension lf . From (3.4) we obtain

|(lf ,u)o| 6 ||u||~s.||lf ||−~s.

Since (lf ,u) does not depend on the choice of lf , we have

(3.6) |[f ,u]| = |(lf ,u)o| 6 ||u||~s inf
l

||lf ||−~s = ||u||~s.||f ||H−~s(Ω).

Thus, every element f ∈ H−~s(Ω) gives a continuous functional on H~s
o(Ω) by the

formula (3.4).
The second part of Lemma 3.1 can be pvoved by using the Riesz theorem. The

proof is complete. �

3.2. Pseudo-differential operators. Consider pseudo-differential operators of
the form

(Au)(x) := F−1[A(ξ)û(ξ)](x),

where A(ξ) = ||aij(ξ)||2×2 is a square matrix of order two, u = (u1, u2)
T is a

vector, transposed to the line vector (u1, u2), and û(ξ) := F [u] = (F [u1], F [u2])
T .

We introduce the following classes.

Definition 3.2. Let α ∈ R. We say that a function a(ξ) belongs to the class
σα(R), if |a(ξ)| 6 C1(1 + |ξ|)α, ∀ξ ∈ R, and belongs to the class σα

+(R), if
C2(1 + |ξ|)α 6 a(ξ) 6 C1(1 + |ξ|)α,∀ξ ∈ R, where C1 and C2 are certain positive
constants.

Lemma 3.2. [13]. Let a(ξ) > 0 be such that (1+ |ξ|)−αa(ξ) is a bounded continu-

ous function on R. Suppose moreover that there are positive limits of the function

(1 + |ξ|)−αa(ξ) when ξ → ±∞. Then a(ξ) ∈ σα
+(R).

Lemma 3.3. Let a(ξ) ∈ σα(R), u(x) ∈ Hs(R), a(ξ)û(ξ) ∈ S ′(R), then

F−1[a(ξ)û(ξ)](x) ∈ Hs−α(R).
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Proof. Indeed, put

v(x) = F−1[a(ξ)û(ξ)](x), v̂(ξ) = a(ξ)û(ξ).

We have v̂(ξ) = a(ξ)û(ξ) and

(3.7) (1 + |ξ|)s−α|v̂(ξ)| = (1 + |ξ|)−α|a(ξ)| · (1 + |ξ|)s|û(ξ)| 6 C(1 + |ξ|)s|û(ξ)|.
From (3.7) it follows immediately that ||v||2s−α 6 C||u||2s < ∞.

�

Definition 3.3. Let A(ξ) = ||aij(ξ)||2×2, ξ ∈ R, be a square matrix of second or-
der, where aij(ξ) are continuous functions on R, αj ∈ R, (j = 1, 2), ~α = (α1, α2)

T .

Denote by Σ~α(R) the class of square matrices A(ξ) = ||aij(ξ)||2×2, such that

aii(ξ) ∈ σαi(R), aij(ξ) ∈ σαij (R), αij 6
1

2
(αi + αj).

We shall say that the matrix A(ξ) belongs to the class Σ~α
+(R), if A(ξ) ∈ Σ~α(R)

and it is Hermitian, i.e. (A(ξ))T = A(ξ), and satisfies the condition:

wTAw ≥ C1

2∑

j=1

(1 + |ξ|)αj |wj |2 ∀w = (w1, w2)
T ∈ C2,

where C1 is a positive constant. Finally, we say that the matrix A(ξ) ∈ Σ~α(R)

belongs to the class Σ~α
o (R), if it is positive-definite for almost all ξ ∈ R.

Lemma 3.4. Let the matrix A(ξ) belong to the class Σ~α
+(R). Then the scalar

product and the norm in H~α/2(R) can be defined by the formulas

(3.8) (u,v)A,~α/2 =

∫ ∞

−∞
F [vT ](ξ)A(ξ)F [u](ξ)dξ,

(3.9) ||u||A,~α/2 =
( ∫ ∞

−∞
F [uT ](ξ)A(ξ)F [u](ξ)dξ

)1/2
,

respectively.

Proof. Using the Cauchy-Schwarz inequality one can show that

(3.10) w(ξ)
T
Aw(ξ) 6 C2

2∑

j=1

(1 + |ξ|)αj |wj(ξ)|2,

where C2 is a positive constant. Replacing in (3.3) and (3.10) wj(ξ) by ûj(ξ) =
F [uj ](ξ) and w(ξ) by F [u](ξ), and after that, integrating on (−∞,∞), we have

C1

2∑

j=1

∫ ∞

−∞
(1 + |ξ|)αj |F [uj ](ξ)|2dt 6

∫ ∞

−∞
F [uT ](ξ)A(ξ)F [u](ξ)dξ

(3.11) 6 C2

2∑

j=1

∫ ∞

−∞
(1 + |ξ|)αj |F [uj ](ξ)|2dξ.
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From (3.11), due to (3.1) and (3.3), we get (3.9). It is clear that, the integral

(3.8) defines a scalar product in H~α/2(R). �

Theorem 3.5. Let A(ξ) ∈ Σα(R),u ∈ H~s(R), where

(3.12) ~s = ~α/2 ± ~ε, ~ε = (ε, ε)T , ε ≥ 0.

Then the pseudo-differential operator Au defined by the formula F−1[A(ξ)û(ξ)](x),
x ∈ R, is bounded from H~s(R) into H~s−~α(R).

Proof. Let v(x) := (Au)(x) = F−1[A(ξ)û(ξ)](x). Hence we have

(3.13) v̂(ξ) = A(ξ)û(ξ).

Consider an m-component of the vector (3.13). We have

(3.14) v̂m(ξ) =

2∑

j=1

amj(ξ)ûj(ξ), m = 1, 2.

Multiplying both parts of (3.14) by (1 + |ξ|)sm−αm , we have

(3.15) (1 + |ξ|)sm−αm v̂m(ξ) =

2∑

j=1

[amj(ξ)(1 + |ξ|)sm−αm−sj ][(1 + |ξ|)sj ûj(ξ)].

Applying the Cauchy-Schwarz inequality to equality (3.15), we get

(3.16) (1+|ξ|)2(sm−αm)
6

2∑

j=1

|amj(ξ)|2(1+|ξ|)2(sm−αm−sj)
2∑

j=1

(1+|ξ|)2sj |ûj(ξ)|2.

Since

|amj(ξ)| 6 C(1 + |ξ|)α/2+αj/2 ∀ξ ∈ R,

due to (3.12) we get

(3.17)
2∑

j=1

|amj(ξ)|2(1 + |ξ|)2(sm−αm−sj) 6 C ∀ξ ∈ R.

From (3.12) and (3.17) we have

||vm||2sm−αm
6 C

2∑

j=1

||uj ||2sj
,

that is, v = (Au)(x) ∈ H~s−~α(R). The proof is complete. �

Theorem 3.6. Let Ω be a bounded subset of intervals in R. Then the imbedding

H~s(Ω) into H~s−~ε(Ω) is compact, where ~ε = (ε, ε)T > 0 ⇔ ε > 0.

Proof. The proof is based on the fact that the imbedding Hsj(Ω) into Hsj−ε(Ω),
ε > 0 is completely continuous if Ω is bounded in R (see [20]). �
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3.3. Solvability of the system of dual equations (2.33). The system (2.33)
can be rewritten in the form

(3.18)

{
pF−1[A(ξ)û(ξ)](x) = f̃(x), x ∈ (−a, a),

p′u := p′F−1[û(ξ)](x) = 0, x ∈ R \ (−a, a),

where the operator F−1 is understood in the generalized sense (3.3).
The following propositions hold.

Lemma 3.7. The matrix A(ξ) defined by formulas (2.38), (2.31), (2.32) is

positve-definite for all ξ 6= 0.

Due to Lemma 3.7, we have A(ξ) ∈ Σ−~α
o , ~α = (1, 1)T .

Lemma 3.8. Let a1(ξ), a2(ξ), a11(ξ) and a12(ξ) be determined by formulas

(2.29), (2.30), (2.31) and (2.32). Then

(i) a11(−ξ) = a11(ξ) > 0, a12(−ξ) = a12(ξ) > 0 ∀ξ 6= 0,
a1(−ξ) = a1(ξ) > 0, a2(−ξ) = a2(ξ) > 0 ∀ξ 6= 0.

(ii) a11(0) = limξ→0 a11(ξ) =
h

3
, a12(0) = limξ→0 a12(ξ) =

h

6
,

a1(0) = limξ→0 C1(ξ) =
1

h
, a2(0) = limξ→0 a2(ξ) =

1

h
.

(iii) limh→∞ a11(ξ) =
1

2|ξ| , limh→∞ a12(ξ) = 0,

limh→∞ a1(ξ) =
(1 + ν)|ξ|

2
, limh→∞ a2(ξ) = 0.

By virtue of Lemmas 3.2 and 3.8, from (2.29)-(2.32) we get

a11(ξ) = a22(ξ) ∈ σ−1
+ ∩ C(R), a1(ξ) ∈ σ1

+ ∩ C(R),(3.19)

a12(ξ) = a21(ξ) and a2(ξ) ∈ σ−β ∩ C(R) ∀β > 1.(3.20)

We make the following assumptions for the traces of Φ(x, y) on the edges y = 0
and y = h of the strip Π:

r1(x) := Φ(x, 0) and r2(x) := Φ(x, h) ∈ H
3

2 (R),(3.21)

u1(x) := M [Φ](x, 0) and u2(x) := M [Φ](x, h) ∈ H− 1

2 (R).(3.22)

By virtue of relations (3.19), (3.41) and Lemma 3.3 we have the following.

Theorem 3.9. Let conditions (3.21) and (3.22) be fulfilled. Then

F−1[a11(ξ)û1(ξ)](x) and F−1[a22(ξ)û2(ξ)](x) ∈ H
1

2 (R),

F−1[a21(ξ)û1(ξ)](x) and F−1[a12(ξ)û2(ξ)](x) ∈ Hβ(R) ∀β > 1,

F−1[a1(ξ)r̂1(ξ)](x) and F−1[a1(ξ)r̂2(ξ)](x) ∈ H
1

2 (R)

F−1[a2(ξ)r̂1(ξ)](x) and F−1[a2(ξ)r̂2(ξ)](x) ∈ Hβ(R) ∀β > 1.
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Due to Theorem 3.9 we suppose the following assumptions

r1(x) and r2(x) ∈ H
3

2 (R),(3.23)

f1(x) and f2(x) ∈ H
1

2 (−a, a).(3.24)

Hence we have the conditions

(3.25) f̃(x) ∈ H~α/2(−a, a), ~α = (1, 1)T .

Theorem 3.10. (Uniqueness). Let conditions (3.25) be fulfilled. Then the system

of dual equations (3.18) has at most one solution u ∈ H
−~α/2
o (−a, a).

Proof. Let u ∈ H~α/2(−a, a) be a solution of the homogeneous system of system
(3.18). Using formulas (3.4)-(3.9) and Theorem 3.1 we can show that

[Au,u] =

∫ ∞

−∞
ûT(ξ)A(ξ)û(ξ)dξ = 0,

from which u ≡ 0. �

Denote

(3.26) (Au)(x) = pF−1[A(ξ)û(ξ)](x)

and rewrite (3.18) in the form

(3.27) (Au)(x) = f(x), x ∈ (−a, a).

Our purpose now is to establish an existence result for the solution of the

system (3.27) in the space H
−~α/2
o (−a, a), ~α = (1, 1)T .

We introduce the matrices

(3.28) A+(ξ) =




tanh(|ξ|h)

2|ξ| 0

0
tanh(|ξ|h)

2|ξ|




, B(ξ) = A(ξ) − A+(ξ).

Lemma 3.11. We have A+(ξ) ∈ Σ−~α
+ , ~α = (1, 1)T .

Proof. Let

û1 = a1 + ib1, û2 = a2 + ib2, a1, b1, a2, b2 ∈ R.

We have

|û1|2 = a2
1 + b2

1, |û2|2 = a2
2 + b2

2.

It is not difficult to show that

û
T
A+û =

tanh(|ξ|h)

2|ξ| [2(a2
1 + b2

1 + a2
2 + b2

2)] ≥ 0.

Thus,

(3.29) û
T
A+û =

tanh(|ξ|h)

|ξ| (|û1|2 + |û2|2).
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Using Lemma 3.2, we can show that
tanh(|ξ|h)

|ξ| ∈ σ−1
+ (R), that means there

exists a positive constant C such that

(3.30)
tanh(|ξ|h)

|ξ| ≥ C
1

(1 + |ξ|) ∀ξ ∈ R.

From (3.29) and (3.30) it follows that A+(ξ) ∈ Σ−~α
+ , ~α = (1, 1)T . The theorem

is proved. �

It is not difficult to show that

B(ξ) ∈ Σ−~β, ~β = (β, β)T ∀β > 1.

We have

Lemma 3.12. The scalar product and the norm in H
−~α/2
o (R) (~α = (1, 1)T ) are

equivalent to the followings:

(3.31) (u,v)A+ ,−~α/2 =

∫ ∞

−∞
v̂(ξ)

T
A+(ξ)û(ξ)dξ,

(3.32) ||u||A+,−~α/2 =
( ∫ ∞

−∞
û(ξ)

T
A+(ξ)û(ξ)dξ

)1/2
,

where the matrix A+(ξ) is defined by formula (3.28).

Theorem 3.13. (Existence). Let assumptions (3.23) and (3.24) hold. Then the

system of dual equations (3.18) has a unique solution u = F−1[û] ∈ H
−~α/2
o (−a, a).

Proof. Since the assumptions (3.23) and (3.24) hold, due to (2.36), (2.37) and

Theorem 3.9, we have f̃(x) ∈ H~α/2(−a, a), ~α = (1, 1)T ( see (3.25)). We represent
the operator A defined by formula (3.26) in the form A = A+ + B, where

(3.33) A+u = pF−1[A+û], Bu = pF−1[Bû], u = F [u].

First we consider the system of equations

(3.34) A+u(x) = g(x), u(x) ∈ H−~α/2
o (−a, a),

where g(x) ∈ H~α/2(−a, a) is a given vector-function. From (3.4), (3.8) and (3.31)
we have

[A+u,v] =

∫ ∞

−∞
F [vT ](ξ)A+(ξ)F [u](ξ)dξ = (u,v)A+ ,−~α/2

for arbitrary vector-functions u and v belonging to H
−~α/2
o (−a, a). Therefore, if

u ∈ H
~α/2
o (−a, a) satisfies (3.34), then

(3.35) (u,v)A+,−α̃/2 = [g,v], ∀v ∈ H−~α/2
o (−a, a).

Since [g,v] is a linear continuous functional on the Hilbert space H
−~α/2
o (−a, a),

by virtue of the Riesz theorem there exists a unique element uo ∈ H
−~α/2
o (−a, a)

such that

(3.36) [g,v] = (uo,v)
A+,−~α/2, v ∈ H−~α/2

o (−a, a).
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From (3.35) and (3.36) we get u = u0. Moreover, the estimation

(3.37) ||uo||A+,−~α/2 = ||A−1g||A+,−~α/2 6 C||g||
H~α/2(−a,a)

holds, where C is a positive constant. Next, we represent system (3.18) in the
form

A+u + Bu = f̃ .

Hence we have

(3.38) u + A−1
+ Bu = A−1

+ f̃ .

In virtue of Theorem 3.6, the operator Bu defined by (3.33) is completely con-

tinuous from H
−~α/2
o (−a, a) into H~α/2(−a, a), due to (3.37) the operator A−1

+

is bounded. Thus, the operator A−1
+ B is completely continuous. It follows

that the system of equations (3.38) is Fredholm. Due to the uniqueness of
its solution (Theorem 3.10) it follows that this system has a unique solution

u ∈ H
−~α/2
o (−a, a). �

3.4. Regularity. We have the following result.

Theorem 3.14. Assume that (3.23) and (3.24) hold. There exists a unique

solution Φ of problem (2.1)–(2.5) which belongs to the Sobolev spaces H1(Π),
Hm(Πε)(∀m ≥ 2,∀ε > 0), where

Πε := {(x, y) : −∞ < x < ∞, ε < y < h − ε}.

Proof. Write Φ(x, y) := F−1[Φ̂(ξ, y)](x), where Φ̂(ξ, y) is given by (2.20). First
we pvove that the function Φ(x, y) satisfies equation (2.1) in the strip Π. Indeed,
in (2.20) the functions û1(ξ), û2(ξ), r̂1(ξ), and r̂2(ξ) are tempered, then due to
(2.21) and (2.9) for |x| < ∞, 0 < y < h we get

∆2Φ(x, y) = F−1
[d4Φ̂(ξ, y)

dy4
− 2ξ2 d2Φ̂(ξ, y)

dy2
+ ξ4Φ̂(ξ, y)

]
(x) = 0.

It is not difficult to verify that the boundary conditions (2.2) and (2.3) are
fulfilled, and that

M [Φ](x, 0) = u1(x), M [Φ](x, h) = u2(x), x ∈ R,

where M [Φ] is defined by (2.6). The functions u1(x), u2(x) are determined by
boundary conditions (2.4) and (2.5), that are equivalent to the system of dual
integral equations (2.33). According to Theorem 3.13, if conditions (3.23) and
(3.24) are fulfilled, then the system of dual equations (2.33) has a unique solution

u = (u1, u2) ∈ H
−1/2
o (−a, a)×H

−1/2
o (−a, a). Thus, if conditions (3.23) and (3.24)

hold, then there exists a unique solution Φ(x, y) = F−1[Φ̂(ξ, y)](x) of problem

(2.1)-(2.5), where Φ̂(ξ, y) is given by (2.20).

We now prove Φ ∈ H1(Π). First we pvove Φx =
∂Φ

∂x
∈ L2(Π). Using Parseval’s

equality, we have

(3.39)

∫ ∞

−∞
|Φx(x, y)|2dx =

1

2π

∫ ∞

−∞
ξ2|Φ̂(ξ, y)|2dξ, 0 < y < h.
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Substituting Φ̂(ξ, y) from (2.20) into the right hand side of (3.39) and applying
the Cauchy-Schwarz inequality we get∫ ∞

−∞
|Φx(x, y)|2dx

6
2

π

∫ ∞

−∞
ξ2|û1(ξ)|2

∣∣∣h sinh(|ξ|y) − y sinh(|ξ|h) cosh(|ξ|(h − y))

2|ξ| sinh2(|ξ|h)

∣∣∣
2
dξ

+
2

π

∫ ∞

−∞
ξ2|û2(ξ)|2

∣∣∣y cosh(|ξ|y) sinh(|ξ|h) − h sinh(|ξ|y) cosh(|ξ|h)

2|ξ| sinh2(|ξ|h)

∣∣∣
2
dξ

+
2

π

∫ ∞

−∞
ξ2|r̂1(ξ)|2

∣∣∣2 sinh(|ξ|h) sinh(|ξ|(h − y))

2 sinh2(|ξ|h)

+
(1 − ν)|ξ|

[
y sinh(|ξ|h) cosh(|ξ|(h − y)) − h sinh(|ξ|y)

]

2 sinh2(|ξ|h)

∣∣∣
2
dξ

+
2

π

∫ ∞

−∞
ξ2|r̂2(ξ)|2

∣∣∣ (1 − ν)|ξ|(h − y) sinh(|ξ|y) cosh(|ξ|h)

2 sinh2(|ξ|h)

(3.40) +
2 sinh(|ξ|y) sinh(|ξ|h) − (1 − ν)y|ξ| sinh(|ξ|(h − y))

2 sinh2(|ξ|h)

∣∣∣
2
dξ.

From (3.40) it follows that in order to prove ||Φx||L2(Π) < +∞, it suffices to
show that

J1 :=

∫

|ξ|>1
|û1(ξ)|2

dξ

sinh2(|ξ|h)

∫ h

0
cosh2(|ξ|(h − y))dy < +∞,

J2 :=

∫

|ξ|>1
|û2(ξ)|2

dξ

sinh2(|ξ|h)

∫ h

0
cosh2(|ξ|y)dy < +∞,

J3 :=

∫

|ξ|>1
|r̂1(ξ)|2

ξ4dξ

sinh2(|ξ|h)

∫ h

0
cosh2(|ξ|(h − y))dy < +∞,

J4 :=

∫

|ξ|>1
|r̂2(ξ)|2

ξ4dξ

sinh2(|ξ|h)

∫ h

0
cosh2(|ξ|y)dy < +∞.

Using the identity
∫ h

0
cosh2(|ξ|(h − y))dy =

sinh(2|ξ|h) + 2|ξ|h
4|ξ|

we have
(3.41)

J1 =

∫

|ξ|>1

|û1(ξ)|2dξ

1 + |ξ|
[(1 + |ξ|)[sinh(2|ξ|h) + 2|ξ|h]

4|ξ| sin2(|ξ|h)

]
6 C

∫

|ξ|>1

|û1(ξ)|2dξ

1 + |ξ| ,

where C is a certain positive constant. As u1(x) ∈ H
−1/2
o (−a, a) ⊂ H−1/2(R),

the integral in the right-hand side of (3.41) is finite. It implies J1 < +∞. By the
same reason J2 < +∞. Next we have

J3 =

∫

|ξ|>1
(1 + |ξ|)3|r̂1(ξ)|2dξ

[ ξ4[sinh(2|ξ|h) + 2|ξ|h]

(1 + |ξ|)34|ξ| sin2(|ξ|h)

]
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6 C

∫

|ξ|>1
(1 + |ξ|)3|r̂1(ξ)|2dξ < +∞

because r1(x) ∈ H3/2(R). By the same reason we have J4 < +∞. From the
above we get Φx ∈ L2(Π). Similarly, we get Φ and Φy ∈ L2(Π). We thus have
Φ ∈ H1(Π). In the same manner, we can see that Φ ∈ Hm(Πε)(∀m ≥ 2,∀ε > 0),
where

Πε := {(x, y) : −∞ < x < ∞, ε < y < h − ε}.
The proof is complete. �

4. Reduction to an infinite system of linear algebraic equations

In this section we propose a method for reducing the system of dual integral
equations (2.33) to an infinite system of linear algebraic equations of second kind.

4.1. Some preliminary considerations.

Definition 4.1. Let ρ(x) =
√

a2 − x2 (−a < x < a). We denote by L2
ρ±1(−a, a)

the Hilbert spaces of functions with respect to the scalar products and the norms

(u, v)L2

ρ±1
=

∫ a

−a
ρ±1(x)u(x)v(x)dx, ||u||L2

ρ±1
=

√
(u, u)L2

ρ±1
< +∞.

We will need the following result [14].

Lemma 4.1. Let ϕ ∈ L2
ρ(−a, a). Denote by ϕo the zero-extension of the function

ϕ on R. Then ϕo ∈ H
−1/2
o (−a, a).

We shall need some relations for Chebyshev polynomials. Let Tk(x) and Uk(x)
be the Chebyshev polynomials of first and second kind, respectively. We have
the following relations [17]:

Tn(cos θ) = cos nθ,(4.1)
∫ a

−a

Tk[η(x)]Tj [η(x)]

ρ(x)
dx = αkδkj ,(4.2)

∫ a

−a
ln

∣∣∣ 1

x − y

∣∣∣Tk[η(y)]

ρ(y)
dy = σkTk[η(x)], (k = 0, 1, 2, ...),(4.3)

where δkj is the Kronecker symbol and

(4.4) αk =

{
π, k = 0,
π

2
, k = 1, 2, ...

, σk =

{
π(ln 2 − ln a), k = 0,
π

k
, k = 1, 2, ...,

, η(x) =
x

a
.

Consider the following system of linear algebraic equations [9]:

(4.5) xi =

∞∑

k=1

ci,kxk + bi (i = 1, 2, ...),

where the numbers xi are to be determined.
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Definition 4.2. [9] The infinite system (4.5) is called regular if

(4.6)

∞∑

k=1

|ci,k| < 1 (i = 1, 2, ....)

and completely regular if

(4.7)
∞∑

k=1

|ci,k| 6 1 − θ < 1 (i = 1, 2, ....).

If the inequalities (4.6) (respectively, (4.7)) hold only for i = N + 1, N + 2, ...,
then system (4.5) is called quasi-regular (respectively, quasi-completely regular).

The theory and applications of regular infinite systems can be found in [9].

4.2. Reduction to a system of integral equations with logarithmic ker-

nel. Now we turn to system (2.33) and rewrite it in the form

(4.8)





2∑

n=1

F−1
[a∗mn(ξ)

|ξ| ûn(ξ)
]
(x) = f̃m(x), x ∈ (−a, a),

um(x) = F−1[ûm](x) = 0, x ∈ R \ (−a, a), m = 1, 2,

where

a∗11(ξ) = a∗22(ξ) =
sinh(|ξ|h) cosh(|ξ|h) − |ξ|h

2 sinh2(|ξ|h)
,(4.9)

a∗21(ξ) = a∗12(ξ) =
|ξ|h cosh(|ξ|h) − sinh(|ξ|h)

2 sinh2(|ξ|h)
.(4.10)

Theorem 4.2. The system of dual integral equations (4.8) with respect to (û1(ξ),
û2(ξ)) is equivalent to the following system of integral equations on (−a, a) :
(4.11)



1

2π

∫ a

−a
ln

∣∣∣ 1

x − t

∣∣∣u1(t)dt +

∫ a

−a
u1(t)k11(x − t)dt +

∫ a

−a
u2(t)k12(x − t)dt = f̃1(x),

1

2π

∫ a

−a
ln

∣∣∣ 1

x − t

∣∣∣u2(t)dt +

∫ a

−a
u1(t)k21(x − t)dt +

∫ a

−a
u2(t)k22(x − t)dt = f̃2(x),

where

ûm(ξ) = F [um](ξ) =

∫ a

−a
eitξum(t)dt, suppum ⊂ [−a, a], m = 1, 2,

(4.12)

k11(x) = k22(x) =
1

2π
ln

∣∣∣x coth
πx

4h

∣∣∣ +
1

2π

∫ ∞

0

2a∗11(ξ) − tanh(ξh)

ξ
cos ξxdξ,

(4.13)

k12(x) = k21(x) =
1

π

∫ ∞

0

a∗12(ξ)

ξ
cos(ξx)dξ.

(4.14)
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Proof. From the second equation in (4.8) we obtain (4.12). Substituting (4.8)
into the first equation in (4.8), using the convolution theorem for the Fourier
transforms we get

(4.15)

2∑

n=1

∫ a

−a
un(t)Kmn(x − t)dt = f̃m(x), x ∈ (−a, a),

where

(4.16) Kmn(x) = F−1
[a∗mn(ξ)

|ξ|
]
(x) =

1

π

∫ ∞

0

a∗mn(ξ)

ξ
cos(ξx) = kmn(x) (m 6= n).

Since

a∗mm(x) = O
(tanh(|ξ|h)

2

)
(ξ → 0, ξ → +∞)

we transform Kmm(x) as follows

Kmm(x) =
1

2π

∫ ∞

0

tanh(ξh)

ξ
cos(ξx)dξ +

1

2π

∫ ∞

0

2a∗mm(ξ) − tanh(ξh)

ξ
cos(ξx)dξ.

Using the formula 4.116 (2), p.530 [8]:
∫ ∞

0

tanh(βξ)

ξ
cos(αξ)dξ = ln

∣∣∣ coth
(απ

4β

)∣∣∣

we get

Kmm(x) =
1

2π
ln

∣∣∣ coth
(πx

4h

)∣∣∣ +
1

2π

∫ ∞

0

2a∗mm(ξ) − tanh
(
ξh

)

ξ
cos(ξx)dξ

(4.17)

=
1

2π
ln

∣∣∣1
x

∣∣∣ +
1

2π
ln

∣∣∣x coth
(πx

4h

)∣∣∣ +
1

2π

∫ ∞

0

2a∗mm(ξ) − tanh(ξh)

ξ
cos(ξx)dξ.

Substituting (4.16) and (4.17) in (4.15) we obtain (4.11). �

It is not difficult to show that for ξ → +∞ the following asymptotical behaviors

2a∗mm(ξ) − tanh(ξh) = O(ξe−2ξh), a∗mn(ξ) = O(ξe−ξh)(m 6= n)

hold. Therefore from (4.13), (4.14) and the above relations it follows that

kmm(x) and kmn(x) ∈ C∞[−a, a] (m,n = 1, 2;m 6= n).

4.3. Reduction to an infinite system of linear algebraic equations. We
will seek the solution of system (4.11) in the class L2

ρ(−a, a), which is represented
in the form

(4.18) um(x) =
vm(x)

ρ(x)
, m = 1, 2,

where vm(x) ∈ L2
ρ−1(−a, a). Then, due to Lemma 4.1 the functions um(x) will

belong to the space H
−1/2
o (−a, a). We make the following assumptions

(4.19) f̃m(x) ∈ H1/2(−a, a) ∩ L2
ρ−1(−a, a), m = 1, 2.
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Substituting (4.18) into (4.11) we have the following system of integral equa-
tions
(4.20)



1

2π

∫ a

−a
ln

∣∣∣ 1

x − t

∣∣∣v1(t)dt

ρ(t)
+

∫ a

−a

v1(t)

ρ(t)
k11(x − t)dt +

∫ a

−a

v2(t)

ρ(t)
k12(x − t)dt = f̃1(x),

1

2π

∫ a

−a
ln

∣∣∣ 1

x − t

∣∣∣v2(t)dt

ρ(t)
+

∫ a

−a

v1(t)

ρ(t)
k21(x − t)dt +

∫ a

−a

v2(t)

ρ(t)
k22(x − t)dt = f̃2(x).

Further, we expand the functions v1(t) and v2(t) into the series

(4.21) vm(t) =

∞∑

j=0

A
(m)
j Tj [η(t)], (m = 1, 2),

where A
(m)
j are unknown constants that are to be determined so that {A(m)

j }∞j=0 ∈
l2(m = 1, 2). Substituting (4.21) into (4.20), changing the order of integrations
and summations and using formula (4.3), we have the following system

(4.22)





1

2π
αnσnA

(1)
n +

∞∑

j=0

(A
(1)
j C

(11)
nj + A

(2)
j C

(12)
nj ) = F (1)

n ,

1

2π
αnσnA

(2)
n +

∞∑

j=0

(A
(1)
j C

(21)
nj + A

(2)
j C

(22)
nj ) = F (2)

n ,

n = 0, 1, 2, ...,

where

C
(11)
nj = C

(22)
nj =

∫ a

−a

Tn[η(x)]

ρ(x)
dx

∫ a

−a

Tj[η(t)]

ρ(t)
k11(x − t)dt,(4.23)

C
(12)
nj = C

(21)
nj =

∫ a

−a

Tn[η(x)]

ρ(x)
dx

∫ a

−a

Tj[η(t)]

ρ(t)
k12(x − t)dt,(4.24)

(4.25) F (1)
n =

∫ a

−a

Tn[η(x)]

ρ(x)
f̃1(x)dx, F (2)

n =

∫ a

−a

Tn[η(x)]

ρ(x)
f̃2(x)dx.

From the above reasoning and relation (4.3) we obtain readily.

Theorem 4.3. The system of integral equations (4.20) with respect to v1(t), v2(t) ∈
L2

ρ−1(−a, a) is equivalent to the system of linear algebraic equations (4.22) with

respect to {A(m)
j }∞j=0 ∈ l2 (m = 1, 2).

We introduce the notations

X2n+1 = A(1)
n , X2n+2 = A(2)

n , (n = 0, 1, 2, ...),(4.26)

E2n+1 =
2π

αnσn
F (1)

n , E2n+2 =
2π

αnσn
F (2)

n , (n = 0, 1, 2, ...),(4.27)

C2n+1,2j+1 =
2π

αnσn
C

(11)
nj , C2n+1,2j+2 =

2π

αnσn
C

(12)
nj , (n, j = 0, 1, 2, ...),(4.28)

C2n+2,2j+1 =
2π

αnσn
C

(21)
nj , C2n+2,2j+2 =

2π

αnσn
C

(22)
nj , (n, j = 0, 1, 2, ...).(4.29)
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Then system (4.22) can be written in the form

(4.30) Xm +

∞∑

k=1

Cm,kXk = Em (m = 1, 2, ...).

Lemma 4.4. It holds

(4.31) |Cn,j| 6
L

nj2
(n ≥ 2, j ≥ 2),

where L is a certain positive constant.

Proof. Taking changes of variables

x = a cos θ, t = a cos ϕ,

due to (4.28) and (4.29), we have

(4.32) Cn,j =
2π

αnσn

∫ π

0
cos(nθ)dθ

∫ π

0
cos(jϕ)kmk [a(cos θ − cos ϕ)]dϕ.

Denote the internal integral in (4.32) by Kmk,j(cos θ) and integrate it twice by
parts, we obtain

Kmk,j(cos θ) =
a2

j(j − 1)

∫ π

0
sin(j − 1)ϕ sin ϕk′′

mk[a(cos θ − cos ϕ)]dϕ

(4.33) − a2

j(j + 1)

∫ π

0
sin(j + 1)ϕ sin ϕk′′

mk[a(cos θ − cos ϕ)]dϕ.

Because kmk(x) are infinitely differentiable bounded functions on [−a, a], then
from (4.33) it follows that

(4.34) |Kmk,j(cos θ)| 6
L

j2
(j ≥ 2).

Consider now the integral

Lnj,mk :=

∫ π

0
cos(nθ)Kmk,j(cos θ)dθ.

Similarly as above, we get

(4.35) |Lnj,mk| 6
L

n2
(n ≥ 2).

From (4.32)– (4.35), due to (4.4), we obtain (4.31). �

The following lemma may be proved in the same way as Lemma 4.4.

Lemma 4.5. If the derivatives f̃
(k)
m (x),m = 1, 2 are continuous functions on

[−a, a], then the following inequalities hold:

(4.36) |En| 6
L

nk−1
(n = 1, 2, ...; k = 1, 2, ...).
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Theorem 4.6. Let f̃1(x) and f̃2(x) satisfy conditions (4.19) and be such that the

set {En}∞n=1, defined by (4.27) belongs to l2. Then the infinite system of linear

algebraic equations (4.30) possesses a unique solution {Xn}∞n=1 ∈ l2. This infinite

system is quasi-completely regular.

Proof. Denote by H the infinite coefficient matrix in the left-hand side of (4.30).
According to (4.31) the double series formed of the squares of components of
the H is convergent, so the infinite matrix H defines a completely continuous
operator mapping the Hilbert space l2 into itself. Therefore, the infinite system
(4.30) is Fredholm in l2. The uniqueness of a solution of this system follows from
the uniqueness of that of the system of dual equations (2.33). Hence it follows
that the infinite system (4.30) has a unique solution in l2. For a sufficiently large
number n = N, we have

∞∑

j=1

|Cnj | 6
L

n

∞∑

j=1

1

j2
6 1 − θ < 1 (n = N + 1, N + 2, ...).

Therefore the infinite system (4.30) is quasi-completely regular [9]. �

For the approximate calculations of the coefficients of the finite system (4.30)
one can use the quadrature formulas, for example [10].
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