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ABSTRACT. In this paper we present a thorough study on the existence of
traveling waves in a mathematical model of dispersal in a partially sedentary
age-structured population. This type of model was first proposed by Veit and
Lewis in [Am. Nat. 148 (1996), 255-274]. We choose the fecundity function to
be the Beverton-Holt type function. We extend the theory of traveling waves
in the population genetics model of Weinberger in [STAM J. Math. Anal. 13
(1982), 353-396] to the case when migration depends on age groups and a
fraction of the population does not migrate.

1. INTRODUCTION

In [24] a mathematical model for dispersal in a partially, sedentary age-structu-
red population was developed to simulate the spatial spread of the house finch
(carpodacus mezicanus). The house finch is native to the southern part of the
United States and to Mexico. It spread quickly in the eastern part of the United
States and Canada in the 1940s after the release of captive specimens in the New
York City area. The model is of the form

Nnti(z) = 8(1—pA)Nn(x)+(1—pJ)F(Nn(f€))+/KA(!w—y\)SpANn(y)dy

(1.1) + / K|z — y)psF(Na())dy, n=1,2,--,

where N,, = J, + A,, is the sum of the juvenile and adult bird densities in year n.
It is assumed that juvenile birds born in one season mature by the next season.
Adults survive from one season to the next with probability s. The number of
surviving offspring born in year n is denoted by the fecundity function F'(N,,).
Juveniles and adults may differ in their probability to disperse as well as in their
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dispersal behavior if they disperse. The fractions of dispersing juveniles and
adults are denoted by py and pa, respectively. The dispersal behavior is given
by the probability density functions K j, K 4, also called dispersal kernels.

In this paper, we will always assume that the fecundity function is a monotone
increasing and bounded function, for example a function of Beverton-Holt type
or, equivalently, of Holling type II. The Beverton-Holt function originated as a
stock-recruitment function in fisheries and is now very common in classic discrete-
time population models. By appropriate rescaling, we can always assume that F'
is of the form

krMu
(1.2) W= =D
with k + s = 1. All parameters are assumed positive. At low population density,

the per capita number of offspring is kr, and the carrying capacity of the non-
spatial model N, 11 = sN,, + F(N,,) is M.

As noted in [25], although this model was used to simulate the migration of
house finches in [24], no mathematical analysis was given yet. A first attempt
to study models with partially sedentary populations was made in [25]. These
authors studied the special case that dispersal probability and dispersal behavior
are independent of age-structure. More precisely, under the assumptions py = pa
and Kj = K 4, the above model falls within the framework considered in [25]. It
is the purpose of this paper to give a thorough study of the asymptotic behavior
of solutions of equations (1.1), (1.2) with pg # ps and K; # K4. Our goal
is to extend the fundamental theory for spreading speeds and traveling waves
developed by Weinberger to this case. For the existence of traveling waves, the
fundamental assumption on compactness of [26, Theorem 6.6] is not satisfied for
equation (1.1), nor the weak compactness condition in [10]. We will use a different
approach to prove the existence of traveling waves in this case. This idea is also
employed in [12]. Our main result is Theorem 3.5 that complements some results
in [25].

To simplify notation, we will assume that K; = K4 =: K from here on. We
return to the general case in the discussion.

Notations and Assumptions. We denote by R the real line. We also denote by
BM(R,R) (BC(R,R), respectively) the space of all measurable and essentially
bounded real valued functions on R (the space of all bounded continuous real
valued functions on R, respectively) with essential sup-norm. For a constant «,
we will denote the constant function R 3 x +— « by this number « for convenience
if this does not cause any confusion. Cy stands for the set {f € BC(R,R)|f(x) €
[0,M]}, and BM(R,[0,M]) := {f € BM(R,R)|f(xz) € [0, M]}. The metric on
C)y is defined by the sup norm. In BM (R, R), we use the natural order defined
as v < v if and only if u(xz) < v(z) for all z € R.

Unless otherwise stated, we assume that the parameters in the function F
satisfy > 1, M > 0. We also assume that K (|z|) is a probability density function
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defined on R and satisfies
o

(1.3) / " K (|z|)dz < oo, for all u € R.

—00

2. SPREADING SPEED

Most of the results in this section are derived from the general theory on
spreading speeds in [26]. For later use in the paper, we will discuss details of
these results below. Let us define a dynamical system u,11 = Q[u,] by setting

Qlul(x) = 8(1—pA)u(w)Jr(l—pJ)F(U(év))+/K(Irv—yl)SpAU(y)dy

(2.1) " / K(lz - y)psF(u(y))dy,

for each u € BM (R, R).

Lemma 2.1. Under the above motations and assumptions, the operator @) is
an operator acting in BM(R,R) leaving BC(R,R) invariant with the following
properties

i) Q0] =0, QM| =M, Qla] > « for all 0 < a < M;

i) If u,v € BM(R,R) such that u > v, then Qlu] > Q[v];

iii) If u, € BC(R,R) such that u, is convergent to u uniformly on each
bounded subset of R, then Q[uy](z) is convergent to Qu](x) for each = €
R;

iv) If a > M, then Qo] < «;

v) There is a constant 4 such that v < Q[y] < 7 for all v € [0,7), and
Q=7

Proof. Before proving the properties of (), we notice that from the definition of
@ it maps BM (R, R) into itself. Next, to show that it leaves BC(R,R) invariant
it is sufficient to prove that the integrals

(2.2) / K(z - yul)dy = — / K(lE)u(z - €)de,

(2.3) /K(Iw—yl)F(U(y))dy = —/K(IEI)F(U(w—S))dﬁ

depend continuously on z. In turn, this continuity is a standard property of the
convolution of a continuous function with an integrable function.
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Now we prove the properties of Q:
(i): This property is clear because of the assumption s+ k = 1. Indeed, Q[0] =
and

kr M M
QM](z) = 3(1_pA)M+(1—pJ)m / K(|z —y|)spaMdy
krM M
+/K y\pJM+( 1)Mdy
= (1 —pA)M + (1 —py)kM + spaM + pskM
= (s+k)M
(2.4) — M.

Notice that F'(«) > ka for all 0 < a < M. Therefore, for all 0 < a < M,

Qlal(@) > s —paat (1—pska+ / K (| - y))spacdy

— 00

4 / K(jz - y|)pskady

= s(1—pa)a+(1—prka+spra+pska
= (s+k)a
2.5) =

iii): This property is clear from the definition of Q.

(
(ii): This property follows since the function F' is increasing.
(iii
(iv): We have

kr(M + (r — 1)u) — kru(r — 1)
(M + (r = 1)u)?
B krM ok
(M + (r—1u)z2
Notice that F'(u) —k < 0 if u > M. Therefore, F(a) < ka if &« > M. This yields
that if o > M, then

-k

F'(u) — k

Qlal(z) < s(1—pa)at(1—pyka+ / K(|z — yl)spacdy

— 00

+/K(\fc—y\)mkady

(2.6) = o
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(v): Actually we can choose ¥ = M. In fact, for each v € (0, M) we have
F(v) > k~. Therefore, by the above computation (2.5), v < Q(v) < Q[M] =M
for all v € [0, M]. O

Next, we apply the general theory on spreading speeds in [26] to our dynamical
system

(27) Upt1 = Q[unL n = 17 2, e

Basically, according to the theory of [26], for our model the following procedure
of defining the spreading speed is valid: let us choose a function ¢ : R — R such
that

i) ¢ is continuous and non-increasing,
i) p(—00) = limy—_oo (t) € (0, M),
iii) ¢(s) =0 for s > 0.

We then define an operator R.[] on the space C); for every constant ¢ as
(2.8) Reful(s) = max{p(s), Qu(c + )|(s)}, s€ER,

and a sequence of functions {a,(c;-)} by

(2.9) ap+1 = Relay], ag = .

As shown in [26] the sequence {an(c;-)} is increasing and bounded, so for each
s € R, we obtain the pointwise limit

(2.10) lim a,(c;s) =alcs), seR.

Obviously, 0 < a(¢; s) < M for all s € R. The following number is called spreading
speed for our model

(2.11) ¢* = sup{c|a(c; +00) = M}.

Applying the theory in [26, Lemma 5.2 and Proposition 5.1] to our model gives
the following:

Lemma 2.2. i) For each c € R
(2.12) a(c; —o0) = M;
ii) If ¢ > c*, then

(2.13) a(c; +00) = 0.

Weinberger [26] proved that if there exists a bounded non-negative measure
m(z,dz) on R such that

o

(2.14) Qlu)(x) < / w(z — yymly, dy), ue C,

— 00
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then
1 o0
(2.15) ¢ <inf —1In / et*m(x, dr).
u>0 p

And if there exists a bounded non—negative measure [(x, dxr) with property that

f [(z, dz) > 1 and Q[u](z) > [ u( l(y, dy) for all u such that 0 < u(x) <,
then
1 o
(2.16) ¢* > inf —In / et l(x, dx).
n>0 [

Below we follow the argument of [25] to give an estimate of the spreading
speed. We see that since for u € Cyy F(u) < kru,
(2.17)

Qul(z) < [5(1 — pa) + (1 — py)kr] uz) + / K(le - y)) (spa + prkr) u(y)dy.

—00

If we let

m(x, dz) =[s(1 —pa)+ (1 —py)kr]do + K(|x|) (spa + pskr),
where dy is the Dirac delta measure, then (2.14) holds. On the other hand, for
each 1 < r1 < 7, there exists € > 0 such that F(u) > krju for u such that
0 <wu(z) < e for all x € R. Therefore, for such u
(2.18)

QUul(x) > [s(1 — pa) + (1 — ps)ri] u(z) + / K(le = y]) (spa + por1) u(y)dy.

We let

l(z, dz) :=[s(1 —pa)+ (1 —py)kri] oo + K(|z|)(spa + pskr1).
Then, f l(x, dx) > 1 and (2.16) holds. Next, since 71 can be chosen arbitrarily
between i and r, we have
1 o0
(2.19) " =inf — /(spA + prkr)et* K(|z|)dz + [s(1 — pa) + (1 — pg)kr].

p>0 [t
—0o0

3. TRAVELING WAVES

This section contains our main results of the paper.

Definition 3.1. A monotone traveling wave solution with speed ¢ connecting 0 to
M, or for short a traveling wave, of equation (1.1) is defined to be a non-increasing
continuous function w such that lim, .. w(z) = 0, limy,_sw(zx) = M, and
Nyp(z) := w(z — nc) is a solution of equation (1.1).



TRAVELING WAVES 325

If we substitute N, into (1.1), we will have
w(x—(n+1)e) = s(l—paw(z—nc)+ (1 —-ps)F(w(z—nc))

+/Jau—mwmw@—n@@

(3.1) + [ Ko = s Pluty —nedy, n=1.2,---.

If we set £ := o — (n+ 1)c and z := y — ne, then the above equation becomes
what is called "wave equation” associated with (1.1):

w(§) = s(l—paw(§+c)+ 1 —p)F(w(§+c)+ / K(|§ + ¢ = 2|)spaw(z)dz

(3.2) +/K(|f+c—z|)pJF(w(z))dz, n=12---.

For each u € Cjy, or more generally BM(R,R), and ¢ € R we set

(3.3) B.ul(z) = s(I—pa)u(z+c)+ (1 —ps)F(u(z+c)),
QM@)Z(/KW+WﬂWmMWM
(3.4) -+/zam+c—mmﬂwwwwy

Obviously, a monotone traveling wave solution to (1.1) is a non-increasing con-
tinuous function w with w(—o0) = M,w(co) = 0 that is a fixed point of Q. :=
B, + C.. We remark that although there are several extensions of Weinberger’s
theory on the existence of monotone traveling waves, to our best knowledge the
existence of monotone traveling wave to (1.1) is still open. The reason is the op-
erator (). does not satisfy any compactness conditions listed in [26], [10]. Volkov
and Lui extended Weinberger’s theory to a class of systems without compactness
conditions. However, the model considered in [25] includes our model (1.1) only
if pa4 = py, that means that age structure does not affect migration behavior.
However, it is more realistic to make the assumption that py # p4. This assump-
tion makes the problem of studying the existence of monotone traveling waves
much harder. Below we will prove the existence of monotone traveling waves of
(1.1) under assumption that the function F' in (1.1) is of the form (1.2).

Lemma 3.2. Assume that

(3.5) s(1—pa)+ (1 —ppkr < L
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Then, for each given w € Cyr (w € BM(R, [0, M]), respectively) the equation
operator u — B.lu] = w has a unique solution u in Cps (in BM (R, [0, M]), re-
spectively) which will be denoted by u = G.w.

Proof. Consider the function
krMzx
. =s(1— 1—py)e—r
(3.6) gw) = s —pa)o+ 1 —ps) g -1z’

For all z € [0, M],

x € [0, M].

krM(M + (r — 1)z) — krMax(r — 1)

J@) = s(l-pa)+(1-py) STES e
krM?
= 8(1—pA)+(1—pJ)(M+(T_1)@2
krM?

< 8(1—pA)+(1—pJ)(M+(T_1).0)2
= s(1—pa)+ (1 —pykr
< 1.

Therefore, there exists a positive 0 < p < 1 such that

(3.7) 0< sup | (z)| <p.
z€[0,M]

Next, we solve the equation u — B.[u] = w for each given w € C[0, M]. Note that
in this case, B, is a strict contraction because

1Belur] = Belualll - = suplg(ur (@ + ) = glus(z +¢))]
S
< sup|g' (9] Jur(z + ) —uz(z + ¢
£eR
(3.8) = pllur —uz.
Therefore, by a standard argument we can prove the existence of (I — B.)~! that
is Lipschitz continuous. U

Lemma 3.3. Assume that the kernel K (|x|) satisfies the above mentioned con-
ditions. Then, for each w € BM (R, [0, M]) that is monotone, the function C.[u]
18 CONLINUOUS.

Proof. The proof can be done using Lebesgue’s dominated Convergence Theorem.
O

Remark 3.4. We notice that although the operator B, is a strict contraction
in the uniform convergence topology it is not a strict contraction in the norm of
compact open topology as defined in [10]. Moreover, the operator C' — ¢ is not
compact in the norm of compact open topology because the kernel K may not be
continuous, so condition (A3) in [10] is not satisfied with the operator B, + C..
That is, the theory of traveling waves in [26] as well as its extension in [10] does
not apply to this case.
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The following is the main result of the paper:

Theorem 3.5. Let all assumptions in Lemmas 3.2 and 3.3 be satisfied. Then, if
¢ > c*, then there exists a monotone traveling wave to equation (1.1).

Proof. Let the function a(c;-) be defined as in (2.10). Set ¢1(s) := a(c;s). Note
that since a(c;-) is non-increasing and bounded, it is a measurable and bounded
function on R. We define a sequence

(39) (bn-i-l - QC[¢H]7 n Z 17 n = 17 27 T

We now show that {¢,} is a non-increasing sequence in BM (R, [0, M]). In fact,
by definition of the sequence {a,(c;-)}, we have

anyi(cis) = max{p'(s), Qlan(c;- + 5 +0))(0)}
(310) = max{(‘pz(s), Q[an(c; -+ C)](S)}
> Qlan(c;- +0))(s),

(3.11) = Qclan(c;-)](s).

Therefore,

(3.12) a(c;s) > Qclale;-)](s).

That is

(3.13) b1 > ¢2.

Since Q. is order-preserving, by the definition of ¢, 11, (3.13) yields that
(3.14) bn > Sni1, mE N

Therefore, the sequence {¢,} is pointwise non-increasing and bounded below
by zero (because these functions are non-negative), so it has a limit W that
is a non-increasing function, so it is measurable. We will show that W is a
traveling wave solution to equation (1.1). By Lemma 2.2, W(—o00) = M. Next,
0 < W(+00) < ¢1(+00) = 0, so, W(+o0) = 0. In particular, W is a fixed point
of Q., that is

(3.15) W = Q.[W] := B[W] + C.[W].

We only need to show that W is continuous for it to be a traveling wave as in
our definition. Since (3.15) is equivalent to the following

(3'16) W — BC[W] = CC[W]7
by Lemma 3.2 it is equivalent to
(3.17) W =[I - B 'C.[W].

By Lemma 3.3, the function C.[W] is continuous. In turn, by Lemma 3.2,
G.[W] = [I - B, 'C.[W] is continuous. Therefore, W is continuous, and thus it
is a wave solution of equation (1.1). O

Remark 3.6. As in [26, 10, 12] by using Lemma 2.2, we can easily show that if
¢ < ¢* the traveling waves do not exist. With this said, the spreading speed c¢* is
exactly the minimal wave speed of traveling wave solution to equation (1.1).
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4. DI1SCUSSION

In Section 3, we considered the existence of traveling waves when F' is of the
form (1.2). The function F' can be chosen to be a more general one that satisfies
the following conditions with given positive numbers r, k, M:

(H1) F € Ct0, M];

F(0)=0,and F(M)=kM, s+ k=1,

(u) > ku, for u € (0, M);

'(u) > 0, and F’(0) = kr, where r > 1 is a given constant;
(u) < kru, for v € [0, M];

/

(z

(H2)
(H3) F
(H4) F
(H5) F
6) F'(x) is non-increasing on [0, M].

(H

Then, the statement of the main results as well as its proof are unchaged.

Results of the previous sections can be easily extended to the case when the
habitat is multiple dimensional R¢ with d = 2,3,.... There are no big changes
in the statements of the results. And the ideas of proofs remain similar.

We turn to the more biological aspects of our work. Condition (3.5) imposes
an upper bound on the per capita offspring production or, more precisely, on the
proportion of individuals who do not disperse. The original model by Veit and
Lewis [24] allowed for different dispersal behavior of juveniles and adults. The
theory presented here easily extends to the case K4 # K ;. Most importantly,
Lemma 3.3 holds if the continuity conditions holds for both kernels. Formula
(2.19) for the spreading speed becomes ¢* = inf ¢ %/ﬁ(u), where

o

(4.1) K(p) = /[SPAKA(|<E|) + pskr K (|z])]e""dz + [s(1 — pa) + (1 — py)kr].

—00

More important differences between the model by Veit and Lewis and our analysis
here is that they considered the function F' to describe a strong Allee effect and
the dispersal probabilities, p;, p4, to depend on population density. A strong Allee
effect occurs if the per capita population growth rate is highest for intermediate
population densities so that the population actually declines for small densities.
While the existence of a spreading speed in the presence of an Allee effect is still
guaranteed by Weinberger’s theory, the existence of traveling waves for that case
is a wide open question. Equally open is the question of traveling waves and even
the existence of a spreading speed for models with density-dependent dispersal
probability. Some preliminary results and caveats were obtained in [11]. These
questions remain the subject of our future investigation.
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