PRODUCT OF COMPOSITION AND MULTIPLICATION OPERATORS

GOPAL DATT

ABSTRACT. The paper discusses some properties for the operator $W_{(u,T)} =$ $C_T M_u$ given by $f \mapsto u \circ T \cdot f \circ T$, on Orlicz spaces using the conditional expectation operator.

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space and let $\varphi : [0, \infty) \to [0, \infty)$ be a continuous convex function such that

(1) $\varphi(x) = 0$ if and only if $x = 0$,

(2) $\varphi(x) \to \infty$ as $x \to \infty$.

Such a function is known as an Orlicz function.

The Orlicz space $L_{\varphi,\Omega,\mathcal{A},\mu}$ consists of all those complex-valued measurable functions f on Ω such that

$$
\int_{\Omega} \varphi(\alpha|f(\omega)|) d\mu \ < \ \infty
$$

for some $\alpha > 0$.

The Orlicz space $L_{\varphi,\Omega,\mathcal{A},\mu}$ is a Banach space with respect to the Luxemburg norm

$$
||f||_{\varphi} = \inf \left\{ \epsilon > 0 : \int_{\Omega} \varphi \left(\frac{|f(\omega)|}{\epsilon} \right) d\mu \leq 1 \right\}.
$$

If there is no confusion about the measure space Ω or $\mathcal A$ or μ , then we simply denote the Orlicz space $L_{\varphi,\Omega,\mathcal{A},\mu}$ by L_{φ} . The Orlicz function φ is said to satisfy the Δ_2 -condition if for some $k > 0$,

$$
\varphi(2x) \leq k\varphi(x)
$$
 for all $x > 0$.

Some well known facts are the following:

(i) If φ satisfies Δ_2 -condition, then the class of simple functions is dense in L_{φ} . (ii) If $||f||_{\varphi} \leq 1$ then $I_{\varphi}(f) = \int \varphi(|f|) d\mu \leq ||f||_{\varphi}$. As a consequence $||f_n - f||_{\varphi} \to 0$ implies that $I_{\varphi}(f_n - f) \to 0$ for a sequence $\{f_n\}$ in L_{φ} . If φ satisfies Δ_2 -condition then the converse of the above fact is also true.

(iii) Corresponding to the Orlicz function φ , we can associate another Orlicz

Received March 29, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B33, 47B38; Secondary 46E30.

Key words and phrases. Weighted composition operator, composition operator, multiplication operator, Orlicz space.

function ψ (known as the complementary function to φ) such that the Banach dual L^*_{φ} of the Orlicz space L_{φ} is isometrically isomorphic to the Orlicz space L_{ψ} .

For more details on Orlicz spaces we refer [12].

An atom of a measure space $(\Omega, \mathcal{A}, \mu)$ is an element $A \in \mathcal{A}$ with $\mu(A) > 0$ such that for each $E \in \mathcal{A}$, if $E \subset A$ then either $\mu(E) = 0$ or $\mu(E) = \mu(A)$. A measure space having no atoms is called a non-atomic measure space. It is an interesting fact that every σ -finite measure space $(\Omega, \mathcal{A}, \mu)$ can be decomposed as

$$
\Omega = \Omega_1 \bigcup \Omega_2
$$

where Ω_1 is non-atomic and $\Omega_2 = \bigcup_{n \in \mathbb{N}} A_n$ is a countable union of disjoint atoms of finite measure.

A measurable transformation $T: \Omega \to \Omega$ satisfying $\mu(T^{-1}(B)) = 0$ whenever $\mu(B) = 0$ for $B \in \mathcal{A}$ is said to be a non-singular measurable transformation. If T is non-singular, then the measure μT^{-1} given by

$$
(\mu T^{-1})(B) = \mu(T^{-1}(B))
$$
 for $B \in \mathcal{A}$,

is absolutely continuous with respect to the measure μ . Hence by the Radon-Nikodym theorem, there exists a non-negative measurable function f_T such that

$$
(\mu T^{-1})(B) = \int_B f_T d\mu,
$$

for every $B \in \mathcal{A}$. The function f_T is called the Radon-Nikodym derivative of the measure μT^{-1} with respect to the measure μ . It is denoted by $f_T = d\mu T^{-1}/d\mu$.

Consider the σ -finite subalgebra $T^{-1}(\mathcal{A})$ of a σ -finite measure space $(\Omega, \mathcal{A}, \mu)$, then the conditional expectation with respect to $T^{-1}(\mathcal{A})$ is a transformation from $L^p(\Omega, \mathcal{A}, \mu)$ into $L^p(\Omega, T^{-1}(\mathcal{A}), \mu)$ and we denote this transformation by E.

For each A -measurable function f, there exists a A -measurable function g such that $E^{T^{-1}(\mathcal{A})}(f) = g \circ T$. We can assume that the support of g lies in the support of f_T , and then $E(f) = g \circ T$ for exactly one A-measurable function. In particular, $g = E(f) \circ T^{-1}$ is a well defined measurable function. For a deeper study of the properties and applications of expectation operator, we refer [8] and [11].

Let $T : \Omega \to \Omega$ be a non-singular transformation and u be a complex-valued measurable function defined on Ω . The bounded linear transformation $M_u : f \mapsto$ $u \cdot f$ on a Banach function space is called a *multiplication operator* induced by u and the bounded linear transformation $C_T : f \mapsto f \circ T$ on a Banach function space is called a *composition operator* induced by T . These operators are discussed on Orlicz spaces by Komal and Gupta in [9]. Weighted composition operators induced by u and T, given by $f \mapsto u \cdot f \circ T$, are studied on Orlicz spaces in [6]. Lorentz spaces in [2] and on Orlicz-Lorentz spaces in [1]. In [8], Jabbarzadeh studied some properties for this class of operators on L^p spaces and Orlicz spaces using conditional expectation operators. A weighted composition operator is the product of a multiplication operator with a composition operator. It is possible to find u and T inducing the weighted composition operator, whereas the composition operator C_T alone may not be defined (see [8], Remark 2.6). Now, the present paper extend the study for the operators $W_{(u,T)}$ given by

$$
W_{(u,T)}(f)(\omega) = u(T(\omega))f(T(\omega)),
$$

where u is a complex-valued measurable function and T is a non-singular measurable transformation, on the Orlicz space L_{∞} .

We denote the class of all bounded operators on a Banach space X by $\mathfrak{B}(X)$ and the kernel and range of an operator P on X by $\text{Ker}(P)$ and $R(P)$, respectively. If $W_{(u,T)}$ is bounded with range in L_{φ} , then we denote it by writing $W_{(u,T)} \in$ $\mathfrak{B}(L_{\varphi})$. Although $W_{(u,T)}f = C_T M_u f$, but one can still find u and T inducing a bounded operator $W_{(u,T)}$ and not inducing the composition operator C_T . If $u \equiv 1$, then $W_{(u,T)} \equiv C_T$ and if T is the identity mapping, then $W_{(u,T)} \equiv M_u$. If we take $\Omega = [0, 1], u \equiv 0, \varphi(\omega) = \omega^p, 1 \leq p < \infty$ and $T(\omega) = \omega^3$, then $W_{(u,T)} = 0 \in \mathfrak{B}(L_{\varphi}).$ However, T does not induce the composition operator C_T on L_{φ} .

The adjoint of $W_{(u,T)}$ is obtained using the conditional expectation operator. Corollary 2.8 of the paper provides a characterization for the compactness of $W_{(u,T)}$. However, the same result is obtained for the weighted composition operator on Lorentz spaces in [2].

2. ADJOINT OF $W_{(u,T)}$

Now onwards, we assume that φ satisfies Δ_2 -condition, u is a complex-valued measurable mapping and T is a non-singular measurable transformation. The non-singularity of T guarantees that $W_{(u,T)}$ is well defined as a mapping from L_{φ} into $L(\mu)$, the linear space of all complex-valued measurable functions. The following result can be easily proved along the lines of arguments given in [8, Theorem 3.1].

Theorem 2.1. If the mapping $W_{(u,T)}$ from L_{φ} into $L(\mu)$, the linear space of all complex-valued measurable functions, is such that $W_{(u,T)}(L_\varphi) \subseteq L_\varphi$ then $W_{(u,T)} \in$ $\mathfrak{B}(L_{\varphi}).$

Proof. Let a sequence $\{f_n\}$ and elements f and g in L_{φ} be such that

 $||f_n - f||_{\varphi} \to 0$ and $||W_{(u,T)}f_n - g||_{\varphi} \to 0$

as $n \to \infty$. Then along the lines of arguments in [7, Theorem 3.1], we find a subsequence $\{f_{n_k}\}\$ of $\{f_n\}$ satisfying $\varphi(|f_{n_k} - f|) \to 0$ a.e. on Ω and hence $\varphi(|u \cdot f_{n_k} - u \cdot f|) \to 0$ a.e. Since T is non-singular, this means that $\varphi(|u \circ T \cdot$ $f_{n_k} \circ T - u \circ T \cdot f \circ T$ $\to 0$ a.e. on Ω . Moreover, we can find a subsequence ${f_{n_{k'}}}$ of ${f_{n_k}}$ such that $\varphi(|u \circ T \cdot f_{n_{k'}} \circ T - g|) \to 0$ a.e. on Ω . Also, we have $\varphi(|u \circ T \cdot f_{n_{k'}} \circ T - u \circ T \cdot f \circ T|) \to 0$ a.e. on Ω . Therefore, since φ satisfies Δ_2 –condition,

$$
\|W_{(u,T)}f_{n_{k^{'}}}-g\|_{\varphi}\rightarrow 0
$$
 and $\|W_{(u,T)}f_{n_{k^{'}}}-W_{(u,T)}f\|_{\varphi}\rightarrow 0$

as $n_{k'} \to \infty$. This yields that $W_{(u,T)}f = g$ and hence by the closed graph theorem, $W_{(u,T)}$ is bounded on L_{φ} .

296 GOPAL DATT

Theorem 2.2. If u and f_T belong to $L^{\infty}(\mu)$ then $W_{(u,T)} \in \mathfrak{B}(L_{\varphi})$.

Proof. Let $f \in L_{\varphi}$. Along the lines of computations made in [8, Theorem 3.1], we find that

$$
||W_{(u,T)}f||_{\varphi} \le k||u||_{\infty}||f||_{\varphi},
$$

where $k = \max(1, ||f_T||_{\infty})$. Therefore, $W_{(u,T)} \in \mathfrak{B}(L_{\varphi})$.

Theorem 2.2 can also be obtained by using the boundedness of the multi-

plication operator M_u (see [9]) and the composition operator C_T (see [4]) to the fact that $W_{(u,T)} = C_T M_u$. Now, we consider the multiplication operator $M_u: L_\varphi \mapsto L(\mu)$ given by

$$
M_u f = u \cdot f
$$

for $f \in L_{\infty}$. Then

$$
||W_{(u,T)}f||_{\varphi} = \inf \left\{ \epsilon > 0 : \int_{\Omega} \varphi \left(\frac{|u \circ T \cdot f \circ T|}{\epsilon} \right) d\mu \le 1 \right\}
$$

=
$$
\inf \left\{ \epsilon > 0 : \int_{\Omega} \varphi \left(\frac{|u \cdot f|}{\epsilon} \right) d\mu T^{-1} \le 1 \right\}
$$

=
$$
||M_u f||_{\varphi, \mu T^{-1}},
$$

where M_u is the multiplication operator from the Orlicz space $L_{\varphi,\Omega,\mathcal{A},\mu}$ into the Orlicz space $L_{\varphi,\Omega,A,\mu}$ ⁻¹.

Now, using the above observation and the result for multiplication operators in [9], we extend the results for the weighted composition operator on the Orlicz space L_{φ} as follows:

Theorem 2.3. The linear transformation $W_{(u,T)}$: $L_{\varphi} \mapsto L(\mu)$, is a bounded operator on L_{φ} if and only if $u \in L^{\infty}(\mu T^{-1})$.

Proof. Suppose $W_{(u,T)}: L_{\varphi} \mapsto L(\mu)$, is a bounded operator on L_{φ} . Assume on the contrary that, u is not essentially bounded with respect to the measure μT^{-1} , equivalently $u \circ T$ is not essentially bounded with respect to the measure μ . Then it is easy to verify (similarly as in [9, Theorem 2.1]) that, for each natural number $n, \chi_{E_n} \in L_\varphi$ and

$$
||W_{(u,T)}\chi_{E_n}||_{\varphi} = ||M_u \chi_{E_n}||_{\varphi, \mu T^{-1}} = ||M_{u \circ T} \chi_{E_n}||_{\varphi} \geq n ||\chi_{E_n}||_{\varphi},
$$

where $E_n = \{x \in \Omega : |u(T(x))| > n\}$. This contradicts the boundedness of $W_{(u,T)}$. Hence $u \in L^{\infty}(\mu T^{-1})$.

The converse follows easily as, if $u \in L^{\infty}(\mu T^{-1})$ i.e. $u \circ T \in L^{\infty}$ then by using [9, Theorem 2.1], $f \mapsto u \circ T \cdot f$ is a bounded operator on L_{φ} . Also $f \mapsto f \circ T$ is bounded on L_{φ} since $f_T \in L^{\infty}$. Hence $W_{(u,T)}$ is bounded on L_{φ} .

Theorem 2.4. Let $W_{(u,T)} \in \mathfrak{B}(L_{\varphi})$. Then

(1) $W_{(u,T)}$ is a compact operator if and only if for each $\epsilon > 0$, $L_{\varphi}(u_{\epsilon})$ is finite dimensional, where

$$
u_{\epsilon} = \{ \omega \in \Omega : u(\omega) \ge \epsilon \text{ a.e. } \mu T^{-1} \}
$$

and

$$
L^{\varphi}(u_{\epsilon}) = \{f\chi_{u_{\epsilon}} : f \in L_{\varphi}\}.
$$

- (2) $W_{(u,T)}$ has closed range if and only if there exists $\delta > 0$ such that $u(\omega) \geq \delta$ a.e. on the support of u, with respect to the measure μT^{-1} .
- (3) $W_{(u,T)}$ is Fredholm if and only if there exists $\delta > 0$ such that $u(\omega) \geq \delta$ a.e. on Ω , with respect to the measure μT^{-1} .

Proof. The proof follows by applying the ideas used in Theorem 2.1, Theorem 2.3 and the results [9, Theorems 3.1, 4.1, 4.2] which are extended on Lorentz spaces in [3].

Let φ, ψ be two complementary Orlicz functions. Now for each $g \in L_{\psi}$, define a bounded linear functional F_g on L_φ given by

$$
F_g(f) = \int f \cdot g d\mu
$$

for each $f \in L_{\varphi}$. Then the mapping $g \mapsto F_g$ is an isometry from L_{ψ} onto L_{φ}^* and hence the norm dual of L_{φ} can be identified with L_{ψ} (see [11]).

Theorem 2.5. Let $W_{(u,T)} \in \mathfrak{B}(L_{\varphi})$. Then the adjoint $W_{(u,T)}^*$ of $W_{(u,T)}$ is given by

$$
W^*_{(u,T)}g = f_T \cdot u \cdot E(g) \circ T^{-1}
$$

for each $g \in L_{\psi}$.

Proof. Let $A \in \mathcal{A}$ be such that $\mu(A) < \infty$, then for $g \in L_{\psi}$,

$$
(W_{(u,T)}^* F_g)(\chi_A) = F_g(W_{(u,T)} \chi_A)
$$

=
$$
\int (W_{(u,T)} \chi_A) \cdot g d\mu
$$

=
$$
\int u \circ T \cdot \chi_A \circ Tg d\mu
$$

=
$$
\int E(u \circ T \cdot g) \cdot \chi_A \circ Td\mu
$$

=
$$
\int u \circ T \cdot E(g) \cdot \chi_A \circ Td\mu
$$

=
$$
\int f_T \cdot u \cdot E(g) \circ T^{-1} \cdot \chi_A d\mu
$$

=
$$
(F_{f_T \cdot u \cdot E(g) \circ T^{-1}})(\chi_A).
$$

Hence, $(W^*_{(u,T)}F_g) = F_{f_T \cdot u \cdot E(g) \circ T^{-1}}$. On identifying g with F_g , we find that $(W^*_{(u,T)}g) = f_T \cdot u \cdot E(g) \circ T^{-1}$, for each $g \in L_{\psi}$.

Corollary 2.6. Let Ω be a non-atomic measure space and $W_{(u,T)} \in \mathfrak{B}(L_{\psi})$. Then the kernel of $W_{(u,T)}$ is either zero dimensional or infinite dimensional.

298 GOPAL DATT

Proof. For $f \in L_{\psi}$, on replacing g by $W_{(u,T)}f$ in the above theorem, we have

$$
W_{(u,T)}^*(W_{(u,T)}f) = f_T \cdot u \cdot E(W_{(u,T)}f) \circ T^{-1} = f_T \cdot u^2 \cdot f = M_h f,
$$

where $h = f_T \cdot u^2$. Hence, $W^*_{(u,T)}W_{(u,T)} = M_h$. Also Ker $W_{(u,T)} = L_{\psi}(S_{f_T \cdot u^2}) = L_{\psi}(S_{f_T \cdot u})$, where $S_{f_T \cdot u}$ denotes the support of $f_T \cdot u$ and

$$
L_{\psi}(S_{f_T\cdot u}) = \{f \chi_{S_{f_T\cdot u}} : f \in L_{\psi}\}.
$$

Thus, since Ω is non-atomic, if $\mu(S_{f_T u}) = 0$ then the kernel of $W_{(u,T)}$ is zero dimensional and if $\mu(S_{f_T \cdot u}) > 0$ then the kernel of $W_{(u,T)}$ is infinite dimensional. \Box

Using the characterization known for the Fredholm multiplication operators on Orlicz spaces, we have the following:

Corollary 2.7. Let Ω be a non-atomic measure space and $W_{(u,T)} \in \mathfrak{B}(L_{\psi})$. Then $W^*_{(u,T)}W_{(u,T)}$ is a Fredholm operator if and only if there exists $\delta > 0$ such that $|f_T \cdot u^2| \geq \delta$ a.e. on Ω .

The only compact multiplication operator on the Orlicz space when the measure is non-atomic, is the zero operator. Using this observation, our next result which follows as a corollary to the Theorem 2.5, characterizes the compactness of the weighted composition operators on Orlicz spaces when the measure space under consideration is non-atomic.

Corollary 2.8. Let Ω be a non-atomic measure space and $W_{(u,T)} \in \mathfrak{B}(L_{\psi})$. Then $W_{(u,T)}$ is a compact operator if and only if $f_T \cdot u = 0$ a.e. on Ω .

Proof. Suppose $W_{(u,T)}f$ is a compact weighted composition operator on L_{ψ} then $W^*_{(u,T)}W_{(u,T)}$ is a compact operator on L_{ψ} . So, M_h , where $h = f_T \cdot u^2$ is a compact operator on L_{ψ} . Hence, $h = f_T \cdot u^2 = 0$ a.e. on Ω , equivalently, $f_T \cdot u = 0$ a.e. on Ω . Conversely, if $f_T \cdot u = 0$ a.e. on Ω then $u \circ T \cdot f \circ T = 0$ for each $f \in L_{\psi}$ so that $W_{(u,T)}$ is a zero operator. Hence the result.

Corollary 2.9. Let Ω be a non-atomic measure space and $W_{(u,T)} \in \mathfrak{B}(L_{\psi}).$ Then $W = W^*_{(u,T)}W_{(u,T)}$ is a compact operator if and only if $W_{(u,T)}$ is a compact operator.

Theorem 2.10. If $W_{(u,T)} \in \mathfrak{B}(L_{\varphi})$ has closed range and the co-dimension is finite then $W_{(u,T)}$ is surjective.

Proof. Suppose on the contrary that, $W_{(u,T)}$ is not surjective and let $f_0 \in L_\varphi \setminus$ $R(W_{(u,T)})$. Since $R(W_{(u,T)})$ is closed, we can find a function $g_0 \in L_{\psi}$, where ψ is the complementary Orlicz function to φ , such that

$$
\int f_0 g_0 d\mu = 1 \quad \text{and} \quad \int (W_{(u,T)}f) g_0 d\mu = 0
$$

for all $f \in L_{\varphi}$. From the first equality, $\int \text{Re}(f_0 g_0) d\mu = 1$. Hence the set

$$
E_{\epsilon} = \{ \omega \in \Omega : \text{Re}(f_0 g_0)(\omega) \ge \epsilon \}
$$

must have positive measure for some $\epsilon > 0$. Since μ is non-atomic, we can choose a sequence ${E_n}$ of subsets of E_ϵ with $0 < \mu(E_n) < \infty$ and $E_m \cap E_n = \emptyset$ $(m \neq n)$. Let $g_n = \chi_{E_n} g_0$. Then each $g_n \in L_{\psi}$ and is nonzero because

$$
\operatorname{Re}\int f_0g_nd\mu=\operatorname{Re}\int_{E_n}f_0g_0d\mu\ \ge\ \epsilon\mu(E_n)>0.
$$

Furthermore, for each $f \in L_{\varphi}, \ \chi_{E_n} f$ is in L_{φ} , and so

$$
(W_{(u,T)}^*g_n)(f) = \int f \cdot f_T \cdot u \cdot E(g_n) \circ T^{-1} d\mu
$$

\n
$$
= \int_{E_n} f \cdot u \cdot E(g_0) \circ T^{-1} \cdot f_T d\mu
$$

\n
$$
= \int_{E_n} f \cdot u \cdot E(g_0) \circ T^{-1} d\mu T^{-1}
$$

\n
$$
= \int_{T^{-1}(E_n)} u \circ T \cdot f \circ T \cdot E(g_0) d\mu
$$

\n
$$
= \int_{T^{-1}(E_n)} E(g_0 \cdot u \circ T \cdot f \circ T) d\mu
$$

\n
$$
= \int_{T^{-1}(E_n)} g_0 \cdot u \circ T \cdot f \circ T d\mu
$$

\n
$$
= \int g_0 \cdot u \circ T \cdot f \circ T \cdot \chi_{E_n} \circ T d\mu
$$

\n
$$
= \int g_0 (W_{(u,T)}(\chi_{E_n} f)) d\mu = 0.
$$

This implies $g_n \in \text{Ker}W^*_{(u,T)}$. Thus the sequence $\{g_n\}$ forms a linearly independent subset of $\text{Ker}W_{(u,T)}^*$. This contradicts the fact that co-dimension of $W_{(u,T)}$ is finite. Hence $W_{(u,T)}$ is surjective.

Remark. Theorem 2.5, the corollaries based on this theorem and Theorem 2.10 all hold almost along the same lines of proof, when the spaces under consideration are Lorentz spaces $L(p,q)$, $1 < p < \infty$, $1 < q < \infty$ or Lebesgue spaces L^p , $1 <$ $p < \infty$.

ACKNOWLEDGEMENTS

The suggestions and comments of the referee for the improvement of the paper are gratefully acknowledged. The author is also thankful to Professor S. C. Arora for his valuable guidance.

REFERENCES

- [1] S. C. Arora and Gopal Datt, Multiplication and composition induced operators on Orlicz-Lorentz spaces, J. Adv. Res. Pure Math. 1(1) (2009), 49-64.
- [2] S. C. Arora, Gopal Datt and Satish Verma, Weighted composition operators on Lorentz spaces, Bull. Korean Math. Soc. 44(4) (2007), 701-708.

300 GOPAL DATT

- [3] S. C. Arora, Gopal Datt and Satish Verma, Multiplication operators on Lorentz spaces, Indian J. Math. 48(3) (2006), 317-329.
- [4] C. Benett and R. Sharpley, *Interpolation of operators*, Pure and Applied Mathematics, Vol. 129, Academic Press London, 1988.
- [5] Y. Cui, H. Hudzik, Romesh Kumar and L. Maligranda, Composition operators in Orlicz spaces, J. Austral. Math. Soc. 76(2) (2004), 189-206.
- [6] S. Gupta, B. S. Komal and Nidhi Suri, Weighted composition operators on Orlicz spaces, Int. J. Contem. Math. Sciences 5(1) (2010), 11-20.
- [7] R. A. Hunt, On $L(p,q)$ spaces, L' Enseignment Math. 12(2) (1966), 249-276.
- [8] M. R. Jabbarzadeh, A note on weighted composition operators on measurable function spaces, J. Korean Math. Soc. 41(1) (2004), 95-105.
- [9] B. S. Komal and Shally Gupta, Multiplication operators on Orlicz spaces, Int. Equ. Oper. Theory 41 (2001), 324-330.
- [10] A. Kufner, O. John and S. Fucik, *Function spaces*, Noordhoff International Publishing, Leyden, 1977.
- [11] A. Lambert, *Localising sets for sigma-algebras and related point transformations*, Proc. Royal Soc. Edinburgh, Series A118 (1991), 111-118.
- [12] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekkar, Inc. New York, 1991.

Department of Mathematics PGDAV College, University of Delhi Delhi-110065, India $\it E\mbox{-}mail\;address\mbox{:}\;g$ opal.d.sati@gmail.com