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PRODUCT OF COMPOSITION AND

MULTIPLICATION OPERATORS

GOPAL DATT

Abstract. The paper discusses some properties for the operator W(u,T ) =
CTMu given by f 7→ u ◦ T · f ◦ T , on Orlicz spaces using the conditional
expectation operator.

1. Introduction

Let (Ω,A, µ) be a σ-finite measure space and let ϕ : [0,∞) → [0,∞) be a
continuous convex function such that

(1) ϕ(x) = 0 if and only if x = 0,
(2) ϕ(x)→∞ as x→∞.

Such a function is known as an Orlicz function.
The Orlicz space Lϕ,Ω,A,µ consists of all those complex-valued measurable func-

tions f on Ω such that ∫
Ω
ϕ(α|f(ω)|)dµ < ∞

for some α > 0.
The Orlicz space Lϕ,Ω,A,µ is a Banach space with respect to the Luxemburg

norm

‖f‖ϕ = inf

{
ε > 0 :

∫
Ω
ϕ

(
|f(ω)|
ε

)
dµ ≤ 1

}
.

If there is no confusion about the measure space Ω or A or µ, then we simply
denote the Orlicz space Lϕ,Ω,A,µ by Lϕ. The Orlicz function ϕ is said to satisfy
the ∆2-condition if for some k > 0,

ϕ(2x) ≤ kϕ(x) for all x > 0.

Some well known facts are the following:
(i) If ϕ satisfies ∆2-condition, then the class of simple functions is dense in Lϕ.
(ii) If ‖f‖ϕ ≤ 1 then Iϕ(f) =

∫
ϕ(|f |)dµ ≤ ‖f‖ϕ. As a consequence ‖fn−f‖ϕ → 0

implies that Iϕ(fn−f)→ 0 for a sequence {fn} in Lϕ. If ϕ satisfies ∆2-condition
then the converse of the above fact is also true.
(iii) Corresponding to the Orlicz function ϕ, we can associate another Orlicz
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function ψ (known as the complementary function to ϕ) such that the Banach
dual L∗ϕ of the Orlicz space Lϕ is isometrically isomorphic to the Orlicz space Lψ.

For more details on Orlicz spaces we refer [12].
An atom of a measure space (Ω,A, µ) is an element A ∈ A with µ(A) > 0 such

that for each E ∈ A, if E ⊂ A then either µ(E) = 0 or µ(E) = µ(A). A measure
space having no atoms is called a non-atomic measure space. It is an interesting
fact that every σ-finite measure space (Ω,A, µ) can be decomposed as

Ω = Ω1

⋃
Ω2

where Ω1 is non-atomic and Ω2 =
⋃
n∈NAn is a countable union of disjoint atoms

of finite measure.
A measurable transformation T : Ω → Ω satisfying µ(T−1(B)) = 0 whenever

µ(B) = 0 for B ∈ A is said to be a non-singular measurable transformation. If T
is non-singular, then the measure µT−1 given by

(µT−1)(B) = µ(T−1(B)) for B ∈ A,

is absolutely continuous with respect to the measure µ. Hence by the Radon-
Nikodym theorem, there exists a non-negative measurable function fT such that

(µT−1)(B) =

∫
B
fTdµ,

for every B ∈ A. The function fT is called the Radon-Nikodym derivative of the
measure µT−1 with respect to the measure µ. It is denoted by fT = dµT−1/dµ.

Consider the σ-finite subalgebra T−1(A) of a σ-finite measure space (Ω, A, µ),
then the conditional expectation with respect to T−1(A) is a transformation from
Lp(Ω,A, µ) into Lp(Ω, T−1(A), µ) and we denote this transformation by E.

For each A-measurable function f , there exists a A-measurable function g such

that ET
−1(A)(f) = g ◦T . We can assume that the support of g lies in the support

of fT , and then E(f) = g◦T for exactly one A-measurable function. In particular,
g = E(f) ◦ T−1 is a well defined measurable function. For a deeper study of the
properties and applications of expectation operator, we refer [8] and [11].

Let T : Ω → Ω be a non-singular transformation and u be a complex-valued
measurable function defined on Ω. The bounded linear transformation Mu : f 7→
u · f on a Banach function space is called a multiplication operator induced by u
and the bounded linear transformation CT : f 7→ f ◦T on a Banach function space
is called a composition operator induced by T . These operators are discussed
on Orlicz spaces by Komal and Gupta in [9]. Weighted composition operators
induced by u and T , given by f 7→ u · f ◦ T, are studied on Orlicz spaces in [6],
Lorentz spaces in [2] and on Orlicz-Lorentz spaces in [1]. In [8], Jabbarzadeh
studied some properties for this class of operators on Lp spaces and Orlicz spaces
using conditional expectation operators. A weighted composition operator is the
product of a multiplication operator with a composition operator. It is possible
to find u and T inducing the weighted composition operator, whereas the com-
position operator CT alone may not be defined (see [8], Remark 2.6). Now, the
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present paper extend the study for the operators W(u,T ) given by

W(u,T )(f)(ω) = u(T (ω))f(T (ω)),

where u is a complex-valued measurable function and T is a non-singular mea-
surable transformation, on the Orlicz space Lϕ.

We denote the class of all bounded operators on a Banach space X by B(X)
and the kernel and range of an operator P onX by Ker(P ) andR(P ), respectively.
If W(u,T ) is bounded with range in Lϕ, then we denote it by writing W(u,T ) ∈
B(Lϕ). Although W(u,T )f = CTMuf , but one can still find u and T inducing
a bounded operator W(u,T ) and not inducing the composition operator CT . If
u ≡ 1, then W(u,T ) ≡ CT and if T is the identity mapping, then W(u,T ) ≡ Mu.

If we take Ω = [0, 1], u ≡ 0, ϕ(ω) = ωp, 1 ≤ p < ∞ and T (ω) = ω3, then
W(u,T ) = 0 ∈ B(Lϕ). However, T does not induce the composition operator CT
on Lϕ.

The adjoint of W(u,T ) is obtained using the conditional expectation opera-
tor. Corollary 2.8 of the paper provides a characterization for the compactness
of W(u,T ). However, the same result is obtained for the weighted composition
operator on Lorentz spaces in [2].

2. Adjoint of W(u,T )

Now onwards, we assume that ϕ satisfies ∆2-condition, u is a complex-valued
measurable mapping and T is a non-singular measurable transformation. The
non-singularity of T guarantees that W(u,T ) is well defined as a mapping from
Lϕ into L(µ), the linear space of all complex-valued measurable functions. The
following result can be easily proved along the lines of arguments given in [8,
Theorem 3.1].

Theorem 2.1. If the mapping W(u,T ) from Lϕ into L(µ), the linear space of all
complex-valued measurable functions, is such that W(u,T )(Lϕ) ⊆ Lϕ then W(u,T ) ∈
B(Lϕ).

Proof. Let a sequence {fn} and elements f and g in Lϕ be such that

‖fn − f‖ϕ → 0 and ‖W(u,T )fn − g‖ϕ → 0

as n→∞. Then along the lines of arguments in [7, Theorem 3.1], we find a
subsequence {fnk} of {fn} satisfying ϕ(|fnk − f |) → 0 a.e. on Ω and hence
ϕ(|u · fnk − u · f |) → 0 a.e. Since T is non-singular, this means that ϕ(|u ◦ T ·
fnk ◦ T − u ◦ T · f ◦ T |) → 0 a.e. on Ω. Moreover, we can find a subsequence
{fn

k
′ } of {fnk} such that ϕ(|u ◦ T · fn

k
′ ◦ T − g|) → 0 a.e. on Ω. Also, we have

ϕ(|u ◦ T · fn
k
′ ◦ T − u ◦ T · f ◦ T |) → 0 a.e. on Ω. Therefore, since ϕ satisfies

∆2−condition,

‖W(u,T )fn
k
′ − g‖ϕ → 0 and ‖W(u,T )fn

k
′ −W(u,T )f‖ϕ → 0

as nk′ →∞. This yields that W(u,T )f = g and hence by the closed graph theorem,
W(u,T ) is bounded on Lϕ. �
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Theorem 2.2. If u and fT belong to L∞(µ) then W(u,T ) ∈ B(Lϕ).

Proof. Let f ∈ Lϕ. Along the lines of computations made in [8, Theorem 3.1],
we find that

‖W(u,T )f‖ϕ ≤ k‖u‖∞‖f‖ϕ,
where k = max (1, ‖fT ‖∞). Therefore, W(u,T ) ∈ B(Lϕ). �

Theorem 2.2 can also be obtained by using the boundedness of the multi-
plication operator Mu (see [9]) and the composition operator CT (see [4]) to
the fact that W(u,T ) = CTMu. Now, we consider the multiplication operator
Mu : Lϕ 7→ L(µ) given by

Muf = u · f
for f ∈ Lϕ. Then

‖W(u,T )f‖ϕ = inf

{
ε > 0 :

∫
Ω
ϕ

(
|u ◦ T · f ◦ T |

ε

)
dµ ≤ 1

}
= inf

{
ε > 0 :

∫
Ω
ϕ

(
|u · f |
ε

)
dµT−1 ≤ 1

}
= ‖Muf‖ϕ,µT−1 ,

where Mu is the multiplication operator from the Orlicz space Lϕ,Ω,A,µ into the
Orlicz space Lϕ,Ω,A,µT−1 .

Now, using the above observation and the result for multiplication operators
in [9], we extend the results for the weighted composition operator on the Orlicz
space Lϕ as follows:

Theorem 2.3. The linear transformation W(u,T ) : Lϕ 7→ L(µ), is a bounded

operator on Lϕ if and only if u ∈ L∞(µT−1).

Proof. Suppose W(u,T ) : Lϕ 7→ L(µ), is a bounded operator on Lϕ. Assume on

the contrary that, u is not essentially bounded with respect to the measure µT−1,
equivalently u◦T is not essentially bounded with respect to the measure µ. Then
it is easy to verify (similarly as in [9, Theorem 2.1]) that, for each natural number
n, χEn ∈ Lϕ and

‖W(u,T )χEn‖ϕ = ‖MuχEn‖ϕ,µT−1 = ‖Mu◦TχEn‖ϕ ≥ n ‖χEn‖ϕ,

where En = {x ∈ Ω : |u(T (x))| > n}. This contradicts the boundedness of
W(u,T ). Hence u ∈ L∞(µT−1).

The converse follows easily as, if u ∈ L∞(µT−1) i.e. u ◦ T ∈ L∞ then by using
[9, Theorem 2.1], f 7→ u ◦ T · f is a bounded operator on Lϕ. Also f 7→ f ◦ T is
bounded on Lϕ since fT ∈ L∞. Hence W(u,T ) is bounded on Lϕ. �

Theorem 2.4. Let W(u,T ) ∈ B(Lϕ). Then

(1) W(u,T ) is a compact operator if and only if for each ε > 0, Lϕ(uε) is finite
dimensional, where

uε = {ω ∈ Ω : u(ω) ≥ ε a.e. µT−1}
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and

Lϕ(uε) = {fχuε : f ∈ Lϕ}.
(2) W(u,T ) has closed range if and only if there exists δ > 0 such that u(ω) ≥ δ

a.e. on the support of u, with respect to the measure µT−1.
(3) W(u,T ) is Fredholm if and only if there exists δ > 0 such that u(ω) ≥ δ

a.e. on Ω, with respect to the measure µT−1.

Proof. The proof follows by applying the ideas used in Theorem 2.1, Theorem 2.3
and the results [9, Theorems 3.1, 4.1, 4.2] which are extended on Lorentz spaces
in [3]. �

Let ϕ,ψ be two complementary Orlicz functions. Now for each g ∈ Lψ, define
a bounded linear functional Fg on Lϕ given by

Fg(f) =

∫
f · gdµ

for each f ∈ Lϕ. Then the mapping g 7→ Fg is an isometry from Lψ onto L∗ϕ and
hence the norm dual of Lϕ can be identified with Lψ (see [11]).

Theorem 2.5. Let W(u,T ) ∈ B(Lϕ). Then the adjoint W ∗(u,T ) of W(u,T ) is given

by

W ∗(u,T )g = fT · u · E(g) ◦ T−1

for each g ∈ Lψ.

Proof. Let A ∈ A be such that µ(A) <∞, then for g ∈ Lψ,

(W ∗(u,T )Fg)(χA) = Fg(W(u,T )χA)

=

∫
(W(u,T )χA) · gdµ

=

∫
u ◦ T · χA ◦ Tgdµ

=

∫
E(u ◦ T · g) · χA ◦ Tdµ

=

∫
u ◦ T · E(g) · χA ◦ Tdµ

=

∫
fT · u · E(g) ◦ T−1 · χAdµ

= (FfT ·u·E(g)◦T−1)(χA).

Hence, (W ∗(u,T )Fg) = FfT ·u·E(g)◦T−1 . On identifying g with Fg, we find that

(W ∗(u,T )g) = fT · u · E(g) ◦ T−1, for each g ∈ Lψ. �

Corollary 2.6. Let Ω be a non-atomic measure space and W(u,T ) ∈ B(Lψ). Then
the kernel of W(u,T ) is either zero dimensional or infinite dimensional.



298 GOPAL DATT

Proof. For f ∈ Lψ, on replacing g by W(u,T )f in the above theorem, we have

W ∗(u,T )(W(u,T )f) = fT · u · E(W(u,T )f) ◦ T−1 = fT · u2 · f = Mhf,

where h = fT · u2. Hence, W ∗(u,T )W(u,T ) = Mh.

Also KerW(u,T ) = Lψ(SfT ·u2) = Lψ(SfT ·u), where SfT ·u denotes the support
of fT · u and

Lψ(SfT ·u) = {fχSfT ·u : f ∈ Lψ}.
Thus, since Ω is non-atomic, if µ(SfT ·u) = 0 then the kernel of W(u,T ) is zero
dimensional and if µ(SfT ·u) > 0 then the kernel of W(u,T ) is infinite dimensional.

�

Using the characterization known for the Fredholm multiplication operators
on Orlicz spaces, we have the following:

Corollary 2.7. Let Ω be a non-atomic measure space and W(u,T ) ∈ B(Lψ). Then
W ∗(u,T )W(u,T ) is a Fredholm operator if and only if there exists δ > 0 such that

|fT · u2| ≥ δ a.e. on Ω.

The only compact multiplication operator on the Orlicz space when the mea-
sure is non-atomic, is the zero operator. Using this observation, our next result
which follows as a corollary to the Theorem 2.5, characterizes the compactness
of the weighted composition operators on Orlicz spaces when the measure space
under consideration is non-atomic.

Corollary 2.8. Let Ω be a non-atomic measure space and W(u,T ) ∈ B(Lψ). Then
W(u,T ) is a compact operator if and only if fT · u = 0 a.e. on Ω.

Proof. Suppose W(u,T )f is a compact weighted composition operator on Lψ then

W ∗(u,T )W(u,T ) is a compact operator on Lψ. So, Mh, where h = fT · u2 is a

compact operator on Lψ. Hence, h = fT · u2 = 0 a.e. on Ω, equivalently,
fT · u = 0 a.e. on Ω. Conversely, if fT · u = 0 a.e. on Ω then u ◦ T · f ◦ T = 0
for each f ∈ Lψ so that W(u,T ) is a zero operator. Hence the result. �

Corollary 2.9. Let Ω be a non-atomic measure space and W(u,T ) ∈ B(Lψ).
Then W = W ∗(u,T )W(u,T ) is a compact operator if and only if W(u,T ) is a compact
operator.

Theorem 2.10. If W(u,T ) ∈ B(Lϕ) has closed range and the co-dimension is
finite then W(u,T ) is surjective.

Proof. Suppose on the contrary that, W(u,T ) is not surjective and let f0 ∈ Lϕ \
R(W(u,T )). Since R(W(u,T )) is closed, we can find a function g0 ∈ Lψ, where ψ is
the complementary Orlicz function to ϕ, such that∫

f0g0dµ = 1 and

∫
(W(u,T )f)g0dµ = 0

for all f ∈ Lϕ. From the first equality,
∫

Re(f0g0)dµ = 1. Hence the set

Eε = {ω ∈ Ω : Re(f0g0)(ω) ≥ ε}
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must have positive measure for some ε > 0. Since µ is non-atomic, we can choose
a sequence {En} of subsets of Eε with 0 < µ(En) <∞ and Em∩En = ∅ (m 6= n).
Let gn = χEng0. Then each gn ∈ Lψ and is nonzero because

Re

∫
f0gndµ = Re

∫
En

f0g0dµ ≥ εµ(En) > 0.

Furthermore, for each f ∈ Lϕ, χEnf is in Lϕ, and so

(W ∗(u,T )gn)(f) =

∫
f · fT · u · E(gn) ◦ T−1dµ

=

∫
En

f · u · E(g0) ◦ T−1 · fTdµ

=

∫
En

f · u · E(g0) ◦ T−1dµT−1

=

∫
T−1(En)

u ◦ T · f ◦ T · E(g0)dµ

=

∫
T−1(En)

E(g0 · u ◦ T · f ◦ T )dµ

=

∫
T−1(En)

g0 · u ◦ T · f ◦ Tdµ

=

∫
g0 · u ◦ T · f ◦ T · χEn ◦ Tdµ

=

∫
g0(W(u,T )(χEnf))dµ = 0.

This implies gn ∈ KerW ∗(u,T ). Thus the sequence {gn} forms a linearly indepen-

dent subset of KerW ∗(u,T ). This contradicts the fact that co-dimension of W(u,T )

is finite. Hence W(u,T ) is surjective. �

Remark. Theorem 2.5, the corollaries based on this theorem and Theorem 2.10
all hold almost along the same lines of proof, when the spaces under consideration
are Lorentz spaces L(p, q), 1 < p < ∞, 1 < q < ∞ or Lebesgue spaces Lp, 1 <
p <∞.
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