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ON THE CONVOLUTIONS OF FOURIER-TYPE TRANSFORMS

NGUYEN MINH KHOA

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. Some convolutions of Fourier-type transforms are introduced. The
poly-convolution of the Fourier cosine integral transforms is formulated and
its properties are studied. Its application to solving an integral equation and
a system of integral equations is presented.

1. Introduction

Generalized convolutions and poly-convolutions of different integral transforms
and their applications attract an active research in the last few years. For some
recent works and surveys on the subject we refer to [2]–[15], [18], [19] and the
references therein.

In this paper, we present some new convolutions of Fourier-type integral trans-
forms which are generalizations of the related classical ones. We study in detail
the poly-convolution for the one-dimensional Fourier cosine transforms and apply
it to solving an integral equation and a system of integral equations.

This paper is organized as follows. In the next section, we introduce new
convolutions and poly-convolutions of the Fourier-type transforms. In Section 3
we study the convolution and poly-convolution for the two-dimensional Fourier
cosine transforms. In Section 4, we introduce the poly-convolution for the one-
dimensional Fourier cosine transforms and in the last section we apply this notion
to solving an integral equation and a system of integral equations.

2. Convolutions of Fourier-type transforms

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R
n, n ≥ 1 and A be an n × n-

matrix with detA 6= 0. We define x · y := x1y1 + x2y2 + · · · + xnyn, which is
xyT in the matrix theory. Here the upper-index T means the matrix transpose.
Similarly, we define Ax as AxT in the matrix theory.
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For a function f ∈ L1(Rn) we define its Fourier transform by ([16])

F [f ](ξ) = f̂(ξ) =
1√
2π

n

∫

Rn

f(x)e−x·ξdx.

It is well-known that this definition is justified and if F [f ] ∈ L1(Rn), then we
have the inversion formula

f(x) = F−1[F [f ]](x) =
1√
2π

n

∫

Rn

F [f ](ξ)ex·ξdx.

If f ∈ L2(Rn), then F [f ] ∈ L2(Rn) and therefore the above inversion formula
is justified. In this section, for simplicity, we suppose that all functions are in
L2(Rn).

For a vector a ∈ R
n we can easily prove that

F [f(A · −a)](ξ) =
eia·ξ

|detA|F [f ]
(
(A−1)T ξ

)
.(2.1)

Hence if there are given two functions f and g in L2(Rn), two invertible n× n

matrices A and B and two vectors a and b in R
n, we can define the generalized

convolution of f and g with respect to the pairs (A, a), (B, b) by

f ∗
(A,a),(B,b)

g(x) :=

∫

Rn

f(Ay − a)g(B(x − y) − b)dy,(2.2)

which is well defined and belongs to L2(Rn).

Taking the Fourier transform of the both sides of (2.2) and using (2.1), we
obtain

F [f ∗
(A,a),(B,b)

g](ξ) =
ei(a+b)·ξ

|detA||detB|F [f ]
(
(A−1)T ξ

)
· F [g]

(
(B−1)T ξ

)
,(2.3)

which can be considered as the factorization equality of the generalized convolu-
tion (2.2).

The convolution (2.2) is a slight generalization of the classic convolution when
A and B are the identity matrix I, a = b = 0, however, it has some interesting
consequences. First, we note that the case A = I, a = 0 is rather special. In fact,
for this case

f ∗
(I,0),(B,b)

g(x) :=

∫

Rn

f(y)g(B(x− y) − b)dy,(2.4)

which we denote simply by f ∗
(B,b)

g(x). Now, from these definitions we can

define the so-called poly-convolutions. In fact, let further be given a function
h ∈ L2(Rn), an invertible n× n matrix C and a vector c ∈ R

n. We can define

(f ∗
(A,b),(B,b)

g) ∗
(C,c)

h(x).(2.5)
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Taking the Fourier transform of the last expression and using (2.1), we get

F [(f ∗
(A,b),(B,b)

g) ∗
(C,c)

h](ξ) = F [(f ∗
(A,b),(B,b)

g)](ξ) · eic·ξ

|detC|F [h]
(
(C−1)T ξ

)

=
ei(a+b)·ξ

|detA||detB|F [f ]
(
(A−1)T ξ

)
· F [g]

(
(B−1)T ξ

)
· eic·ξ

|detC|F [h]
(
(C−1)T ξ

)

=
ei(a+b+c)·ξ

|detA||detB||detC|F [f ]
(
(A−1)T ξ

)
· F [g]

(
(B−1)T ξ

)
· F [h]

(
(C−1)T ξ

)
.

(2.6)

From the last equality we see that

(f ∗
(A,b),(B,b)

g) ∗
(C,c)

h(x) = f ∗
(A,b)

(g ∗
(B,b),(C,c)

h)(x).(2.7)

Some consequences of this poly-convolution can be derived, however, the calcu-
lations are boing and we do not present them here. We now show that the above
notion of generalized convolution can generate many other types of convolution.
Let f1 and f2 be two functions in L2(Rn), A1, A2 and a1, a2 be respectively in-
vertible n× n matrices and vectors in R

n. Consider the expression

G(x) = f1 ∗
(A1,a1),(B,b)

g(x) + f2 ∗
(A2,a2),(B,b)

g(x).(2.8)

We have

F [G](ξ) =
eib·ξ

|det b|

(
eia1·ξ

|detA1|
F [f1]

(
(A−1

1 )T
)

+
eia2·ξ

|detA2|
F [f2]

(
(A−1

2 )T
))

.(2.9)

From this, we will see that different choices of the functions f1 and f2, A1, A2

and a1, a2 lead to various types of convolution.

For example, let f1 = f2 = f,A1 = A2 = A, and a1 = −a2 = a, we have

F [G](ξ) = 2
cos(a · ξ)eib·ξ
|detA||detB|F [f ]

(
(A−1)T ξ

)
· F [g]

(
(B−1)T ξ

)
.(2.10)

Thus, we defined a new convolution

f
1∗

(A,a),(B,b)
g(x) =

∫

Rn

(
f(Ay − a) + f(Ay + a)

)
g(B(x− y) − b)dy(2.11)

which takes (2.10) as the factorization identity.

If f1 = f2 = f,A1 = A = −A2 and a1 = a2 = a, then

F [G](ξ) =
2√
2π

n

ei(a+b)·ξ

|detA||detB|

∫

Rn

cos
(
x · (A−1)T ξ

)
f(x)dxF [g]

(
(B−1)T ξ

)
(2.12)

which can be considered as the factorization identity of the convolution

f
2∗

(A,a),(B,b)
g(x) =

∫

Rn

(
f(Ay − a) + f(−Ay − a)

)
g(B(x− y) − b)dy.(2.13)
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Here
1√
2π

n

1

|detA|

∫

Rn

cos
(
x · (A−1)T ξ

)
f(x)dx

can be considered as a type of Fourier cosine transform. So, the convolution
(2.13) can be considered as that of two different Fourier-type transforms.

Similarly, if f1 = −f2 = f,A1 = A2 = A and a1 = −a2 = a, then

F [G](ξ) = 2i sin(a · ξ) eib·ξ

|detA||detB|F [f ]
(
(A−1)T ξ

)
· F [g]

(
(B−1)T ξ

)
,(2.14)

which is the factorization identity for the convolution

f
3∗

(A,a),(B,b)
g(x) =

∫

Rn

(
f(Ay − a) − f(Ay + a)

)
g(B(x− y) − b)dy.(2.15)

And with f1 = −f2 = f,A1 = −A2 = A and a1 = a2 = a, we have

F [G](ξ) =
2i√
2π

n

ei(a+b)·ξ

|detA||detB|

∫

Rn

sin
(
x · (A−1)T ξ

)
f(x)dx · F [g]((B−1)T ξ)

(2.16)

which is the factorization identity for the convolution

f
4∗

(A,a),(B,b)
g(x) =

∫

Rn

(
f(Ay − a) − f(−Ay − a)

)
g
(
B(x− y) − b

)
dy.(2.17)

Again here
1√
2π

n

1

|detA|

∫

Rn

sin
(
x · (A−1)T ξ

)
f(x)dx

can be considered as a type of Fourier sine transform. So, the convolution (2.17)
can be considered as that of the Fourier sine-type transform and the Fourier-type
transform.

Multiplying the both sides of (2.17) by −i and then adding the obtained ex-
pression to (2.13), we get the new convolution

f
5∗

(A,a),(B,b)
g(x) =

∫

Rn

(
f(Ay − a) + f(−Ay − a) − if(Ay − a) + if(−Ay − a)

)

× g(B(x− y) − b)dy(2.18)

which takes

F [G](ξ) =
2√
2π

n

ei(a+b)·ξ

|detA||detB|

∫

Rn

cas
(
x · (A−1)T ξ

)
f(x)dx · F [g]

(
(B−1)T ξ

)
(2.19)

as the factorization identity. Here, we used the standard notation of the Hartley
transform (see, e.g., [7]) cas(x · y) = cos(x · y) + sin(x · y). The list of new
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convolutions generated in this way can be added, however, it does not seem
interesting.

3. Convolution of the two-dimensional Fourier cosine transforms

In this section, we introduce the convolution of the two-dimensional Fourier co-
sine transforms. We note that the two-dimensional Fourier cosine transforms are
frequently used in multi-dimensional signal processing (see, e.g. [17]), however,
up to now the convolution for them has not been discussed.

Let f ∈ L1(R2
+). We define the two-dimensional Fourier cosine transform as

follows

Fc[f ](ξ) =
2

π

∞∫

0

∞∫

0

f(x1, x2) cos(x1ξ1) cos(x2ξ2)dx1dx2.(3.1)

We extend the function f to a function defined in the whole plane R
2 as follows

F(x1, x2) =






f(x1, x2), x1, x2 ≥ 0,
f(−x1, x2), x1 < 0, x2 ≥ 0,
f(x1,−x2), x1 > 0, x2 < 0,
f(−x1, x2), x1 < 0, x2 < 0.

(3.2)

We see that F(x1, x2) is an even function with respect to x1 and x2. It is clear
that F ∈ L1(R2). Similarly, we extend a function g ∈ L1(R2

+) to the function
G ∈ L1(R2). Thus, we can define the convolution

H(x1, x2) = F ∗ G(x1, x2) =

∞∫

−∞

∞∫

−∞

F(y1, y2)G(x1 − y1, x2 − y2)dy1dy2,(3.3)

which is well defined and belongs to L1(R2). Since, F and G are even functions
with respect to x1 and x2, their convolution is so. In fact,

H(−x1, x2) = F ∗ G(−x1, x2) =

∞∫

−∞

∞∫

−∞

F(y1, y2)G(−x1 − y1, x2 − y2)dy1dy2

=

∞∫

−∞

∞∫

−∞

F(y1, y2)G(x1 + y1, x2 − y2)dy1dy2

=

∞∫

−∞

∞∫

−∞

F(y1, y2)G(x1 − y1, x2 − y2)dy1dy2

= H(x1, x2).

Thus, H(x1, x2) is even with respect to x1. Similarly, it is even with respect to
x2. From (3.3), we have

F̂(ξ1, ξ2) · Ĝ(ξ1, ξ2) = Ĥ(ξ1, ξ2).
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Since F,G and H are even functions with respect to x1 and x2, from the last
equality, we obtain

Fc[f ] · Fc[g] = Fc[h],(3.4)

where h is the restriction of H in the first quarter of R
2.

Now we find an analytic expression for h. We have

H(x1, x2) =

∞∫

−∞

∞∫

−∞

F(y1, y2)G(x1 − y1, x2 − y2)dy1dy2

=

∞∫

−∞

dy2

∞∫

−∞

F(y1, y2)G(x1 − y1, x2 − y2)dy1

=

∞∫

−∞

dy2

( 0∫

−∞

F(y1, y2)G(x1 − y1, x2 − y2)dy1

+

−∞∫

0

F(y1, y2)G(x1 − y1, x2 − y2)dy1

)

=

∞∫

−∞

dy2

( ∞∫

0

f(y1, y2)g(x1 + y1, x2 − y2)dy1

+

∞∫

0

f(y1, y2)g(|x1 − y1|, x2 − y2)dy1

)

=

∞∫

0

f(y1, y2)
(
g(x1 + y1, x2 + y2) + g(x1 + y1, |x2 − y2|)

+ g(|x1 − y1|, x2 + y2) + g(|x1 − y1|, x2 + y2)
)
dy1dy2.

Thus, we defined the convolution of the two-dimensional Fourier cosine transforms
of the two functions f and g in L1(R2

+) by

f ∗
Fc

g(x1, x2) =

∞∫

0

∞∫

0

f(y1, y2)
(
g(x1 + y1, x2 + y2) + g(x1 + y1, |x2 − y2|)

+ g(|x1 − y1|, x2 + y2) + g(|x1 − y1|, x2 + y2)
)
dy1dy2,(3.5)

which takes (3.4) as the factorization identity.

As f ∗
Fc

g ∈ L1(R2
+), if there is given a function r ∈ L1(R2

+), we can define the

convolution

(f ∗
Fc

g) ∗
Fc

r,
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which takes

Fc[f ] · Fc[g] · Fc[r]

as the factorization identity.

4. Poly-convolution the one-dimensional Fourier cosine transforms

We recall that the one-dimensional Fourier cosine transform of a function f ∈
L(R+) is defined as ([16])

(Fcf)(y) =

√
2

π

+∞∫

0

f(x) cos(yx)dx.

and the convolution of two functions f and g in L(R+) for the Fourier cosine is
defined by ([16])

(f ∗
Fc

g)(x) =
1√
2π

+∞∫

0

f(y)
[
g(|x− y|) + g(x + y)

]
dy, x > 0,

with the factorization property

Fc(f ∗
Fc

g)(y) = (Fcf)(y)(Fcg)(y), ∀y > 0.(4.1)

In this section we considered the poly-convolution of the one-dimensional cosine
transforms by a different method rather than in the previous one, although it can
be treated by the same method.

Definition 4.1. The poly-convolution for the Fourier cosine integral transforms
of the functions f, g and h is defined by

∗(f, g, h)(x) =
1

2π

+∞∫

0

+∞∫

0

f(u)g(v)
(
h(x+ u+ v) + h(|x+ u− v|)

+ h(|x− u+ v|) + h(|x− u− v|)
)
dudv, x > 0.(4.2)

Theorem 4.2. Let f, g and h be functions in L(R+), then the poly-convolution

(4.2) for the Fourier cosine integral transforms of the functions f, g and h belongs

to L(R+) and the factorization property holds

Fc

[
∗ (f, g, h)

]
(y) = (Fcf)(y)(Fcg)(y)(Fch)(y), ∀y > 0.(4.3)

Proof. First we prove that ∗(f, g, h)(x) ∈ L(R+). Indeed

+∞∫

0

∣∣ ∗ (f, g, h)(x)
∣∣dx ≤ 1

2π

+∞∫

0

|f(u)|du
+∞∫

0

|g(v)|du
+∞∫

0

(
|h(|x+ u+ v|)

+ |h(|x + u− v|)| + |h(|x − u+ v|)| + |h(|x− u− v|)|
)
dx.
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It is easy to see that

+∞∫

0

[∣∣h(x+ u+ v)
]
+

∣∣h(|x+ u− v|)
∣∣ +

∣∣h(|x− u+ v|)
∣∣ +

∣∣h(|x− u− v|)
∣∣]dx

= 4

+∞∫

0

|h(t)|dt.

Hence
+∞∫

0

∣∣ ∗ (f, g, h)(x)
∣∣dx ≤ 2

π

+∞∫

0

|f(u)|du
+∞∫

0

|g(v)|du
+∞∫

0

|h(t)|dt < +∞.

So ∗(f, g, h)(x) belongs to L(R+).

Now we prove the factorization property (4.3). Since

(Fcf)(y)(Fcg)(y)(Fch)(y) =

=
(√

2

π

)3
+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(t) cos(uy) cos(vy) cos(ty)dt,

and

cos(uy) cos(vy) cos(ty) =
1

4

[
cos y(u+ t+ v) + cos y(u+ t− v)

+ cos y(u− t+ v) + cos y(u− t− v)
]
,

we get

(Fcf)(y)(Fcg)(Fch)(y)

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(t)
[
cos y(u+ t+ v)

+ cos y(u+ t− v) + cos y(u− t+ v) + cos y(u− t− v)
]
dt.(4.4)

With substitution u+ t+ v = x, we get

1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(t) cos y(x+ u+ v)dt

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

u+v

f(u)g(v)h(|x − u− v|) cos yxdx

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(|x − u− v|) cos(yx)dx
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− 1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

u+v∫

0

f(u)g(v)h(|x − u− v|) cos(yx)dx.(4.5)

Similarly, substituting u− t+ v = −x, we have

1

π
√

2π

+∞∫

0

+∞∫

0

f(u)g(v)h(t) cos y(u− t+ v)dt

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

−(u+v)

f(u)g(v)h(u + v + x) cos(yx)dx

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(u + v + x) cos(yx)dx

+
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

0∫

−(u+v)

f(u)g(v)h(u + v + x) cos(yx)dx.(4.6)

Further,

1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

0∫

−(u+v)

f(u)g(v)h(t)h(u + v + x) cos(yx)dx

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

u+v∫

0

f(u)g(v)h(u + v − x) cos(yx)dx.(4.7)

From (4.5), (4.6) and (4.7), we have

1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(t)
[
cos y(u+ t+ v) + cos y(u− t+ v)

]
dt

=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)
[
h(|x − u− v|) + h(x+ u+ v)

]
cos(yx)dx.

(4.8)

Similarly,

1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)h(t)
[
cos y(u+ t− v) + cos y(u− t− v)

]
dt
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=
1

π
√

2π

+∞∫

0

du

+∞∫

0

dv

+∞∫

0

f(u)g(v)
[
h(|x + u− v|) + h(|x− u+ v)

]
cos(yx)dx.

(4.9)

Finally, by (4.4), (4.8), (4.9),

(Fcf)(y)(Fcg)(y)(Fch)(y) = Fc

[
∗ (f, g, h)

]
(y).

The proof is complete. �

Theorem 4.3. (Titchmarch-type Theorem) Let f, g, h ∈ L(e−x,R+). If ∀x > 0,
∗(f, g, h)(x) ≡ 0, then either f(x) = 0, or g(x) = 0, or h(x) = 0, ∀x > 0.

Proof. The hypothesis ∗(f, g, h)(x) ≡ 0 implies that

Fc

[
f, g, h)

]
(y) = 0, ∀y > 0.

Due to Theorem 4.2, we have

(Fcf)(y)(Fcg)(y)(Fch)(y) = 0, ∀y > 0.(4.10)

Consider the Fourier cosine integral transform

(Fcf)(y) =

√
2

π

+∞∫

0

f(x) cos(yx)dx, y ∈ R
+.

Since
∣∣∣
dn

dyn

[
cos(yx)f(x)

]∣∣∣ =
∣∣∣f(x)xn cos

(
yx+ n

π

2

)∣∣∣ ≤
∣∣f(x)xn

∣∣

=
∣∣e−xxnf1(x)

∣∣

=
∣∣e−xxn

∣∣∣∣f1(x)
∣∣ ≤ C

∣∣f1(x)
∣∣

for x large enough, due to Weierstrass’ criterion, the integral
+∞∫

0

dn

dyn

[
cos(yx)f(x)

]
dx uniformly converges on R

+. Therefore, based on the

differentiability of integrals depending on parameter, we conclude that (Fcf)(y)
is analytic for y > 0. Similarly, (Fcg)(y) and (Fch)(y) are analytic for y > 0.
So from (4.10) we have (Fcf)(y) = 0, ∀y > 0, or (Fcg)(y) = 0, ∀y > 0, or
(Fch)(y) = 0, ∀y > 0. It follows that either f(x) = 0, ∀x > 0, or g(x) = 0,
∀x > 0, or h(x) = 0, ∀x > 0.

The theorem is proved. �

In the sequel, for simplicity, we define the norm in the space L(R+) by

‖f‖ =
1√
π

+∞∫

0

|f(x)|dx.

Theorem 4.4. If f, g and h belong to L(R+), then the following inequality holds
∥∥ ∗ (f, g, h)

∥∥ ≤ ‖f‖ ‖g‖ ‖h‖.
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Proof. From the proof of Theorem 4.2, we obtain
+∞∫

0

∣∣ ∗ (f, g, h)(x)
∣∣dx ≤ 2

π

+∞∫

0

|f(u)|du
+∞∫

0

|g(v)|dv
+∞∫

0

|h(t)|dt.

Hence
+∞∫

0

∣∣ ∗ (f, g, h)(x)
∣∣dx ≤ 1√

π

+∞∫

0

|f(x)|dx 1√
π

+∞∫

0

|g(x)|dx
+∞∫

0

|2h(t)|dt.

Thus, ∥∥ ∗ (f, g, h)
∥∥ ≤ ‖f‖ ‖g‖ ‖h‖.

The proof is complete. �

Theorem 4.5. Let f, g and h be functions in L(R+). The poly-convolution for

the Fourier cosine integral transforms relates to the known convolutions as follows

(i) ∗(f, g, h)(x) =
1√
2π

+∞∫

0

[
(g ∗

Fc

h)(u+ x) + (g ∗
Fc

h)(|u − x|)
]
f(u)du.

(ii) ∗(f, g, h) = f ∗
Fc

(
g ∗

Fc

h
)
.

Proof. We first prove the equality (i).

By Definition 4.1 we have

∗(f, g, h)(x) =
1√
2π

{ 1√
2π

+∞∫

0

f(u)du

+∞∫

0

g(v)
[
h(x+ u+ v) + h(|x+ u− v|)

]
dv

+
1√
2π

+∞∫

0

f(u)du

+∞∫

0

g(v)
[
h(|x− u+ v|) + h(|x− u− v|)

]
dv

}
.

On the other hand, for any x > 0, u > 0 and v > 0,

h(|x− u+ v|) + h(|x − u− v|) = h(|x− u| + v) + h(
∣∣|x− u| − v

∣∣).
Indeed, for x ≥ u,

h(|x− u| + v) + h(
∣∣|x− u| − v

∣∣) =h(x− u+ v) + h(|x − u− v|)
=h(|x− u+ v|) + h(|x− u− v|).

Similarly, for 0 < x ≤ u,

h(|x− u| + v) + h(
∣∣|x− u| − v

∣∣) =h(|u− x+ v|) + h(|u− x− v|)
=h(|x− u− v|) + h(|x− u+ v|).

Hence

∗(f, g, h)(x) =
1√
2π

{ 1√
2π

+∞∫

0

f(u)du

+∞∫

0

g(v)
[
h(x+ u+ v) + h(|x+ u− v|)

]
dv



294 NGUYEN MINH KHOA

+
1√
2π

+∞∫

0

f(u)du

+∞∫

0

g(v)
[
h(|x− u| + v) + h(|x− u| − v)

]
dv

}

=
1√
2π

+∞∫

0

[
(g ∗

Fc

h)(u + x) + (g ∗
Fc

h)(|u − x|)
]
f(u)du.

The equality (i) is proved.

We next prove the equality (ii).

From Theorem 4.2, we deduce that

Fc

[
∗ (f, g, h)

]
(y) = (Fcf)(y)(Fcg)(y)(Fch)(y), ∀y > 0.

On the other hand, using the formula (4.1), we get

Fc

[
f ∗

Fc

(g ∗
Fc

h)
]
(y) = (Fcf)(y)Fc(g ∗

Fc

h)(y) = (Fcf)(y)(Fcg)(y)(Fch)(y), ∀y > 0.

Therefore, ∗(f, g, h) = f ∗
Fc

(
g ∗

Fc

h
)
, and the equality (ii) is proved.

The proof is complete. �

Theorem 4.6. In the space L(R+), the poly-convolution for the Fourier cosine

integral transforms is commutative, associative and distributive.

Proof. We prove that the poly-convolution for the Fourier cosine integral trans-
forms is commutative, i.e.,

∗(f, g, h) = ∗(f, h, g) = ∗(g, f, h) = ∗(g, h, f) = ∗(h, f, g) = ∗(h, g, f).

Indeed,

Fc

[
∗ (f, g, h)

]
(y) =(Fcf)(y)(Fcg)(Fch)(y) = (Fcf)(y)(Fch)(y)(Fcg)(y)

=Fc

(
∗ (f, h, g)

)
(y), ∀y > 0

implies that

∗(f, g, h) = ∗(f, h, g).
The following equalities are similarly proved.

The associative, distributive properties are similarly proved. �

5. Application to solving an integral equation and a system of

integral equations

5.1. Consider the integral equation

f(x) + λ

+∞∫

0

+∞∫

0

ϕ(u)ψ(v)θ1(x, u, v)dudv = h(x), x > 0.(5.1)
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Here λ is a complex constant, ϕ, ψ and h are functions of L(R+), f is the unknown
function, and

θ1(x, u, v) =
1

2π

[
f(x+ u+ v) + f(|x+ u− v|) + f(|x− u+ v|) + f(|x− u− v|)

]
.

Theorem 5.1. With the condition 1 + λ(Fcϕ)(y)(Fcψ)(y) 6= 0, ∀y ∈ R+, there

exists a unique solution in L(R+) of (5.1) which is defined by

f = h− (h ∗
Fc

l).

Here, l ∈ L(R+) and it is determined by the equation

(Fcl)(y) =

λFc(ϕ ∗
Fc

ψ)(y)

1 + λFc(ϕ ∗
Fc

ψ)(y)
.

Proof. The equation (5.1) can be rewritten in the form

f(x) + λ
[
∗ (ϕ,ψ, f)(x)

]
= h(x).

Due to Theorem 4.2,

(Fcf)(y) + λ(Fcϕ)(y)(Fcψ)(y)(Fcf)(y) = (Fch)(y).

It follows that

(Fcf)(y)
[
1 + λ(Fcϕ)(y)(Fcψ)(y)

]
= (Fch)(y).

Since 1 + λ(Fcϕ)(y)(Fcψ)(y) 6= 0,

(Fcf)(y) = (Fch)(y)
1

1 + λ(Fcϕ)(y)(Fcψ)(y)
.

Therefore,

(Fcf)(y) =(Fch)(y)
[
1 − λ(Fcϕ)(y)(Fcψ)(y)

1 + λ(Fcϕ)(y)(Fcψ)(y)

]

= (Fch)(y)
[
1 −

λFc(ϕ ∗
Fc

ψ)(y)

1 + λFc(ϕ ∗
Fc

ψ)(y)

]
.

Due to Wiener-Levi’s theorem [1], there exists a function l ∈ L(R+) such that

(Fcl)(y) =
λFc(ϕ ∗

Fc

ψ)(y)

1 + λFc(ϕ ∗
Fc

ψ)(y)
.

It follows that

(Fcf)(y) =(Fch)(y)
[
1 − (Fcl)(y)

]

=(Fch)(y) − Fc(h ∗
Fc

l)(y).

Thus,
f = h− (h ∗

Fc

l).

It is easy to see that f ∈ L(R+). The theorem is proved. �
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5.2. Consider the system of integral equations





f(x) + λ1

+∞∫

0

+∞∫

0

ϕ(u)ψ(u)θ2(x, u, v)dudv = h(x),

λ2

+∞∫

0

θ3(x, u)η(u)du + g(x) = k(x), x > 0,

(5.2)

where

θ2(x, u, v) =
1

2π

[
g(x+ u+ v) + g(|x+ u− v|) + g(|x − u+ v|) + g(|x− u− v|)

]
,

θ3(x, u) =
1

2
√

2π

[
f(|y − x− 1|) − f(|y − x+ 1|) + f(|y + x− 1|) − f(y + x+ 1)

]
,

ϕ, ψ, η, h and k are given functions in L(R+), λ1 and λ2 are complex constants,
f and g are the unknown functions.

To solve this system we recall the convolution ([11])

(f
γ1∗
3
g)(x) =

1

2
√

2π

+∞∫

0

f(y)
[
g(|y − x− 1|) − g(|y − x+ 1|)

+ g(|y + x− 1|) − g(y + x+ 1)
]
dy, x > 0,

with the factorization property

Fc(f
γ1∗
3
g)(y) = sin y(Fsf)(y)(Fcg)(y), ∀y > 0.

Theorem 5.2. With the condition

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
6= 0, ∀y > 0,

there exists a solution in L(R+) of (5.2) which is defined by

f(y) =h(y) + (l ∗
Fc

h)(y) − λ1

[
∗ (k, ϕ, ψ)(y)

]
−

[
∗ (k, ϕ, ψ) ∗

Fc

l
]
(y) ∈ L(R+),

g(y) =k(y) + (l ∗
Fc

k)(y) − λ2

(
η

γ1∗
3
h
)
(y) − λ2

[(
η

γ1∗
3
h
)
∗
Fc

l
]
(y) ∈ L(R+).

Here l ∈ L(R+) and defined by the equation

(Fcl)(y) =

λ1λ2Fc

[(
η

γ1∗
Fc

ϕ
)
∗
Fc

ψ
]
(y)

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

.

Proof. System (5.2) can be written in the form

f(x) + λ1

[
∗ (ϕ,ψ, g)(x)

]
= h(x),

λ2

(
η

γ1∗
3
f
)
(x) + g(x) = k(x), x > 0.
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Using the factorization property of the poly-convolution (4.2) and the convolution(
η

γ1∗
3
ϕ
)
(x) we obtain the linear system of algebraic equations with respect to

(Fcf)(y) and (Fcg)(y):

(Fcf)(y) + λ1(Fcϕ)(y)(Fcψ)(y)(Fcg)(y) = (Fch)(y),

λ2γ1(y)(Fsη)(y)(Fcf)(y) + (Fcg)(y) = (Fck)(y), y > 0.

Formally, we have

(Fcf)(y) =
(Fch)(y) − λ1Fc

[
∗ (k, ϕ, ψ)

]
(y)

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

,

(Fcg)(y) =
(Fck)(y) − λ2Fc

(
η

γ1∗
3
h
)
(y)

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

.

We note that

1

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

= 1 +

λ1λ2Fc

[(
η

γ1∗
Fc

ϕ
)
∗
Fc

]
(y)

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

.

Further, due to Wiener-Levi’s theorem [1], there exists a function l ∈ L(R+) such
that

(Fcl)(y) =
λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

1 − λ1λ2Fc

[(
η

γ1∗
3
ϕ
)
∗
Fc

ψ
]
(y)

.

Therefore,

(Fcf)(y) =
[
1 + (Fcl)(y)

][
(Fch)(y) − λ1Fc

(
∗ (k, ϕ, ψ)(y)

]

=(Fch)(y) + Fc

(
l ∗

Fc

h
)
(y) − λ1Fc

[
∗ (k, ϕ, ψ)

]
(y) − Fc

[
∗ (k, ϕ, ψ) ∗

Fc

l
]
(y).

Hence

f(y) = h(y) + (l ∗
Fc

h)(y) − λ1

[
∗ (k, ϕ, ψ)(y)

]
−

[
∗ (k, ϕ, ψ) ∗

Fc

l
]
(y) ∈ L(R+).

We conclude similarly that

(Fcg)(y) =
[
1 + (Fcl)(y)

][
(Fck)(y) − λ2Fc

[
η

γ1∗
3
h
)
(y)

]

=(Fck)(y) + Fc(l ∗
Fc

k)(y) − λ2Fc

(
η

γ1∗
3
k
)
(y) − λ2Fc

[(
η

γ1∗
3
h
)
∗
Fc

l
]
(y).

Consequently,

g(y) = k(y) +
(
l ∗

Fc

k
)
(y) − λ2

(
η

γ1∗
3
h
)
(y) − λ2

[(
η

γ1∗
Fc

h
)
∗
Fc

l
]
(y) ∈ L(R+).

The proof is complete. �
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