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A METHOD OF EXTENDING BY PARAMETER FOR

APPROXIMATE SOLUTIONS OF OPERATOR EQUATIONS

KHUAT VAN NINH

Abstract. A method of extending by parameter has been researched in the
works of V. A. Trenoghin [4]-[6], A. A. Fonarov [1] and Y. L. Gaponenco
[2]. In this paper, the author presents an application of this method for
approximating solutions of operator equations with any growth. Some results
on the existence of solutions of operator equations are derived.

1. About the operator equation A(x) + B(x) = f

Let us consider the equation

(1.1) A(x) + B(x) = f.

Assume that X is a metric space with a distance ρ(, ), Y a Banach space and
A,B are operators mapping from X to Y , f is given in Y . We pose the following
conditions:
I) The operator A maps one-to-one from X onto Y ,
II) ‖B(x) − B(y)‖ ≤ L ‖A(x) − A(y)‖ , L = const;x, y ∈ X,
III) There exists a number γ > 0 such that ∀λ ∈ [0, 1], ∀x, y ∈ X, the following
inequality holds

‖A(x) − A(y) + λ [B(x) − B(y)]‖ ≥ γ ‖A(x) − A(y)‖ ,

IV) ρ(x, y) ≤ α ‖A(x) − A(y)‖ , α = const, x, y ∈ X.

In view of [5, p. 457] if conditions I) - IV) are satisfied, then equation (1.1)
has a unique solution. Assuming that conditions I) - IV) are satisfied, we take a
minimal natural number N such that

q = max{L/N,L/γN} < 1.

Denote ε = 1/N , then equation (1.1) has the form

A(x) + Nε B(x) = f.
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Consider the following system of equations

(1.2)







































A(x) = u

A1(x) ≡ A(x) + εB(x) = u1

A2(x) ≡ A1(x) + εB(x) = u2

...

AN−1(x) ≡ AN−2(x) + εB(x) = uN−1

AN (x) ≡ AN−1(x) + εB(x) = uN ,

where uN = f.

We prove that the operators Ai, i = 1, 2, . . . , N are one-to-one maps from X
onto Y . From condition I), it follows that the operator A is invertible and the
inverse operator A−1 of A is a map from Y onto X. To prove the existence of
operator A−1

1 , we consider the following system of equations

(1.3)

{

A(x) = u

u + εBA−1(u) = u1,

where u1 is given in Y. Let u and u,, be two any elements of Y and x = A−1(u),
x, = A−1(u,). Using conditions I), III) and IV), we get

ρ(x, x,) = ρ(A−1(u), A−1(u,)) ≤ α ‖u − u,‖ ,

∥

∥εBA−1(u) − εBA−1(u,)
∥

∥ = ε ‖B(x) − B(x,)‖

≤ εL ‖A(x) − A(x,)‖ = L/N ‖u − u,‖

≤ q ‖u − u,‖ .

Therefore, the operator εBA−1 is contractive. This means that system (1.3)
has a unique solution and the operator A1 is invertible. Further, to prove the
existence of operator A−1

2 , we consider the equation

(1.4) u1 + εBA−1
1 (u1) = u2,

where u2 is given in Y. Let u and u, be two any elements of Y , x = A−1
1 (u),

x, = A−1
1 (u,). We have
∥

∥εBA−1
1 (u) − εBA−1

1 (u,)
∥

∥ = ε ‖B(x) − B(x,)‖

≤ εL ‖A(x) − A(x,)‖

≤ q ‖A(x) − A(x,) + ε[B(x) − B(x,)]‖

= q ‖A1(x) − A1(x
,)‖ = q ‖u − u,‖ .

Therefore, the operator εBA−1
1 is contractive and equation (1.4) has a unique

solution. This proves that the operator A−1
2 exists. In the same way, we prove

that the operators A−1
i ; i = 3, 4, ..., N − 1 exist and εBA−1

i is contractive with
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the coefficient q. Now we present system (1.2) in the following form

(1.5)







































A(x) = u

u = −εBA−1(u) + u1

u1 = −εBA−1
1 (u1) + u2

...

uN−2 = −εBA−1
N−2(uN−2) + uN−1

uN−1 = −εBA−1
N−1(uN−1) + f.

The approximate solution of system (1.5) is constructed as follows

(1.6)











































A(xk) = u(k)

u(k+1) = −εBA−1(u(k)) + u
(l)
1 , k = 0, 1, 2, ...

u
(l+1)
1 = −εBA−1

1 (u
(l)
1 ) + u

(p)
2 , l = 0, 1, 2, ...

...

u
(m+1)
N−2 = −εBA−1

N−2(u
(m)
N−2) + u

(n)
N−1,m = 0, 1, 2, ...

u
(n+1)
N−1 = −εBA−1

N−1(u
(n)
N−1) + f, n = 0, 1, 2, ...

From condition I), it follows that there exists an element x0 ∈ X such that
A(x0) = 0. Put B1(x) = B(x)−B(x0), f1 = f −B(x0), (x ∈ X). It is clear that
equation (1.1) is equivalent to the following equation

A(x) + B1(x) = f1,

where the operator B1 satisfies conditions II), III) and B1(x0) = 0. Therefore
without loss of generality it can be assumed that A(x0) = 0, B(x0) = 0. It can be
assumed that the first approximation in each iteration in (1.6) equals 0 and the
number of steps in each iteration equals s. Assume that (x, u, u1, u2, , uN − 1) is

an exact solution of system (1.5). At first, we assume that the value of A−1
i (u

(s)
i )

is calculated exactly. We have

ρ(xs, x) ≤ α ‖A(xs) − A(x)‖ = α
∥

∥

∥
u(s) − u

∥

∥

∥
,

∥

∥

∥
u(s) − u

∥

∥

∥
≤

qs

1 − q

∥

∥

∥
u

(s)
1

∥

∥

∥
,

∥

∥

∥
u

(s)
1 − u1

∥

∥

∥
≤

qs

1 − q

∥

∥

∥
u

(s)
2

∥

∥

∥
,(1.7)

...
∥

∥

∥
u

(s)
N−1 − uN−1

∥

∥

∥
≤

qs

1 − q
‖f‖ .

Now we estimate
∥

∥

∥
u

(s)
1

∥

∥

∥
, ...,

∥

∥

∥
u

(s)
N−1

∥

∥

∥
. Let us consider the operators

Fi(v) = v + εBA−1
i (v), v ∈ Y ; i = 1, 2, ..., N − 1.
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Let v and v, be two any elements of Y , we denote Fi(v) = g, and Fi(v
,) = g,.

Then we have v = F−1
i (g), v, = F−1

i (g,),

∥

∥F−1
i (g) − F−1

i (g,)
∥

∥ = ‖v − v,‖

≤
1

γ

∥

∥v − v, + ε
[

BA−1
i (v) − BA−1

i (v,)
]
∥

∥

=
1

γ

∥

∥(v + εBA−1
i (v)) − (v, + εBA−1

i (v,))
∥

∥

=
1

γ
‖g − g,‖ .

Then F−1
i satisfies the Lipschitz condition with the coefficient 1/γ.

We take v = ui and v, = 0. From Fi(ui) = ui+1, Fi(0) = 0, we get

(1.8) ‖ui‖ ≤
1

γ
‖ui+1‖ .

Applying this inequality several times, we have

(1.9) ‖ui‖ ≤

(

1

γ

)N−i

‖uN‖ =

(

1

γ

)N−i

‖f‖ .

On the other hand, we have

∥

∥

∥
u

(s)
i

∥

∥

∥
≤

∥

∥

∥
u

(s)
i − ui

∥

∥

∥
+ ‖ui‖

≤
qs

1 − q
‖ui+1‖ + ‖ui‖ , i = 1, 2, ..., N − 2.(1.10)

Combining inequalities (1.8), (1.9) and (1.10), we obtain

∥

∥

∥
u

(s)
i

∥

∥

∥
≤

∥

∥

∥
u

(s)
i − ui

∥

∥

∥
+ ‖ui‖

≤
qs

1 − q
‖ui+1‖ +

1

γ
‖ui+1‖

=

(

qs

1 − q
+

1

γ

)

‖ui+1‖) (i = 1, 2, ..., N − 2).(1.11)

From (1.9) and (1.11), we have

(1.12)
∥

∥

∥
u

(s)
i

∥

∥

∥
≤

(

qs

1 − q
+

1

γ

) (

1

γ

)N−1−i

‖f‖ , i = 1, 2, ..., N − 1.
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We denote

c = max

{

(

qs

1 − q
+

1

γ

) (

1

γ

)N−1−i

‖f‖ , i = 1, 2, ..., N − 1

}

,

c1 = max

{

(

qs

1 − q
+

1

γ

) (

1

γ

)N−1−i

‖f1‖ , i = 1, 2, ..., N − 1

}

,

δ = c
qs

1 − q
.

Therefore, from (1.7), we have

(1.13)
∥

∥

∥
u(s) − u

∥

∥

∥
≤ δ.

Now we evaluate the speed of convergence of iterative processes taking into

account of the error of the calculations of εBA−1
i (u

(s)
i ), (i = 1, 2, ..., N − 1). We

consider the following problems:

Problem 1. One step by parameter (N = 1). In this case, the system (1.5) has
the form

{

A(xk) = u(k)

u(k+1) = −BA(u(k)) + f, k = 1, 2, ...

We have

δ1 ≡
∥

∥

∥
u(s) − u

∥

∥

∥
≤ δ,

η1 = ρ(xs, x) ≤ αδ1 ≤ αδ,(1.14)

∆1 ≡ η1 ≤ αδ.

Problem 2. Two steps by parameter (N = 2). In this case, the system (1.5)
has the form

(1.15)











A(xk) = u(k)

u(k+1) = −εBA−1(u(k)) + u
(l)
1 , k = 1, 2, ...

u
(l+1)
1 = −εBA−1

1 (u
(l)
1 ) + f, l = 1, 2, ...

The value u
(l)
1 is calculated with an error δ, on the other hand, the operator

εBA−1
1 (u

(l)
1 ) is contractive with the coefficient q. Therefore, εBA−1

1 (u
(l)
1 ) is cal-

culated with the error qδ. The error of an iterative process in the calculation of
u1 equals δ. Then we have

δ2 ≡
∥

∥

∥
u

(s)
1 − u1

∥

∥

∥
≤ δ + qδ,

∆2 ≡ ρ(xs, x) ≤ α(δ + qδ1).
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Problem i. i steps by parameter (N = i)

(1.16)































A(xk) = u(k)

u(k+1) = −εBA−1(u(k)) + u
(l)
1 , k = 0, 1, 2, ...

u
(l+1)
1 = −εBA−1

1 (u
(l)
1 ) + u

(p)
2 , l = 0, 1, 2, ...

...

u
(n+1)
i−1 = −εBA−1

i−1(u
(n)
i−1) + f, n = 0, 1, 2, ...

In this problem, u
(s)
i−1 is calculated with the error δ1+δ2+...+δi−2. On the other

hand, the operators εBA−1
i−1 are contractive with the coefficient q. Therefore,

εBA−1
i−1(u

(s)
i−1) is calculated with the error q(δ1 + δ2 + ... + δi−2). We have

δi−1 ≡
∥

∥

∥
u

(s)
i−1 − ui−1

∥

∥

∥
≤ δ + q(δ1 + δ2 + ...δi−2),

∆i−1 ≡ ρ(xs, x) ≤ α(δ1 + δ2 + ... + δi−2).

Using Bellman-Gronwall inequality, we obtain

δi−1 ≤ δexp [(i − 2) q]

∆i−1 ≤ α

i
∑

j=1

δexp [(j − 2)q] = δα
exp[(i − 2)q] − 1

[exp(q) − 1]
.

Substituting N for i − 1, we have

∆N ≡ ρ(xs, x) ≤ δα
exp[(N − 1)q] − 1

[exp(q) − 1]
= cαqs 1

1 − q

exp[(N − 1)q] − 1

[exp(q) − 1]
.

In the general case, we have

∆N ≡ ρ(xs, x) ≤ c1αqs 1

1 − q

exp[(N − 1)q] − 1

[exp(q) − 1]
.

From the above obtained results, we have the following theorem:

Theorem 1. Suppose that the operators A and B satisfy conditions I) - IV).
Then there exists a unique solution x of equation (1.1) and that approximated

solutions of x constructed by formula (1.6) tend to x. Moreover, the speed of the

convergence is estimated by the formula

ρ(xs, x) ≤ c1αqs 1

1 − q

exp[(N − 1)q] − 1

[exp(q) − 1]
,

where

c1 = max

{

(

qs

1 − q
+

1

γ

) (

1

γ

)N−1−i

‖f1‖ , i = 1, 2, ..., N − 1.

}
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2. About the operator equation A(x) + B(x) + C(x) = f

Let us consider the equation

(2.1) A(x) + B(x) + C(x) = f.

2.1. The existence of solution.

Theorem 2. Suppose that the operators A and B satisfy conditions I) - IV).The

operator C maps from X into Y and satisfies the Lipschitz condition:

‖C(x) − C(x,)‖ ≤ Kρ(x, x,),

where θ ≡ K α
γ

< 1. Then the equation (2.1) has a unique solution.

Proof. Let us denote

(2.2) G(x) = A(x) + B(x),∀x ∈ X.

Application of Theorem 1 yields the existence of the inverse operator G−1, that
maps from Y into X. By taking x = G−1(u),∀u ∈ Y , we see that the equation
(2.2) has the form

(2.3) u + CG−1(u) = f.

We show that the operator G−1 satisfies the Lipschitz condition. For every
u ∈ Y and u, ∈ Y we take x = G−1(u) and x, = G−1(u,).

Using conditions III) and IV), we get

ρ
(

G−1(u), G−1(u,)
)

= ρ(x, x,)

≤ α ‖A(x) − A(x,)‖

≤
α

γ
‖A(x) − A(x,) + [B(x) − B(x,)]‖

=
α

γ
‖u − u,‖ .

Therefore, the operator G−1 satisfies the Lipschitz condition with L1 = α
γ
.

We prove that the operator CG−1 is contractive. Indeed, we have
∥

∥CG−1(u) − CG−1(u,)
∥

∥ ≤ Kρ(G−1(u), G−1(u,))

≤ K
α

γ
‖u − u,‖

= θ ‖u − u,‖ .

Hence, the equation (2.3) has a unique solution. This completes the proof. �
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2.2. The approximate solution of equation (2.1). By using the notations
in (2.2) and (2.3), we see that, the equation (2.1) is equivalent to the system of
equations

(2.4)

{

A(x) + B(x) = u

u + CG−1(u) = f.

The system (2.4) is solved approximately as follows:

(2.5)

{

A(xk) + B(xk) = uk

uk+1 = −CG−1(uk) + f, k = 0, 1, 2, ..., u0 = 0.

In this scheme, the equation A(x) + B(x) = u is solved approximately as in
Section 1. The equation u + CG−1(u) = f is solved by method of iteration:

uk+1 = −CG−1(uk) + f, k = 0, 1, 2, ..., u0 = 0.

Assume that the number of steps in each iteration process equals s. Then the
error εs of method of iteration is calculated as follows:

εs =
θs

1 − θ
‖f‖ .

We see that G−1(us) is calculated with the error ∆N . On the other hand,
the operator C has the Lipschitz coefficient K, hence, the error of calculation of
iteration (2.5) is K∆N .

Therefore, the error ηs of iteration (2.5) is calculated as follows:

(2.6) ηs = εs + K∆N =
θs

1 − θ
‖f‖+ K∆N .

Let us denote βs = ρ(xs, x).

Using Theorem 1 and the Lipschitz coefficient of the operator G−1 , we get

βs = ρ(xs, x) ≤ ∆N +
α

γ
ηs =

α

γ
εs + (K

α

γ
+ 1)∆N

≤
α

γ

θs

1 − θ
‖f‖ + (θ + 1)cαqs 1

1 − q

exp[(N − 1)q] − 1

[exp(q) − 1]
.(2.7)

In the general case, we get

βs = ρ(xs, x)

≤
α

γ

θs

1 − θ
‖f1‖ + (θ + 1)c1αqs 1

1 − q

exp[(N − 1)q] − 1

[exp(q) − 1]
.

Thus, we have proved the following theorem:

Theorem 3. Assume that the operators A, B, C satisfy conditions in Theorem

2. Then approximated solution xk tends to the solution x of equation (2.1) and

the speed of the convergence is calculated by the following formula

βs = ρ(xs, x)
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≤
α

γ

θs

1 − θ
‖f1‖ + (θ + 1)c1q

s 1

1 − q

exp[(N − 1)q] − 1

[exp(q) − 1]
.

2.3. Some remarks. 1) If A = I, Y = X, and X is a Banach space, then
equation (1.1) has the form:

x + Bx = f.

Assume that the operator B satisfies condition II)

(2.8) ‖B(x) − B(y)‖ ≤ L ‖x − y‖ , L = const;x, y ∈ X

and condition III) with γ = 1 :

(2.9) ‖x − y + λ [B(x) − B(y)]‖ ≥ ‖x − y‖ ,∀λ ∈ [0, 1]; x, y ∈ X.

Then the application of Theorem 1 yields the result of Y. L. Gaponenco [2].

2) If A = I, Y = X, and X is a Banach space, then equation (2.1) has the
form:

x + Bx + Cx = f.

Assume that the operator B satisfies conditions (2.8) and (2.9), the operator
C satisfies the following condition:

‖C(x) − C(y)‖ ≤ θ ‖x − y‖ , θ < 1; x, y ∈ X.

Then from Theorem 2 and Theorem 3 we get the results in [3].
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