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CYCLIC MODULES OVER SIMPLE GOLDIE RINGS

DINH VAN HUYNH AND DINH DUC TAI

ABSTRACT. In [10, Theorem A] it was shown that if every cyclic singular right
module over a simple ring R is CS, then R is right noetherian. In this note
we extend this result to cyclic modules over a simple right Goldie ring, and
apply it to characterize simple noetherian rings and simple SI rings by using
a single nonzero principal one-sided ideal of the ring.

1. INTRODUCTION

All rings are associative with identity, and all modules are unitary modules.
For a module M (over a ring R) we consider the following conditions.

(C1) Every submodule of M is essential in a direct summand of M,

(Cq) Every submodule isomorphic to a direct summand of M is itself a direct
summand of M, and

(Cs) For any direct summands A, B C M with ANB =0, A® B is also a
direct summand of M.

A module is called a CS (or extending) module if it satisfies (C1). A ring R is
defined to be a right CS ring if the module Rp is CS.

If M satisfies (C1) and (C3), then M is said to be a continuous module.
M is defined to be quasi-continuous, if it satisfies (C) and (C3).

A ring R is said to be right (quasi-) continuous if Rp is (quasi)-continuous.
For the basic properties of CS-modules and (quasi)-continuous rings and modules
we refer to the books [3] and [13], respectively.

The composition length of a module M is denoted by [(M); Soc(M) denotes
the socle of M. Let n be a positive integer, then the direct sum of n copies of
a module M is denoted by M™. For a module M, by o[M] we denote the full
subcategory of Mod-R whose objects are submodules of M-generated modules
(see Wisbauer [15]).

For the general backgrounds of modules and rings we refer to [1], [4], [12], and
[15].
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By [10, Theorem A], if every cyclic singular right module over a simple ring
R is CS, then R is right noetherian. Note that this theorem is not correct for
non-simple rings. In this note we extend this result to cyclic modules over a
simple right Goldie ring, and apply it to characterize simple noetherian rings and
simple SI rings by using a single nonzero principal one-sided ideal of the ring.
For obtaining our results we develop techniques presented in [10] and [11].

2. REsuULTS

First we list some lemmas that are important in our proofs. The first lemma
is due to B. Osofsky and P.F. Smith [14], the second is a result of J.T. Stafford
(see [1, Theorem 14.1] and also [10, Lemma 3.1]).

Lemma 2.1. Let M be a cyclic module. If every cyclic submodule in o[M] is
CS, then M has finite uniform dimension.

Lemma 2.2. Let M be a singular module over a simple right Goldie ring R that
s not artinian. If M = aR ® bR, a, b € M such that bR has finite composition
length, then M = (a + bx)R for some x € R, in particular, M is cyclic.

The following lemma is taken from [9]:

Lemma 2.3. Let M be a module such that every factor module of M has finite
uniform dimension. If every simple module in o[M] is M -injective, then M is
noetherian.

Let Nr be a module. A module Xpg is defined to be N-singular if there is a
module A € ¢[N] containing an essential submodule E such that X = A/E. The
class of N-singular modules is closed under submodules, factors, direct sums and
essential extensions. Hence if X is N-singular, then every module in o[X] is also
N-singular. For N = R we obtain the usual concept of the singularity of modules
in Mod-R.

We are now able to prove the following:

Theorem 2.4. Let M be a cyclic right module over a simple right Goldie ring R.
If every cyclic M-singular module in o[M] is CS, then M /Soc(M) is noetherian.

Proof. Assume that M is a cyclic right module over a simple right Goldie ring
R. If Soc(RRr) # 0, then as R is simple, R = Soc(Rpg), i.e. R is a simple artinian
ring. In this case M is noetherian and artinian. Hence, throughout the proof, we
assume that Soc(Rp) = 0.

Let E C M be an essential submodule. Then N = M/FE is a cyclic M-singular
module in o[M]. Being M-singular, every cyclic module in o[N] C o[M] is CS.
By Lemma 2.1, N has finite uniform dimension. Let o be an ordinal. We define
the socle series of NV as follows:

51 = SOC(N), Sa/Sa—l = SOC(N/Na_l),

and
S, = U5<a55
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if o is a limit ordinal. Then for the submodule S = U,S,, V = N/S has zero
socle.

Since V' is CS and has finite uniform dimension (by Lemma 2.1), V' is a direct
sum of finitely many uniform submodules. Hence we may assume (without loss
of generality) that V' is a uniform module. Let U be a simple M-singular module
in o[M], then by Lemma 2.2, T = V @ U is a cyclic M-singular module in
o[M]. Hence T is CS. It is clear that Soc(T") = U. Next we show that U is V-
injective. Let A be an arbitrary nonzero submodule of V and let f: A — U be a
homomorphism. Define B = {a — f(a)| a € A}. Then B is contained essentially
in a direct summand B* C T, i.e. we have T' = B* @ C for some submodule
CCT. But B"NU =0 and Soc(T) = U, a fully invariant submodule, we must
have U C C. Since U is closed in T, and C' is uniform (because, the uniform
dimension of T is 2), we have U = C. Thus,

T=B"qU.

From this decomposition, let 7 be the projection of T" onto U. Then we can check
that the mapping 7’ = (7|y) is an extension of f from V to U. We conclude that
every simple module in o[V] is V-injective. On the other hand, using Lemma
2.1, we see that every factor module of V' has finite uniform dimension. Thus, by
Lemma 2.3, the module V' is noetherian.

As V. = N/S, to show that N is noetherian we have to show that Sp is
noetherian, or equivalently, that Sk has finite composition length. Since 57 and
each Sy41/S, have finite composition lengths, it is enough to show that S = Ss.
If Sy # S3 thereis an y € S3 with yR ¢ Sp. We can choose y so that (yR+S2)/S2
is a simple module. Since yR is CS, we have

yR=H, @ - @ Hp,

where each H; is uniform. By the choice of y, there is some H;, say H; with
Hy ¢ S5. Again since Hy/Soc(K7) is CS, there are finitely many submodules
K, -+, K; of Hy such that

H,/Soc(Hy) = (K1/Soc(Hy)) @ -+ & (K¢ /Soc(Hy)),

where each K;/Soc(H;) is simple or uniform with {[K};/Soc(H1)] = 2. It is sure
that there is some K, say K; with I[K;/Soc(H1)] = 2. Since H; is uniform,
it follows that K7 is then a uniserial module with the unique composition series
Soc(Hy;) € K C Kj. Notice that Kj is cyclic, hence by Lemma 2.2, K; @
(H/Soc(Hy)) is cyclic, moreover it is M-singular. Hence Ky & (H/Soc(Hy)) is
CS by our hypothesis. But this is a contradiction to a result by Osofsky (see
[3, Corollary 7.4]) that this module cannot be CS. This contradiction means we
must have Sy = S3, thus S = Sy which has finite composition length.

So far we have shown that M is noetherian modulo each of its essential sub-
modules. Hence by [3, 5.15], M /Soc(M) is noetherian. O

The singular submodule of a right R-module M is denoted by Z(M), i.e.,
Z(M) is the set of those elements © € M such that the right annihilator rg(x)
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of x in R is an essential right ideal of R. As a consequence of Theorem 2.4 we
obtain the following result.

Remark. As observed in [2, Lemma 2.1}, if R is a simple ring and A C R is
a nonzero right ideal, then there are elements ay,--- ,a, € A such that Rgp =
a1 A+ - -+a, A for some positive integer n. It follows that Rp is a direct summand
of A™.

Corollary 2.5. For a simple ring R the following conditions are equivalent:

(i) Every cyclic singular right R-module is CS,

(ii) There exists a cyclic right R-module X with X # Z(X) such that every
cyclic X -singular module in o[X] is CS.

In this case, R is right noetherian.

Proof. (1)=(ii) is clear. Now assume that (ii) holds. For Soc(Rgr) # 0 the
statement is clear. Hence we assume that Soc(Rgr) = 0. There is x € X such
that X = zR. Since X # Z(X) the annihilator rg(z) in R is not an essential right
ideal of R. As X = xR = Rp/rr(x), X contains a nonzero cyclic submodule Y
that is isomorphic to a principal right ideal of R. Hence Y is nonsingular and
Soc(Ygr) = 0. It is clear that o[Y] C o[X]. Using the above remark we see that
Rp is isomorphic to a direct summand of Y* for some positive integer k. Hence
Rp is isomorphic to an object from o[Y] C o[X]. It follows that o[X]| = Mod-R.
Hence (ii) = (i).

In case of (ii) we have Soc(Y) = 0. Applying condition (ii) for o[Y/E] for each
essential submodule E' C Ywe see that (Y/E)g has finite uniform dimension by
Lemma 2.1. Hence, by [3. 5.14], Y/Soc(Y) (= Y) has finite uniform dimension.
In particular R has a uniform right ideal. Hence R is right Goldie by Hart [7].
Now we can apply Theorem 2.4 to see that Yy is noetherian. Thus, as a direct
summand of Y*, the ring R is right noetherian. (]

Theorem 2.6. Let R be a simple right Goldie ring, and 'Y be a (nonzero) cyclic
right R-module. If every cyclic Y -singular module in o[Y] is quasi-continuous,
then Y/E is semisimple for any essential submodule E CY .

Proof. If Soc(Rgr) # 0, then R is a semisimple artinian ring, and hence the
statement is obvious. We consider the case that Soc(Rg) = 0.

Assume that Y is a nonzero cyclic right R-module such that every cyclic Y-
singular module in o[Y] is quasi-continuous. By Theorem 2.4, Y/Soc(Y) is right
noetherian. We aim to show that

(*)  for every essential submodule E C Y, Y/F is semisimple.

First consider the case that X = Y/E is artinian. As Soc(Xpg) has finite
length, using Lemma 2.2 we can inductively show that X @ Soc(X) is cyclic.
Since X @ Soc(X) € o[Y] and Y-singular it is quasi-continuous by our hypothesis.
Hence Soc(X) is X-injective, and so Soc(X) splits in X. This shows that X =
Soc(X), i.e., X is semisimple whenever it is artinian. Thus to prove (*) we need
to show that Y/F is artinian for any essential submodule £ C Y.
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Assume on the contrary that for some essential submodule F CY, Y/FE is not
artinian. As Yy is noetherian modulo its socle, there is an essential submodule
F C Y which is maximal with respect to the condition that V' = Y/F is not
artinian. If V' is not uniform then there are nonzero submodules Vi, Vo C V with
VinVy, =0. Let U;, (i =1,2) be the preimage of V; in Y with respect to the
canonical homomorphism Y — Y/F (= V). Then by the maximality of F, Y/U;
is artinian. It follows that V (= Y/F) is artinian, a contradiction. Thus V' must
be uniform. Moreover, by the same reason and by the choice of F' we can show
that Soc(V') = 0.

Also by the choice of F', for any nonzero submodule ' C V, V/T is artinian,
hence semisimple. Therefore there exist submodules T and U of V' with 0 # T C
U C V such that U/T is a direct sum of finitely many simple modules. Consider
the module Q@ =V @ U. Since V is cyclic and Q/(0,T7) =2V @& (U/T) we can use
Lemma 2.2 to see that Q/(0,T) is cyclic. Let z € @ so that the coset = + (0,7)
generates Q/(0,7), i.e., [tR+(0,7)]/(0,T) = @Q/(0,T'). Obviously we can choose
x so that 2R contains (V,0). Hence R =V & W where (0,W) = 2R N (0,U).
Since xR is quasi-continuous, W is V-injective. As xR is not uniform, W # 0.
Thus U contains a nonzero submodule that is V-injective, and so that submodule
must split in V. This is a contradiction to the fact that V is uniform. Hence for
any essential submodule E of Y, the factor module Y/FE is artinian. This proves
(). O
Remark. It is still unknown if Theorems 2.4 and 2.6 hold without the assumption
that R is right Goldie.

Sl-rings, i.e., rings over which every singular module is injective, were intro-
duced and studied by Goodearl in [6]. The concept of SI-modules were defined
and investigated in [8]. A module M is called SI if every M-singular module in
o[M] is M-injective. In [11] it was shown that a simple ring R is right SI if and
only if every cyclic singular right R-module is quasi-continuous. Also this theo-
rem doesn’t hold for non-simple rings. We obtain the same result by considering
only one single principal right ideal of a simple ring as a consequence of the result
bellow.

For detailed discussions on SI-rings we refer to Goodearl [6]. Using the main
theorem of [14] we can show that a ring is a right SI domain if and only if it is a
right PCI domain. PCI domains are introduced and investigated by Faith in [5].

Corollary 2.7. For a simple ring R the following conditions are equivalent:

(i) Every cyclic singular right R-module is quasi-continuous,

(ii) There exists a cyclic right R-module X with X # Z(X) such that every
cyclic X -singular module in o[X]| is quasi-continuous.

In this case, R is right SI.

Proof. We need to show (ii)=-(i). With the same argument as that in the proof of
Corollary 2.5 we obtain Mod-R = o[X]. Hence (ii)=-(i). Under either (i) or (ii),
Theorem 2.5 says that R/E is semisimple for each essential right ideal E C R.
Since R is nonsingular, R is right SI by [6, 3.1]. O
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