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INTEGRAL TRANSFORMS RELATED TO THE FOURIER

COSINE CONVOLUTION WITH A WEIGHT FUNCTION

NGUYEN THANH HONG AND NGUYEN MINH KHOA

Abstract. We study a new class of integral transforms from Lp(R+) to
Lq(R+), 1 6 p 6 2, p−1 + q−1 = 1, related to the Fourier cosine convolu-
tion with a weight function. We obtain necessary and sufficient conditions
under which the new transforms are unitary in L2(R+). A Plancherel type
theorem and the boundedness of these integral operators are obtained. We
also give several examples of the new transforms kernels.

1. Introduction

Convolutions and integral transforms of convolution type have been studied
since the last century and have given many useful applications in various fields.
In recent years, based on a constructive method for defining convolutions with a
weight function for arbitrary integral transforms [5], several convolutions with a
weight function have found and studied [5,6,10]. The purpose of this paper is to
propose new integral transforms related to the Fourier cosine convolution with a
weight function [10] and to study their properties.

Let f be a function defined on R+. By Fc we denote its Fourier cosine transform
[2]

(Fcf)(y) ≡ Fc[f ](y) =

√
2

π

∞∫
0

f(x) cosxy dx,

if f ∈ L1(R+), and

(Fcf)(y) =

√
2

π

d

dy

∞∫
0

f(x)
sinxy

x
dx,

if f ∈ L2(R+). These two definitions are equivalent if f ∈ L1(R+)∩L2(R+), and
the integrals are understood as improper integrals. With these notations, the
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convolution of two functions f and g in L1(R+) for the Fourier cosine transform
has been defined in [9] by

(1.1) (f ∗ g)(x) =
1√
2π

∞∫
0

f(u)[g(|x− u|) + g(x+ u)]du, x > 0,

which satisfies the factorization equality

(1.2) Fc[f ∗ g](y) = (Fcf)(y)(Fcg)(y) ∀y > 0.

For f and g ∈ L2(R+), the definition (1.1) has been proved to be correct and the
Parseval identity holds ( [14])

(1.3) (f ∗ g)(x) =

√
2

π

∞∫
0

(Fcf)(y)(Fcg)(y) cosxy dy.

Similarly, the convolution with the weight function γ(y) = cos y of two functions
f and g in L1(R+) for the Fourier cosine transform has been defined in [10] by

(1.4) (f
γ
∗g)(x) =

1

2
√

2π

∞∫
0

f(y)[g(x+ u+ 1) + g(|x− u+ 1|)

+ g(|x+ u− 1|) + g(|x− u− 1|)]du, x > 0.

This convolution satisfies the factorization property

(1.5) Fc[f
γ
∗g](y) = cos y (Fcf)(y)(Fcg)(y), y > 0.

In any convolution of two functions f and g, if we fix one function, say g, as
the kernel, and allow the other function f vary in a certain function space, we get
an integral transform of convolution type. The most famous integral transforms
constructed in that way are the Watson transforms which are related to the Mellin
convolution and the Mellin transform.

Recently, several classes of integral transforms related to convolutions and
generalized convolutions have been investigated in [3, 7, 8, 11, 12, 14, 15]. In this
paper, following [3, 14], we consider a class of integral transforms related to the
convolutions (1.1) and (1.4). Namely, we study the transforms of the form

g(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)( ∞∫
0

f(u)
[
k1(x+ u+ 1) + k1(|x− u+ 1|)

+ k1(|x+ u− 1|) + k1(|x− u− 1|)
]
du

+

∞∫
0

f(u)[k2(|x− u|) + k2(x+ u)]du
)
, x > 0,

(1.6)
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where a0 = 1, aj ∈ R such that 1/(
∑n

j=0 ajy
2j) ∈ L2(R+). We obtain necessary

and sufficient conditions on the functions k1, k2 ∈ L2(R+) ensuring the transfor-
mation (1.6) to be unitary on L2(R+), and define the inverse transformation. A
Plancherel type theorem is also obtained. Furthermore, the boundedness of the
transformations (1.6) on Lp(R+) for 1 6 p 6 2 is studied. Finally, we present
several examples of these transformations kernels.

2. A Watson type Theorem

Lemma 2.1. Let f, g ∈ L2(R+). Then the Parseval formula

∞∫
0

f(u)[g(x+ u+ 1) + g(|x− u+ 1|) + g(|x+ u− 1|) + g(|x− u− 1|)]du

=2
√

2πFc
[

cos y(Fcf)(y)(Fcg)(y)
]
(x), x > 0,

(2.1)

holds.

Proof. Since f, g ∈ L2(R+), we have fg ∈ L2(R+). Since the Fourier cosine
transform is isomorphic from L2(R+) onto itself (Theorem 50, p. 70 in [13]) and
cos y is bounded, we have cos y(Fcf)(y)(Fcg)(y) belongs to L2(R+). Using the
formula (see formula 1.1.3 in [4])

(2.2) Fc[h(x) cosx](y) =
1√
2π

[
(Fch)(y + 1) + (Fch)(y − 1)

]
, h ∈ L2(R+),

and the Parseval identity (1.3) for the Fourier cosine convolution on L2(R+), we
have

2
√

2πFc[cos y(Fcf)(y)(Fcg)(y)](x) =2
√

2πFc
[

cos yFc[f ∗ g](y)
]
(x)

=2
(
(f ∗ g)(x+ 1) + (f ∗ g)(x− 1)

)
.

From the above identity, we obtain the relation (2.1). It also shows the existence
of the convolution (1.4) for f, g ∈ L2(R+). The proof is complete. �

Theorem 2.2. Let k1, k2 ∈ L2(R+) and a0 = 1, aj ∈ R such that 1/(
n∑
j=0

ajy
2j) ∈

L2(R+). Then the condition

(2.3) |2 cos y(Fck1)(y) + (Fck2)(y)| = 1
√

2π
n∑
j=0

ajy2j

is necessary and sufficient to ensure that the integral transform f 7−→ g:
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g(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)( ∞∫
0

f(u)
[
k1(x+ u+ 1) + k1(|x− u+ 1|)

+ k1(|x+ u− 1|) + k1(|x− u− 1|)
]
du

+

∞∫
0

f(u)[k2(|x− u|) + k2(x+ u)]du
)
, x > 0,

(2.4)

is unitary on L2(R+). Reciprocally,

f(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)( ∞∫
0

g(u)
[
k1(x+ u+ 1) + k1(|x− u+ 1|)

+ k1(|x+ u− 1|) + k1(|x− u− 1|)
]
du

+

∞∫
0

g(u)[k2(|x− u|) + k2(u+ x)]du
)
, x > 0.

(2.5)

The integrals are understood in mean.

Proof. Necessity. It is well-known that h(y), yh(y), y2h(y) ∈ L2(R) if and only

if (Fh)(x), d
dx(Fh)(x), d2

dx2
(Fh)(x) ∈ L2(R) (Theorem 68, [13]). Moreover,

(2.6)
d2

dx2
(Fh)(x) = F

[
(−iy)2h(y)

]
(x).

In particular, if h is an even function such that
( n∑
j=0

ajy
2j
)
h(y) ∈ L2(R+), the

following equality holds

( n∑
j=0

(−1)jaj
d2j

dx2j

)
(Fch)(x) = Fc

[( n∑
j=0

ajy
2j
)
h(y)

]
(x).(2.7)

Suppose that the functions k1, k2 ∈ L2(R+) satisfy condition (2.3). Using
Lemma 2.1 and the factorization equalities for the convolutions (1.5), (1.2), we
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have

g(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)
Fc

[
2
√

2π cos y(Fck1)(y)(Fcf)(y)

+
√

2π(Fck2)(y)(Fcf)(y)
]
(x)

=Fc

√2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y) + (Fck2)(y)
)
(Fcf)(y)

 (x).

Condition (2.3) shows that
√

2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y)+(Fck2)(y)
)
(Fcf)(y)∈

L2(R+). Therefore, g also belongs to L2(R+). Furthermore, by virtue of the Par-
seval identity for the Fourier cosine transform, ‖f‖L2(R+) = ‖Fcf‖L2(R+), and
from condition (2.3), we get

‖g‖L2(R+) =
∥∥∥√2π

( n∑
j=0

ajy
2j
)[

2 cos y(Fck1)(y) + (Fck2)(y)
]
(Fcf)(y)

∥∥∥
L2(R+)

=‖Fcf‖L2(R+) = ‖f‖L2(R+).

It shows that the transformation (2.4) is unitary.

Besides, since
√

2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y) + (Fck2)(y)
)
(Fcf)(y) ∈ L2(R+),

we have

(Fcg)(y) =
√

2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y) + (Fck2)(y)
)
(Fcf)(y).

Therefore, (Fcf)(y) =
√

2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y) + (Fck2)(y)
)
(Fcg)(y).

Again, condition (2.3) shows that
√

2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y) + (Fck2)(y)
)
(Fcg)(y) belongs to L2(R+). Then

formula (2.7) yields

f(x) = Fc
[√

2π
( n∑
j=0

ajy
2j
)(

2 cos y(Fck1)(y) + (Fck2)(y)
)
(Fcg)(y)

]
(x)

=
( n∑
j=0

(−1)jaj
d2j

dx2j

)
Fc
[
2
√

2π cos y(Fck1)(y)(Fcg)(y)+
√

2π(Fck2)(y)(Fcg)(y)
]
(x).
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Using formula (2.7) and Lemma 2.1, we have

f(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)( ∞∫
0

g(u)
[
k1(x+ u+ 1) + k1(|x− u+ 1|)

+ k1(|x+ u− 1|) + k1(|x− u− 1|)
]
du

+

∞∫
0

g(u)[k2(|x− u|) + k2(u+ x)]du
)
, x > 0.

Therefore the transformation (2.4) is unitary on L2(R+) and the inverse trans-
formation is defined by (2.5).

Sufficiency. Suppose that the transform (2.4) is unitary on R+. Then the iso-
metric property on L2(R+) of the Fourier cosine transform ‖f‖L2(R+)=‖Fcf‖L2(R+)

yields

‖g‖L2(R+) =‖
√

2π
( n∑
j=0

ajy
2j
)
[2 cos y(Fck1)(y) + (Fck2)(y)](Fcf)(y)‖L2(R+)

=‖Fcf‖L2(R+) = ‖f‖L2(R+).

Here, k1, k2 are in L2(R+).
Therefore, the multiplication operator Mθ[·] with

θ(y) =
√

2π
( n∑
j=0

ajy
2j
)
[2 cos y(Fck1)(y) + (Fck2)(y)]

is unitary on L2(R+). This is equivalent to |θ(y)| ≡ 1 on R+. Namely,∣∣√2π
( n∑
j=0

ajy
2j
)
[2 cos y(Fck1)(y) + (Fck2)(y)]

∣∣ = 1, ∀y > 0.

It shows that k1 and k2 satisfy (2.3). The proof of Theorem 2.2 is completed. �

We note that the condition 1/(
n∑
j=0

ajy
2j) ∈ L2(R2

+) is satisfied, if P (x) =

n∑
j=0

ajy
2j has no real zero.

We now show the existence of functions k1 and k2 satisfying condition (2.3). Let

aj , j = 1, . . . , n be real numbers such that the polynomial
n∑
j=0

ajy
2j has no real

zero, and h1, h2 ∈ L2(R+) satisfy the following identity

(2.8) |(Fch1)(y)(Fch2)(y)| = 1

(1 + cos2 y)
n∑
j=0

ajy2j
.
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The existence of functions h1, h2 satisfying (2.8) is always guaranteed.
For instance, we can take

h1(x) =Fc

[
eiv1(y){

(1 + cos2 y)
n∑
j=0

ajy2j
}α
]

(x),

h2(x) =Fc

[
eiv2(y){

(1 + cos2 y)
n∑
j=0

ajy2j
}β
]

(x),

where v1, v2 are arbitrary real-valued functions defined on R+, α, β are positive
numbers such that α+ β = 1.

Put

k1(x) =
1

2
√

2π
(h1

γ
∗h2)(x), k2(x) =

1√
2π

(h1 ∗ h2)(x).

One can easily prove that k1, k2 ∈ L2(R+). Moreover

|2 cos y(Fck1)(y) + (Fck2)(y)| =

∣∣∣∣∣ 2

2
√

2π
cos2 y(Fch1)(y)(Fch2)(y)

+
1√
2π

(Fch1)(y)(Fch2)(y)

∣∣∣∣∣
=

1√
2π
|(Fch1)(y)(Fch2)(y)|(1 + cos2 y)

=
1

√
2π

n∑
j=0

ajy2j
.

Thus k1 and k2 satisfy condition (2.3).

3. A Plancherel type Theorem

Theorem 3.1. Let k1 and k2 be twice differentiable functions in L2(R+)

satisfying condition (2.3) and suppose that K1(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)
k1(x) and

K2(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)
k2(x) are locally bounded. Let f ∈ L2(R+), and for
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each positive integer N , put

gN (x) =

N∫
0

f(u)[K1(x+ u+ 1) +K1(|x− u+ 1|) +K1(|x+ u− 1|)

+K1(|x− u− 1|)]du+

N∫
0

f(u)[K2(|x− u|) +K2(x+ u)]du, x > 0.

(3.1)

Then
1) gN ∈ L2(R+) and, as N → ∞, gN converges in L2(R+) to a function

g ∈ L2(R+). Moreover, ‖g‖L2(R+) = ‖f‖L2(R+).
2) Reciprocally,

fN (x) =

N∫
0

g(u)
[
K1(x+ u+ 1) +K1(|x− u+ 1|)

+K1(|x+ u− 1|) +K1(|x− u− 1|)
]
du

+

N∫
0

g(u)[K2(|x− u|) +K2(u+ x)]du, x > 0,

(3.2)

belongs to L2(R+) and converges in L2(R+) to f as N →∞.

Remark 3.2. Due to the definitions of gN and fN , the integrals (3.1) and (3.2)
are over finite intervals and therefore converge.

Proof of Theorem 3.1. Put fN = f.χ(0 ;N). Changing variables, we have

gN (x) =

∞∫
0

K1(u)
[
fN (x+ u+ 1) + fN (|x− u+ 1|)

+ fN (|x+ u− 1|) + fN (|x− u− 1|)
]
du

+

∞∫
0

K2(u)[f(|x− u|) + f(x+ u)]du

=
( n∑
j=0

(−1)jaj
d2j

dx2j

)( ∞∫
0

k1(u)
[
fN (x+ u+ 1) + fN (|x− u+ 1|)

+ fN (|x+ u− 1|) + fN (|x− u− 1|)
]
du

+

∞∫
0

k2(u)[fN (|x− u|) + fN (x+ u)]du
)
.
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It is legitimate to interchange the order of integration and differentiation since the
integrals are actually over finite intervals. Again, changing variables, we obtain

gN (x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)( N∫
0

f(u)[k1(x+ u+ 1|) + k1(|x− u+ 1|)

+ k1(|x+ u− 1|) + fN (|x− u− 1|)]du+

N∫
0

f(u)[k2(|x− u|) + k2(x+ u)]du
)
.

From this and in view of Theorem 2.2, we conclude that gN ∈ L2(R+). Let g be
the image of f under the transformation (2.4). Then Theorem 2.2 implies that
g ∈ L2(R+) and ‖g‖L2(R+) = ‖f‖L2(R+). Furthermore, the reciprocal formula
(2.5) holds. We have

(g−gN )(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)( ∞∫
0

(f−fN )(u)
[
k1(x+u+1)+k1(|x−u+1|)

+ k1(|x+ u− 1|) + k1(|x− u− 1|)
]
du

+

∞∫
0

(f − fN )(u)[k2(|x− u|) + k1(x+ u)]du
)
.

Again by Theorem 2.2, g − gN ∈ L2(R+) and

‖g − gN‖L2(R+) = ‖f − fN‖L2(R+).

Since ‖f − fN‖L2(R+) →∞ as N →∞, gN converges in L2(R+) to g as N →∞.
The second part of the theorem can be similarly proved. �

Remark 3.3. Theorem 2.2 and Theorem 3.1 show that the integral transform
(2.4) is unitary in L2(R+) and the inverse transform is defined by formula (2.5).
Moreover, integral operators (2.4) and (2.5) can be approximated in the L2(R+)
norm by operators (3.1) and (3.2), respectively.

If we assume in addition that

K1(x) =
( n∑
j=0

(−1)jaj
d2j

dx2j

)
k1(x) and K2(x) =

( n∑
j=0

(−1)jaj
d2j

dx2j

)
k2(x)

are bounded on R+, then the transformation (2.4) is a bounded operator from
L1(R+) to L∞(R+).
On the other hand, Theorem 3.1 shows that the transformation (2.4) is bounded
on L2(R+). Then Riesz’s interpolation theorem yields the following result.

Theorem 3.4. Let k1, k2 satisfy condition (2.3) and suppose that K1(x) and
K2(x), defined as in Theorem 2, are bounded on R+. Let 1 6 p 6 2 and q be its
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conjugate exponent, i.e. 1
p + 1

q = 1. Then the transformation

(3.3)

f(x) 7−→ g(x) = lim
N→∞

( N∫
0

f(u)[K1(x+u+1)+K1(|x−u+1|)+K1(|x+u−1|)

+K1(|x− u− 1|)]du+

N∫
0

f(u)[K2(|x− u|) +K2(x+ u)]du
)
,

is a bounded operator from Lp(R+) into Lq(R+). Here the limits are understood
in the Lq(R+) norm.

4. Examples

We now present some examples of the kernels k1, k2 satisfying condition (2.3),
and hence, the corresponding transforms (2.4).

Example 4.1. Let

(4.1) (Fck1)(y) =
cos y

2
√

2π(1 + y2)
; (Fck2)(y) =

sin2 y√
2π(1 + y2)

.

It is obvious that k1 and k2 defined by (4.1) satisfy condition (2.3). Moreover,

k1(x) =Fc

[ cos y

2
√

2π(1 + y2)

]
(x)

=
1

2π

+∞∫
0

cos y cos(xy)

1 + y2
dy

=
1

4π

+∞∫
0

cos(x+ 1)y + cos(x− 1)y

1 + y2
dy.

In view of formula (1.4.1) from [4], we get

(4.2) k1(x) =
1

2

(
e+

1

e

)
e−x.

On the other hand,

k2(x) =Fc

[ sin2 y√
2π(1 + y2)

]
(x) =

1

π

+∞∫
0

sin2 y cos(xy)

1 + y2
dy

=
1

4π

+∞∫
0

2 cos(xy)− cos(x+ 2)y − cos(x− 2)y

1 + y2
dy.
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Again, using formula (1.4.1) from [4], we have

(4.3) k2(x) =
1

2

(
2− e−2 − e2

)
e−x.

Example 4.2. Let

(4.4) (Fck1)(y) =
1

2
√

2π(1 + y2)
; (Fck2)(y) =

i sin y√
2π(1 + y2)

.

It is clear that |2 cos y(Fck1)(y) + (Fck2)(y)| = 1√
2π(1 + y2)

. Moreover, formula

(1.2.11) in [4] yields

k1(x) =
1

2π

∞∫
0

cosxy

1 + y2
dy =

e−x

4
.

Using formula (2.2.14) in [4], we have

k2(x) =
i

π

∞∫
0

sin y cosxy

1 + y2
dy =

i

2π

∞∫
0

sin(x+ 1)y − sin(x− 1)y

1 + y2
dy

=
i

4π

(
e−x−1Ei(x+ 1)− ex+1Ei(−x− 1)− e−x+1Ei(x+ 1) + ex−1Ei(−x+ 1)

)
,

here Ei is the integral exponential [1, 4].

Example 4.3. Let

(4.5) (Fck1)(y) =
i sin y√

2π(1 + y2)
; (Fck2)(y) =

cos 2y√
2π(1 + y2)

.

Obviously, |2 cos y(Fck1)(y) + (Fck2)(y)| = 1√
2π(1 + y2)

. Moreover,

k1(x) =
i

4π

{
e−x−1Ei(x+ 1)− ex+1Ei(−x− 1)

− e−x+1Ei(x+ 1) + ex−1Ei(−x+ 1)
}
,

and

k2(x) =
1

π

∞∫
0

cos 2y cosxy

1 + y2
=

1

2π

∞∫
0

cos(x+ 2)y + cos(x− 2)y

1 + y2
= (e−2 + e2)e−x.

Example 4.4. Now we consider a generalization of Example 4.1. Let

(4.6) (Fck1)(y) =
cos y

2
√

2π(y2 + a2)n+1
and (Fck2)(y) =

sin2 y√
2π(a2 + y2)n+1

.
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One can easily see that k1, k2 defined by (4.6) satisfy condition (2.3). Moreover,

k1(x) =Fc

[ cos y

2
√

2π(y2 + a2)n+1

]
(x) =

1

2π

+∞∫
0

cos y cos(xy)

(y2 + a2)n+1

=
1

4π

+∞∫
0

cos(x+ 1)y + cos(x+ 1)y

(y2 + a2)n+1
.

Using formula (1.2.28) from [4], we obtain
(4.7)

k1(x) =

(
(−1)n

π

2.n!
× dn

dzn

(
e−(x+1)

√
z

√
z

)
+ (−1)n

π

2.n!
× dn

dzn
(e−(x−1)√z√

z

))∣∣∣∣∣
z=a2

.

Similarly,

k2(x) =Fc

[ sin2 y√
2π(a2 + y2)n+1

]
(x)

=
1

4π

+∞∫
0

2 cos(xy)− cos(x+ 2)y − cos(x− 2)y

(a2 + y2)n+1
dy.

The formula (1.2.28) from [4] again gives us

k2(x) =
(

2(−1)n
π

2.n!
× dn

dzn
(e−x√z√

z

)
− (−1)n

π

2.n!
× dn

dzn
(e−(x+2)

√
z

√
z

)
(4.8)

− (−1)n
π

2.n!
× dn

dzn
(e−(x−2)√z√

z

))∣∣∣
z=a2

.

Example 4.5. Finally, let k1 and k2 be functions in L2(R+) defined by

(4.9) (Fck1)(y) =
cos y

2
√

2π(x2n + a2n)
; (Fck2)(y) =

sin2 y√
2π(x2n + a2n)

.

It is obvious that k1, k2 defined by (4.9) satisfy condition (2.3)
Since k1 and k2 are functions in L2(R+), we have

k1(x) = Fc

[ cos y

2
√

2π(x2n + a2n)

]
(x) =

1

4π

+∞∫
0

cos(x+ 1)y + cos(x− 1)y

x2n + a2n
dy.
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Using formula (1.3.29) from [4], we obtain

k1(x) =
1

8na2n−1

{[ n∑
k=1

exp
[
− a(x+ 1) sin

(2k − 1)π

2n

]
× sin

[(2k − 1)π

2n
+ a(x+ 1) cos

(2k − 1)π

2n

]]
+

n∑
k=1

exp
[
− a(x− 1) sin

(2k − 1)π

2n

]
sin
[(2k − 1)π

2n
+ a(x− 1) cos

(2k − 1)π

2n

]}
.

(4.10)

Similarily,

k2(x) =Fc

[ sin2 y√
2π(x2n + a2n)

]
(x)

=
1

4π

+∞∫
0

2 cos(xy)− cos(x+ 2)y − cos(x− 2)y

a2n + y2n
dy.

Hence, using formula (1.3.29) in [4], we have

k2(x) =
n∑
k=1

exp
[
− ax sin

(2x− 1)π

2n

]
× sin

[(2k − 1)π

2n
+ a(x− 1) cos

(2k − 1)π

2n

]
−

n∑
k=1

exp
[
− a(x+ 2) sin

(2k − 1)π

2n

]
× sin

[(2k − 1)π

2n
+ a(x+ 2) cos

(2k − 1)π

2n

]
−

n∑
k=1

exp
[
− a(x− 2) sin

(2k − 1)π

2n

]
× sin

[(2k − 1)π

2n
+ a(x− 2) cos

(2k − 1)π

2n

]
.

(4.11)

We note that the results of this work can be applied to solving some convolution
type equations in closed form such as in [7, 8, 10–12].
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