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ROBUST STABILITY OF
POSITIVE LINEAR TIME-DELAY SYSTEMS UNDER

AFFINE PARAMETER PERTURBATIONS

NGUYEN KHOA SON AND PHAM HUU ANH NGOC

Abstract. In this paper we study robust stability of positive linear
time-delay systems under arbitrary affine parameter perturbations. It is
shown that real and complex stability radii of positive systems coincide for
block-diagonal disturbances. Moreover, for these stability radii, estimates
and computable formulae are derived which generalize to positive retarded
systems known results obtained earlier for positive systems with no time-
delays. Some illustrative examples are given.

1. Introduction

A dynamical system in the n-dimensional space lRn is called positive if
any trajectory of the system starting from an initial position in the positive
orthant lRn

+ always remains in lRn
+. Positive dynamical systems play an

important role in the modeling of dynamical phenomena whose variables
are restricted to be nonnegative. Their applications can be found in many
areas such as economics, population dynamics and ecology. Mathematical
theory of positive systems is based essentially on the theory of nonnegative
matrices developed by Perron and Frobenius. As references we mention
[2], [13].

In this paper we study the asymptotic stability of uncertain positive
systems described by the linear differential-difference equation of the form

(1) ẋ(t) = A0x(t) + A1x(t− h), t ≥ 0,

where the system matrices A0, A1 ∈ lRn×n are subjected to arbitrary affine
parameter perturbations of the form

(2) A0 ∼→ A0 + D0∆0E0, A1 ∼→ A1 + D1∆1E1.
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Here Di, Ei, i = 0, 1 are given matrices specifying the structure of the
perturbations and ∆0, ∆1 are unknown disturbance matrices whose sizes
are measured by their operator norms ‖∆0‖, ‖∆1‖. The main problem of
robustness of stability for the system (1) is to determine the maximal
r > 0 for which the family of systems

ẋ(t) = (A0 + D0∆0E0)x(t) + (A1 + D1∆1E1)x(t− h),(3)

γ(‖∆0‖, ‖∆1‖) < r

is asymptotically stable. Here, γ(·, ·) : lR2 7→ lR+ is a given function rep-
resenting the aggregate size of perturbations. If disturbances ∆i, i = 0, 1,
are allowed to be complex, the maximal number r is called the complex
stability radius and denoted by rIC . If only real perturbations are consi-
dered, the real stability radius rIR is obtained. These stability radii can
be considered as robustness measures of stability of the system.

In the case of dynamical systems with no delays

(4) ẋ(t) = Ax(t), t ≥ 0

the problem of computing stability radii has been studied over the last
decade in a series of works initiated by Hinrichsen and Pritchard (see,
e.g. [6], [7], [8], [15]). In general, the computation of rIC and rIR requires
the solution of a complicated global optimization problem. For the class
of positive systems of the form (4) the problem of robust stability was
studied in [16], [17], where it has been shown that the real and the complex
stability radii coincide and can be determined via an easily computable
formula. These results have been extended in [9], [10], to arbitrary affine
parameter perturbations of the form

(5) A ∼→ A +
N∑

i=1

Bi∆iCi,

and

(6) A ∼→ A +
N∑

i=1

δiBi.

where the matrices Bi and Ci are given nonnegative matrices defining
the structure of the perturbations, ∆i and δi are respectively unknown
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matrices and scalars representing the parameter uncertainty. Recently,
the similar consideration has been done in [4] and [19] for linear positive
systems ẋ(t) = Ax(t) in Banach spaces.

The purpose of the present paper is to generalize the results of [6] and
[9] to the positive linear time-delay system of the form (1). It is important
to note that the problem of robust stability of delay systems has attracted
attention of researchers only recently, see e.g. [3], [12], [18]. In particular,
in [18] a formula of complex stability radius of a linear delay system was
established. In [4] the robustness of stability of infinite-dimensional linear
equation associated to the positive delay system (1) was studied. However,
so far the problem of computing the stability radii of the original positive
delay system under arbitrary affine perturbations as considered in [9], [10]
has not been studied yet.

The organization of this paper is as follows. In the next section we re-
call some theorems on nonnegative matrices and derive preliminary results
for later use. The main results of the paper will be presented in Section
3. We show that for positive linear time-delay systems subjected to affine
perturbations of block-diagonal structure, the stability radii with respect
to complex, real and nonnegative disturbances coincide. Moreover, we de-
rive a simple formula for computing the real stability radius of the system
and we illustrate the obtained results by some examples.

2. Preliminaries

Let lK = lC or lR and n, `, q be positive integers. Inequalities between
real matrices or vectors will be understood componentwise, i.e. for two
real `× q-matrices A = (aij) and B = (bij), the inequality A ≥ B means
aij ≥ bij for i = 1, · · · , `, j = 1, · · · , q. The set of all nonnegative ` × q-
matrices is denoted by lR`×q

+ . If x ∈ lKn and P ∈ lK`×q we define |x| =
(|xi|) and |P | = (|pij |). For any matrix A ∈ lKn×n the spectral radius and
spectral abscissa of A are denoted, respectively, by

ρ(A) = max{|λ| : λ ∈ σ(A)},

µ(A) = max{Reλ : λ ∈ σ(A)},
where σ(A) := {s ∈ lC : det(sI − A) = 0} is the set of all eigenvalues of
A. A ∈ lRn×n is called a Metzler matrix if all the off-diagonal elements of
A are nonnegative or, equivalently, tI + A ≥ 0 for some t ≥ 0.

A norm ‖·‖ on lKn is said to be monotonic if ‖x‖ = ‖ |x| ‖ for all x ∈ lKn.
Every p-norm on lKn, 1 ≤ p ≤ ∞, is monotonic. Throughout the paper,
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unless otherwise stated, the norm ‖M‖ of a matrix M ∈ lK`×q is always
understood as the operator norm defined by ‖M‖ = max‖y‖=1 ‖My‖,
where lKq and lK` are provided with some monotonic vector norms. Then,
the following monotonicity property holds, see e.g. [17],

(7) P ∈ lKl×q, Q ∈ lRl×q
+ , |P | ≤ Q ⇒ ‖P‖ ≤ ‖ |P | ‖ ≤ ‖Q‖.

In order to facilitate the presentation, we summarize some existing
results on properties of nonnegative matrices and Metzler matrices which
will be used in the sequel (see, e.g. [2], [13], [17]).

Theorem 2.1. Suppose that A ∈ lRn×n is a Metzler matrix. Then
(i) (Perron-Frobenius) µ(A) is an eigenvalue of A and there exists a

nonnegative eigenvector x ≥ 0, x 6= 0 such that Ax = µ(A)x.
(ii) Given α ∈ lR, there exists a nonzero vector x ≥ 0 such that Ax ≥ αx

if and only if µ(A) ≥ α.
(iii) (tIn −A)−1 exists and is nonnegative if and only if t > µ(A).
(iv) Given B ∈ lRn×n

+ , C ∈ lCn×n. Then

(8) |C| ≤ B =⇒ µ(A + C) ≤ µ(A + B).

It follows from Theorem 2.1 (i) that for any A ∈ lRn×n
+ ,

(9) ρ(A) = µ(A).

Consider the linear delay system (1) and denote by σ(A0, A1) the set
of all roots of the characteristic polynomial:

σ(A0, A1) = {λ ∈ lC : det(λI −A0 −A1e
−hλ) = 0}.

Then
µ0 := µ(A0, A1) := max{Re λ : λ ∈ σ(A0, A1)}

is called the spectral abscissa of the linear delay system (1). It is well-
known that the system (1) is asymptotically stable if and only if σ(A0, A1) ⊂
lC− or, equivalently, µ(A0, A1) < 0, see e.g. [1], [5]. For a given φ ∈
C([−h, 0], lRn) the unique solution of the equation (1) satisfying the ini-
tial condition

(10) x(t) = φ(t), t ∈ [−h, 0],

is defined by

(11) x(t)=eA0tφ(0)+

t∫

0

eA0(t−τ)A1x(τ − h)dτ,

for t ≥ 0.
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Definition 2.2. The system (1) is said to be positive if, for any nonneg-
ative initial condition φ ∈ C([−h, 0], lRn

+), the corresponding solution x(·)
satisfies x(t) ∈ lRn

+ for every t ≥ 0.
It is well-known that the system (1) is positive if and only if A0 is a

Metzler matrix and A1 ≥ 0, see e.g. [14].
We shall need the following properties of the spectral abscissa of posi-

tive delay systems.

Lemma 2.3. Let A0 ∈ lRn×n be a Metzler matrix and A1 ∈ lRn×n
+ . Then

the spectral abscissa µ0 of the delay system (1) is equal to the spectral
abscissa µ1 of the Metzler matrix A0 + A1e

−hµ0 , that is

(12) µ0 := µ(A0, A1) = µ(A0 + A1e
−hµ0) =: µ1.

Proof. By definition, there exist γ0 ∈ lR, y0 ∈ lCn, y0 6= 0 such that

(A0 + A1e
−h(µ0+ıγ0))y0 = (µ0 + ıγ0)y0.

Since A0 is a Metzler matrix, there exists t0 ≥ 0 such that t0I + A0 ≥ 0.
We deduce

(µ0 + t0)|y0| ≤ |(λ + t0)y0| = |(t0I + A0)y0 + A1e
−h(µ0+ıγ0)y0|

≤ (t0I + A0)|y0|+ A1e
−hµ0 |y0|.

It implies (A0 + A1e
−hµ0)|y0| ≥ µ0|y0|. By Theorem 2.1 (ii), we have

µ1 := µ(A0 + A1e
−hµ0) ≥ µ0. By Theorem 2.1 (iv),

(13) µ(A0 + A1e
−hθ) ≤ µ(A0 + A1e

−hµ0) = µ1 for all θ ≥ µ0.

Consider the continuous real function f(θ) = θ − µ(A0 + A1e
−hθ) for

θ ∈ [µ0, +∞). We have, by (13),

f(µ0) = µ0 − µ(A0 + A1e
−hµ0) = µ0 − µ1 ≤ 0.

Assume f(µ0) < 0. Since lim
θ→+∞

f(θ) = +∞, f(θ0) = 0 for some θ0 > µ0,

so that θ0 = µ(A0 +A1e
−hθ0). It follows, by Theorem 2.1 (i), that θ0 is an

eigenvalue of the Metzler matrix A0 + A1e
−hθ0 or, equivalently, det(θ0I −

A0 − A1e
−hθ0) = 0, with θ0 > µ0. This, however, conflicts with the

definition of µ0. Thus, f(µ0) = 0 and hence µ0 = µ(A0 + A1e
−hµ0) = µ1.
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Lemma 2.4. Let A0 ∈ lRn×n be a Metzler matrix and A1 ∈ lRn×n
+ .

Assume ∆0,∆1 ∈ lCn×n, B0, B1 ∈ lRn×n
+ satisfy |∆0| ≤ B0, |∆1| ≤ B1.

Then

(14) µ(A0 + ∆0, A1 + ∆1) ≤ µ(A0 + B0, A1 + B1).

Proof. Set µδ = µ(A0 + ∆0, A1 + ∆1) and µb = µ(A0 + B0, A1 + B1).
Then, by defintion, there exist ωδ ∈ lR and xδ ∈ lCn, xδ 6= 0 such that

(
A0 + ∆0 + (A1 + ∆1)e−h(µδ+ıωδ)

)
xδ = (µδ + ıωδ)xδ.

and hence,
(
A0 + |∆0|+ (A1 + |∆1|)e−hµδ

) |xδ| ≥ µδ|xδ|.
It follows from Theorem 2.1 (iv) that

(15) µ(A0 + |∆0|+ (A1 + |∆1|)e−hµδ) ≥ µδ.

On the other hand, by Lemma 2.3, we have

(16) µb = µ(A0 + B0 + (A1 + B1)e−hµb).

Therefore, by Theorem 2.1 (iii) and from (15), (16) it follows

µb ≥ µ(A0 + |∆0|+ (A1 + |∆1|)e−hµδ) ≥ µδ,

completing the proof.
As noted in the introduction, the main problem in the study of robust

stability of dynamical systems is to examine to which extent stability of
a norminal system is preserved under parameter perturbations of certain
classes and structure. Among perturbation classes, the one of the block-
diagonal structure defined below is most well-known in control theory and
will includes all perturbation classes studied in this paper as particular
cases.

Definition 2.5. We say that the perturbation class D ⊂ lC`×q is of block-
diagonal structure if there exist integers `i ≥ 1, qi ≥ 1 for i ∈ N :=

{1, 2, · · · , N} and a subset J ⊂ N such that ` =
N∑

i=1

`i, q =
N∑

i=1

qi,

D =
{
diag(∆1, . . . , ∆N );∆i ∈ Di, i ∈ N

}
,(17)

Di =

{
lC`i×qi if i ∈ J,

lCIqi if i ∈ N \ J,
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and D is endowed with the norm

(18) ‖∆‖ := ‖∆‖D := ‖(‖∆1‖, ‖∆2‖, . . . , ‖∆N‖)‖IRN

where ‖ · ‖IRN is a given monotonic norm on lRN .

The following property of the perturbation class of block-diagonal struc-
ture will be used in the next section for deriving one of the main results.
The proof based on Hahn-Banach Theorem is given in [9].

Lemma 2.6. If D ⊂ lC`×q is a perturbation class of block-diagonal struc-
ture, then for each ∆ ∈ D and y ∈ lCq there exists ∆̃ ∈ D satisfying

(19) ∆̃y = ∆y, |∆̃| ∈ D and ‖ |∆̃| ‖ ≤ ‖∆‖.

Consider a dynamical system described by the linear differential-difference
equation

(20) ẋ(t) = A0x(t) + A1x(t− h), t ≥ 0,

where A0, A1 ∈ lRn×n and h > 0 are given. We assume that the system
(20) is asymptotically stable and the system matrices A0, A1 are subjected
to affine parameter perturbations of the following type

(21)
A0 ∼→ A0 + D0∆0E0, ∆0 ∈ D0 ⊂ lC`0×q0

,

A1 ∼→ A1 + D1∆1E1, ∆1 ∈ D1 ⊂ lC`1×q1
,

where Di ∈ lRn×li , Ei ∈ lRqi×n, i = 0, 1 are given matrices defining the
affine structure of perturbations and Di ⊂ lC`i×qi

, i = 0, 1 are given per-
turbation classes of block-diagonal structure.

The size of each perturbation ∆ := (∆0, ∆1) ∈ D0 × D1 is measured
either by

γ1(‖∆0‖, ‖∆1‖) = ‖∆0‖+ ‖∆1‖
or by

γ∞(‖∆0‖, ‖∆1‖) = max(‖∆0‖, ‖∆1‖),
where ‖∆0‖ = ‖∆0‖D0 and ‖∆1‖ = ‖∆1‖D1 are defined by (18). For
simplicity, here and in what follows, the index Di for the norm of ∆i, i =
0, 1 is omitted.
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Definition 2.7. The complex stability radius of the system (20) with
respect to perturbations of the form (21) is defined by

rIC = inf{γ(‖∆0‖, ‖∆1‖) : ∆i ∈ Di, i = 0, 1,(22)

µ(A0 + D0∆0E0, A1 + D1∆1E1) ≥ 0},

where, γ = γ1 or γ = γ∞ and by definition, inf ∅ = ∞.
If in this definition, instead of the whole class of complex perturbations

Di, we take its subsets of real and of nonnegative perturbations defined
respectively by

(23) DIR
i := Di ∩ lR`i×qi

, D+
i = Di ∩ lR`i×qi

+ , i = 0, 1,

then we have the notions of real stability radius and positive stability
radius which will be denoted by rIR and r+, respectively.

We illustrate the above general definitions by two examples.

Example 2.8 (Single perturbations). Suppose D0 = lC`0×q0
, D1 = lC`1×q1

,
i.e. we consider perturbations of the form

(24)
A0 ∼→ A0 + D0∆0E0, ∆0 ∈ lC`0×q0

,

A1 ∼→ A1 + D1∆1E1, ∆1 ∈ lC`1×q1
.

Let γ = γ1. Then the complex stability radius of the system (20) is given
by :

rIC =inf{‖∆0‖+‖∆1‖ : ∆i∈ lC`i×qi

, i = 0, 1,(25)

µ(A0+D0∆0E0, A1+D1∆1E1) ≥ 0}

where, by definition, inf ∅ = ∞. The real stability radius rIR and the
positive stability radius r+ are obtained by replacing lC`i×qi

, i = 0, 1 in
(25) by lR`i×qi

, i = 0, 1 and lR`i×qi

+ , i = 0, 1, respectively.
In this particular case, a computable formula for rIC is given by the

following theorem which is an extension of the main result in [6] to delay
systems.

Through the paper we set ∞−1 = 0 and 0−1 = ∞.

Theorem 2.9. Let

G
(s)
ij = Ei(sI −A0 −A1e

−hs)−1Dj , i, j = 0, 1
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be the associated transfer matrix functions of the linear delay system (20)
which is subjected to parameter perturbations (24). Assume that the com-
plex stability radius rIC of the system is defined by (25). Then

(26)
1

max
ω∈IR

{‖Gij(ıω)‖ : i, j = 0, 1
} ≤ rIC ≤ 1

max
ω∈IR

{‖Gii(ıω)‖ : i = 0, 1
} ·

In particular, if D := D0 = D1 or E := E0 = E1 then

(27) rIC =
1

max
ω∈IR

{‖G00(ıω)‖, ‖G11(ıω)‖} ·

The above theorem was proved in [18] for the general linear retarded
system with multi delays. In the case when D := D0 = D1 and E :=
E0 = E1 and the size function is γ∞(·, ·), the same proof applies, with
a minor modification, and yields the following formula for the complex
stability radius of the system (20) with rerspect to the size function γ∞ =
max{‖∆0‖, ‖∆1‖} :

(28) r∞IC =
1

2max
ω∈IR

{‖G00(ıω)‖, ‖G11(ıω)‖} ·

We note that, by appropriate choice of the structure matrices D0, E0,
D1, E1, the case of single perturbations considered in Example 2.8 covers
a large class of parameter perturbations, e.g. unstructured disturbances
(i.e. when Di = Ei = In, i = 0, 1) or disturbances of individual elements,
rows and/or columns of A0, A1. However, not all affine perturbations can
be represented in the form (24) (for instance, perturbations which affect
only diagonal entries of A0 and A1). A more general class of perturbations
which allows us to deal with such a situation is the class of affine multi-
perturbations as shown in the following

Example 2.10 (Multi-perturbations). Suppose the system matrices of
(21) are perturbed as follows:

(29)

A0 ∼→ A0 +
N0∑

i=1

Bi
0∆

i
0C

i
0, ∆i

0 ∈ lC`0i×q0
i , i ∈ N0 := {1, . . . N0},

A1 ∼→ A1 +
N1∑

i=1

Bi
1∆

i
1C

i
1, ∆i

1 ∈ lC`1i×q1
i , i ∈ N1 := {1, . . . N1}
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where Bi
j ∈ lCn×`j

i , Ci
j ∈ lCqj

i×n, i ∈ Nj , j = 0, 1 are given matrices
defining the scaling and structure of the parameter uncertainty and ∆i

0,
∆i

1 are unknown disturbance matrices.
These perturbations can also be represented in the form (21) with D0,

D1 being of block-diagonal structure. To see this it is enough to define

`j :=
Nj∑

i=1

`j
i , qj :=

Nj∑

i=1

qj
i ,

Dj := [B1
j , · · · , B

Nj

j ] ∈ lCn×`j

, Ej := [C1
j , · · · , C

Nj

j ]> ∈ lCqj×n,

and
∆j ∈ Dj := {diag(∆1

j , . . . , ∆Nj

j ) : ∆i
j ∈ lC`j

i×qj
i , i ∈ Nj},

for j = 0, 1.
It is clear that the defined perturbation classes D0, D1 are of block-

diagonal structure and (29) is equivalently represented in the form (21).
The robust stability of the system (with no time-delay) ẋ(t) = Ax

subjected to affine multi-perturbation was considered first in [8], but so
far, in the literature, there have not been available results on computation
of the complex stability radius for this case.

3. Main Results

It is clear from Definition 2.7 that the stability radii of the system (20)
with respect to perturbations of the type (21) satisfy

(30) rIC ≤ rIR ≤ r+.

In general, these stability radii can be arbitrarily distinct (see e.g. [8]).
As far as their computation concerns, while Theorem 2.9 reduces the com-
putation of the complex stability radius to a global optimization problem
over the real line, the problem for the real stability radius is much more
difficult and a very complicated solution is known only for the case where
A1 = 0, see [15]. This is therefore natural to investigate for which kind
of systems these three radii coincide. Motivated by results of [9], in this
section we show that, for positive linear time-delay systems, the equalities
in (30) hold and moreover, for certain classes of block-diagonal perturba-
tions, the computation of these stability radii is straightfoward.
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Consider a positive dynamical system described by the linear differential-
difference equation in lRn:

(31) ẋ(t) = A0x(t) + A1x(t− h), t ≥ 0, h > 0.

Then, as noted in the previous section, A0 ∈ lRn×n is a Metzler matrix
and A1 ∈ lRn×n

+ . We assume that the system matrices are subjected to
affine parameter perturbations of the form

(32)
A0 ∼→ A0 + D0∆0E0, ∆0 ∈ D0

A1 ∼→ A1 + D1∆1E1, ∆1 ∈ D1.

Theorem 3.1. Let the positive linear retarded system (31) be asymp-
totically stable. Assume that the system matrices A0, A1 are subjected to
parameter perturbations of the form (32), where Di ∈ lRn×li

+ , Ei ∈ lRqi×n
+ ,

i = 0, 1 and D0, D1 are given perturbation classes of block-diagonal struc-
ture. Then

(33) rIC = rIR = r+.

Proof. By Definition 2.7 we always have (30). Therefore, assuming rIC <
+∞ it suffices to prove that r+ ≤ rIC . Let (∆0, ∆1) ∈ D0 × D1 be a
destabilizing disturbance, that is

µ := µ(A0 + D0∆0E0, A1 + D1∆1E1) ≥ 0.

Then, by the definition of the spectral abscissa µ,

(34)
(
A0 + D0∆0E0 + (A1 + D1∆1E1)e−h(µ+ıω)

)
x = (µ + ıω)x

for some x ∈ lCn, x 6= 0 and ω ∈ lR. By Lemma 2.6, there exist ∆̃0 ∈ D0,
∆̃1 ∈ D1 such that

(35) |∆̃i| ∈ Di, ‖ |∆̃i| ‖ ≤ ‖∆i‖, ∆̃iEix = ∆iEix, i = 0, 1.

Since |Di∆̃iEi| ≤ Di|∆̃i|Ei, i = 0, 1, it follows from Lemma 2.4 that

µ(A0 + D0|∆̃0|E0, A1 + D1|∆̃1|E1) ≥ µ(A0 + D0∆̃0E0, A1 + D1∆̃1E1).
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On the other hand, from (34), (35), we have

(A0 + D0∆̃0E0 + (A1 + D1∆̃1E1)e−h(µ+ıω)
)

x =

=
(
A0+D0∆0E0+(A1+D1∆1E1)e−h(µ+ıω)

)
x = (µ + ıω)x.(36)

Therefore, µ(A0 +D0|∆̃0|E0, A1 +D1|∆̃1|E1) ≥ µ ≥ 0. Thus, |∆̃0| ∈ D+
0 ,

|∆̃1| ∈ D+
1 are destabilizing positive perturbations and, by monotonicity

of γ,
γ(‖ |∆̃0| ‖, ‖ |∆̃1| ‖) ≤ γ(‖ ∆̃0 ‖, ‖ ∆̃1 ‖),

which implies, by the definition of the stability radii rIC , r+, that r+ ≤ rIC ,
as to be shown. This concludes the proof.

Now we are going to derive a computable formula for the stability radii
of positive time-delay system (31) under affine perturbations (3.2). Define
the transfer functions

Gij(s) = Ei(sI −A0 −A1e
−hs)−1Dj , i, j = 0, 1.

Obviously, Gij are well defined for all s ∈ lC with Re s ≥ µ0 := µ(A0, A1).
Since for each t ∈ lR, A0 + A1e

−ht is a Metzler matrix it follows from
Lemma 2.3 and Theorem 2.1 (iv) that t > µ0 implies t > µ(A0+A1e

−hµ0) ≥
µ(A0 + A1e

−ht). Therefore, by Theorem 2.1 (iii),

R(t) := (tI −A0 −A1e
−ht)−1 ≥ 0

for all t ≥ µ0. Thus, Gij(t) ≥ 0 for all t ≥ µ0 and all i, j ∈ {0, 1}. On the
other hand, it is easy to check that the following resolvent equation holds:

R(t1)−R(t2) = (t2 − t1)R(t1)R(t2) + (e−ht1 − e−ht2)R(t1)A1R(t2).

Therefore, by multiplying the above equation with nonnegative matrices
Ei from the left and Dj form the right, we get

Lemma 3.2. If t2 > t1 > µ0, then

(37) Gij(t1) ≥ Gij(t2) ≥ 0 for i, j = 0, 1.

The following theorem gives a simple formula for the stability radii
of positive linear time-delay systems with respect to the class of single
perturbations considered in Example 2.8.
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Theorem 3.3. Suppose that the positive linear delay system (31) is
asymptotically stable and subjected to parameter perturbations of the form
(32), where Di ∈ lRn×`i

+ , Ei ∈ lRqi×n
+ , Di = lC`i×qi , i = 0, 1. Assume that

the stability radii of the system are defined as (25) with γ = γ1. Then
(38)

1
max{‖Gij(0)‖ : i, j = 0, 1} ≤ rIC = rIR = r+ ≤ 1

max{‖Gii(0)‖ : i = 0, 1} ·

In particular, if D := D0 = D1 or E := E0 = E1 then

(39) rIC = rIR = r+ =
1

max{‖G00(0)‖, ‖G11(0)‖} ·

Proof. The two equalities and the right inequality in (38) are immediate
from Theorem 2.9 and Theorem 3.1. To prove the left inequality it suffices
to show that

r+ ≥ 1
max{‖Gij(0)‖ : i, j = 0, 1} ·

Let (∆0, ∆1) ∈ lRl0×q0

+ × lRl1×q1

+ be destabilizing nonnegative perturbation
so that

µ̃0 := µ(A0 + D0∆0E0, A1 + D1∆1E1) ≥ 0.

By Lemma 2.3, µ̃0 = µ(A0 +D0∆0E0 +(A1 +D1∆1E1)e−hµ̃0). Hence, by
Theorem 2.1 (i), there exist x0 ∈ lRn

+, x0 6= 0 such that

(A0 + D0∆0E0 + (A1 + D1∆1E1)e−hµ̃0)x0 = µ̃0x0.

or, equivalently,

(µ̃0I −A0 −A1e
−hµ̃0)x0 = D0∆0E0x0 + D1∆1E1e

−hµ̃0x0.

Since the system (3.1) is asymptotically stable, (µ̃0I − A0 − A1e
−hµ̃0) is

invertible and the above equation is equivalent to

x0 = (µ̃0I −A0 −A1e
−hµ̃0)−1D0∆0E0x0

+ (µ̃0I −A0 −A1e
−hµ̃0)−1D1∆1E1e

−hµ̃0x0.

Let q ∈ {0, 1} be such an index that ‖Eqx0‖ = max{‖Eix0‖, i = 0, 1}.
Then from the last equation it follows that Eqx0 6= 0. Multiplying this
equation with Eq from the left we get,

Eqx0 = Gq0(µ̃0)∆0E0x0 + Gq1(µ̃0)∆1E1e
−hµ̃0x0



366 NGUYEN KHOA SON AND PHAM HUU ANH NGOC

and hence

‖Gq0(µ̃0)‖ ‖∆0‖ ‖E0x0‖+ ‖Gq1(µ̃0)‖ ‖∆1‖ ‖E1x0‖ ≥ ‖Eqx0‖.

This implies

max{‖Gij(µ̃0)‖ : i, j = 0, 1}(‖∆0‖+ ‖∆1‖)‖Eqx0‖ ≥ ‖Eqx0‖

and, subsequently,

(40) max{‖Gij(µ̃0)‖ : i, j = 0, 1}(‖∆0‖+ ‖∆1‖) ≥ 1.

On the other hand, by Lemma 3.2 we have Gij(0) ≥ Gij(µ̃0) ≥ 0 for all
i, j ∈ {0, 1} and hence, by (7),

max {‖Gij(µ̃0)‖ : i, j = 0, 1} ≤ max{‖Gij(0)‖ : i, j = 0, 1}.

Therefore, by definition and (40), we obtain

r+ ≥ 1
max{‖Gij(0)‖ : i, j = 0, 1}

as to be shown. Further, if D0 = D1 (respectively, E0 = E1) then, by
definition, G01(s) = G00(s), G10(s) = G11(s) (respectively, G01(s) =
G11(s), G10(s) = G00(s)), so that, in this case, (38) implies (39). The
proof is complete.

We assume now that the system matrices of the positive system (31)
are subjected to perturbations of the following kind:

(41)

A0 ∼→ A0 +
N0∑

i=1

δi
0B

i
0

A1 ∼→ A1 +
N1∑

i=1

δi
1B

i
1,

where Bi
j ∈ lRn×n

+ , i ∈ Nj := {1, · · · , Nj}, j = 0, 1 are given matrices and
δi
0, δi

1 ∈ lC are unknown scalar parameters. Set, for j = 0, 1,

(42) Dj := [B1
j · · ·BNj

j ] ∈ lCn×(nNj), Ej :=




In
...

In


 ∈ lC(nNj)×n
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and

Dj := {diag(δ1
j In, . . . , δ

Nj

j In) : δi
j ∈ lC, i ∈ N j} ⊂ lCnNj×nNj .

Then it is easy to see that perturbations (41) are equivalently represented
in the form (32). Note that in this case Dj(j = 0, 1) are of a special block-
diagonal structure (with diagonal blocks of repeated scalars on the main
diagonal). If we provide Dj , j = 0, 1, with the norm (18) where ‖ · ‖IRN is
∞-norm (i.e. ‖(ζ1, · · · , ζN )‖IRN = max

1≤i≤N
|ζi|) and N = nNj for j = 0, 1,

respectively, then, for any ∆j = diag(δ1
j , · · · , δ

Nj

j ) ∈ Dj ,

‖∆j‖ = max{|δi
j | : i ∈ N j}, j = 0, 1,

(see, e.g. [11]). Therefore

(43) γ∞(‖∆0‖, ‖∆1‖) = max{‖∆0‖, ‖∆1‖} = max
i∈N0,k∈N1

(|δi
0|, |δk

1 |
)
.

Thus, according to Definition 2.7, if we take γ = γ∞ then the correspond-
ing complex and the real stability radii of the system (31) subjected to
affine perturbations (41) are given by

ra
IK = inf

{
max

i∈N0,k∈N1

(|δi
0|, |δk

1 |
)

: δi
0, δ

k
1 ∈ lK,

µ(A0 +
N0∑

i=1

δi
0B

i
0, A1 +

N1∑

k=1

δk
1Bk

1 ) ≥ 0
}

,(44)

where lK = lC, lR.
Similarly, the positive stability radius ra

+ is obtained by restricting, in
the above definition, the scalar disturbances δi

0, δk
1 to be nonnegative.

Theorem 3.4. Suppose the positive linear delay system (31) is asymptot-
ically stable and subjected to affine perturbations of the form (41). If the
stability radii of the system are given by (44) then

(45) ra
IC = ra

IR = ra
+ =

1
µ(G(0))

,

where G(s) is the associated transfer matrix defined by

(46)
G(s) =

[
G00(s) G01(s)
G10(s) G11(s)

]
∈ lCn(N0+N1)×n(N0+N1),

Gij(s) = Ei(sI −A0 −A1e
−hs)−1Dj ∈ lCnNi×nNj , i, j = 0, 1.
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Proof. The proof is similar to that of Theorem 17 in [19]. The first two
equalities in (45) follow from Theorem 3.1. Since, by Lemma 3.2, G(0) ≥ 0,
it follows from Theorem 2.1 (i), that ρ := µ(G(0)) is an eigenvalue of
G(0) and there exists y ∈ lRn(N0+N1)

+ , y 6= 0, such that G(0)y = ρy or,
equivalently

(47)
E0(−A0 −A1)−1D0y0 + E0(−A0 −A1)−1D1y1 = ρy0

E1(−A0 −A1)−1D0y0 + E1(−A0 −A1)−1D1y1 = ρy1

where
[

y0

y1

]
= y. Choosing the perturbations ∆j =

1
ρ
diag(In, · · · , In) ∈

D+
j , j = 0, 1 and setting

(−A0 −A1)−1(D0∆0y0 + D1∆1y1) =: x ∈ lRn
+.

It follows that y0 = E0x, y1 = E1x (therefore x 6= 0) and

(−A0 −A1)x = D0∆0E0x + D1∆1E1x.

Consequently, (A0 + D0∆0E0 + A1 + D1∆1E1)x = 0 which means that
(∆0, ∆1) is nonnegative destabilizing perturbations with

γ∞ = max{‖∆0‖, ‖∆1‖} =
1
ρ
·

Thus, by definition we have ra
+ ≤

1
ρ
.

Conversely, suppose ∆j = diag(δ1
j In, · · · , δ

Nj

j In), δi
j ≥ 0, i ∈ N j ,

j = 0, 1 are destabilizing nonnegative matrices, that is µ0 := µ(A0 +
D0∆0E0, A1 + D1∆1E1) ≥ 0. By Lemma 2.3 and Theorem 2.1 (i), there
exists a nonzero vector x0 ≥ 0 such that

(A0 + D0∆0E0 + (A1 + D1∆1E1)e−hµ0)x0 = µ0x0.

which implies, as in the proof of Theorem 3.1,

x0 = (µ0I −A0 −A1e
−hµ0)−1(D0∆0E0x0 + D1∆1E1e

−hµ0x0).

Multiplying the last equation with E0 and with E1 from the left and
setting

y =
[

E0x0

E1x0

]
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we get
G(µ0)∆y = y

where ∆ := diag(∆0, e
−hµ0∆1). Denote γ := γ∞(‖∆0‖, ‖∆1‖) then,

by (43), γy ≥ ∆y and hence, by Lemma 3.2, γG(0)y ≥ γG(µ0)y ≥
G(µ0)∆y = y. Since G(0) ≥ 0 and y ≥ 0, we can apply Theorem 2.1

(ii) to conclude that γ ≥ 1
µ(G(0))

=
1
ρ
. Therefore, ra

+ ≥ 1
ρ
, completing

the proof.

If N0 = N1 =: N then E0 = E1 and hence G00 = G10, G01 = G11. In
this case, by an easy calculation we have that

µ(G(0)) = µ(G00(0) + G11(0)) = µ
(
(−A0 −A1)−1

( N∑

i=1

Bi
0 +

N∑

i=1

Bi
1

))
.

On the other hand, if, for instance, N = N0 > N1 then we can reduce to
the last case by defining B1

i := 0, i = N1 + 1, · · · , N . Therefore we get
the following explicit formula for the stability radii of the positive linear
delay system (31) under the affine perturbations (41):

(48) ra
IC = ra

IR = ra
+ =

1

µ
(
(−A0 −A1)−1

( N0∑
i=1

Bi
0 +

N1∑
i=1

Bi
1

)) ·

We note that the spectral abscissa µ in (48) can be replaced by the spectral
radius ρ because the matrix under consideration is nonnegative. Thus, we
have shown that the stability radii of the system is equal to the upper
bound of stability established in [12] by another approach.

We illustrate Theorems 3.3 and 3.4 by the following two examples

Example 3.5. Consider a positive linear delay system in lR2 described
by ẋ(t) = A0x(t) + A1x(t− 1), t ≥ 0, where

A0 =
[−1 0

0 −1

]
A1 =

[
0 0
1 0

]

Then the characteristic equation of the system is

det(zI −A0 −A1e
−z) = det

[
z + 1 0
−e−z z + 1

]
= (z + 1)2 = 0.
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and hence the delay system is asymtotically stable. Assume that, the
system matrices are subjected to parameter pertubations of the forms
A0 ∼→ A0 + D0∆0E0, A1 ∼→ A1 + D1∆1E1, where

E0 = E1 =
[

0 1
1 0

]
, D0 =

[
1
1

]
D1 =

[
0
1

]
.

Then

G00(0) = E0(−A0 −A1)−1D0 =
[

2
1

]
,

G11(0) = E1(−A0 −A1)−1D1 =
[

1
0

]
.

Therefore, if lR2 is endowed with the 2-norm, then by (39), rIC = rIR =

r+ =
1√
5
. If lR2 is endowed, respectively, with the ∞-norm, then the

stability radii of the system are given by rIC = rIR = r+ =
1
2
.

Example 3.6. Consider a positive linear delay system

ẋ(t) = A0x(t) + A1x(t− 1), t ≥ 0

where

A0 =
[−1 1

0 −2

]
, , A1 =

[
0 0
1 0

]
.

Then the characteristic equation of system is

det(zI −A0 −A1e
−z) = (z2 + 3z + 2)− e−z = 0.

By Theorem 13.9 in [1] this equation has only roots with negative real
parts. Therefore the above delay system is asymptotically stable. Suppose
the system matrices A0, A1 are subjected to parameter perturbations of
the forms A0 ∼→ A0 + δ0B0, A1 ∼→ A1 + δ1B1 where

B0 =
[

1 1
0 1

]
, B1 =

[
0 1
1 0

]
.

We have, by the notation of Theorem 3.4, E0 = E1 = I2, D0 = B0,
D1 = B1. Therefore,

P := (−A0 −A1)−1(B0 + B1) =
[

2 1
1 1

] [
1 2
1 1

]
=

[
3 5
2 3

]
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Thus, by (48),

ra
IC = ra

IR =
1

µ(P )
=

1
3 +

√
10
·
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