SOME PROPERTIES OF FUNCTIONS WITH BOUNDED SPECTRUM

TRUONG VAN THUONG

ABSTRACT. In this paper we prove that the results obtained in [3] for L_p -norm are still valid for a norm which is generated by a concave function.

Let \mathcal{C} denote the family of all non-zero concave functions $\Phi : [0, +\infty) \to [0, +\infty]$, which are non-decreasing and satisfy $\Phi(0) = 0$. For an arbitrary measurable function f and $\Phi \in \mathcal{C}$, we define

$$\|f\|_{N_{\Phi}} = \int_{0}^{\infty} \Phi(\lambda_f(t)) dt,$$

where $\lambda_f(t) = \mu(\{x : |f(x)| > t\}), t \ge 0$. Let $N_{\Phi} = N_{\Phi}(\mathbb{R}^n)$ be the space of all measurable functions f such that $||f||_{N_{\Phi}} < \infty$. Then N_{Φ} is a Banach space [7, 9].

The following relation between the behaviour of a sequence of norms of the derivatives of a function and the support of its Fourier transform has been shown in [3]:

$$\lim_{|\alpha|\to\infty} \left(\frac{\|D^{\alpha}f\|_p}{\sup_{\mathrm{sp}(f)}|\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} = 1,$$

where $0 , <math>f \in \mathcal{S}' \cap L_p(\mathbb{R}^n)$ and $\operatorname{sp}(f) = \operatorname{supp}(\hat{f})$ is bounded $(\hat{f}(\xi))$ is the Fourier transform of f(x), \mathcal{S}' is the dual space of the Schwartz space \mathcal{S} of rapidly decreasing infinity differentiable functions). This result has been extended to any Orlicz norm [2, 4].

Received May 2, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 46F99, 46E30.

 $Key\ words\ and\ phrases.$ Geometry of spectrum, Fourier transform, theory of Orlicz spaces.

The author is partially supported by the National Basic Research Program.

In this paper, by using the technique of [3], we prove that the above result still holds for the norm $\|.\|_{\mathbf{N}_{\Phi}}$. We do that with the help of the following results:

Lemma 1 [9]. If $f \in N_{\Phi}$ and $g \in M_{\Phi}$, then $fg \in L_1$ and

$$\int_{\mathbb{R}^n} |f(x)g(x)| dx \le \|f\|_{N_\Phi} \|g\|_{M_\Phi}.$$

Lemma 2. If $f \in N_{\Phi}$ and $h \in L_1(\mathbb{R}^n)$, then $f * h \in N_{\Phi}$ and $||f * h||_{N_{\Phi}} \leq ||f||_{N_{\Phi}} ||h||_1$.

Lemma 3. If $f \in N_{\Phi}(\mathbb{R}^n)$ then $f \in \mathcal{S}'$. Proof. Let $f \in N_{\Phi}$ and define $L = L_f$ by letting

$$L(g) = L_f(g) = \int_{\mathbb{R}^n} f(x)g(x)dx$$
 for any $g \in \mathcal{S}$.

It is clear that L is a linear functional on S. To show that it is continuous we prove that

$$|L(g)| \le C \sup_{\mathbb{R}^n} |(1+|x|^2)g(x)|,$$

where C is constant. Actually, we have

$$\begin{split} L(g)| &\leq \int_{\mathbb{R}^n} |f(x)g(x)| dx \\ &\leq \sup_{\mathbb{R}^n} (1+|x|^2)^N |g(x)| \int_{\mathbb{R}^n} (1+|x|^2)^{-N} |f(x)| dx. \end{split}$$

On the other hand, since $f \in N_{\Phi}$, it follows that $\mu(E) < \infty$, where

$$E = \{ x \in \mathbb{R}^n : |f(x)| > t_0 \}, \ t_0 > 0.$$

Therefore,

$$\int_{\mathbb{R}^n} (1+|x|)^{-N} |f(x)| dx \le \int_{\mathbb{R}^n \setminus E} \frac{|f(x)|}{(1+|x|^2)^N} dx + \int_E \frac{|f(x)|}{(1+|x|^2)^N} dx \le C_1 + C_2 = C.$$

By Theorem 3.11 of [10], it follows that L is continuous on S. Hence $f \in S'$.

Lemma 4. Let $f \in N_{\Phi}(\mathbb{R}^n)$. If sp(f) is bounded, then f is bounded.

Proof. Since the spectrum of f is bounded, we can choose $\hat{\psi}(\xi) \in C_0^{\infty}(\mathbb{R}^n)$ such that $\hat{\psi} = 1$ in some neighbourhood of $\operatorname{sp}(f)$. Then we obtain

$$\|(F^{-1}\hat{f})(x)\|_{\infty} = \|(F^{-1}(\hat{\psi}\hat{f}))(x)\|_{\infty}$$

= $\|\psi * f\|_{\infty}$
 $\leq \|\psi\|_{1}\|f\|_{N_{\Phi}} < \infty.$

Applying Lemma 4 and using the techniques of the proof of Theorem 1 [5] for spaces N_{Φ} , we obtain the following result:

Lemma 5. Let $\Phi(t) \in C$, $f \in N_{\Phi}$, $f(x) \not\equiv 0$ and let $\xi^0 \in \operatorname{sp}(f)$ be an arbitrary point. Then the restriction of \hat{f} to any neighbourhood of ξ^0 can not concentrate on any finite number of hyperplanes.

Proof. Without loss of generality, we will prove the theorem for functions f with bounded spectrum and $\xi^0 = 0$.

By contradiction, we assume that there exists a neighbourhood $V \ni 0$ such that the restriction of $\hat{f}(\xi)$ to V concentrates on hyperplanes H_j , j = 1, 2..., m.

We put for each $j \in I = \{1, \ldots, m\},\$

$$G_j = \mathbb{R}^n \setminus \bigcup_{i \neq j} H_i.$$

Then G_j is open. For any $\psi(\xi) \in C_0^{\infty}(G_j)$, the distribution $\psi(\xi)\hat{f}(\xi)$ concentrates on the hyperplane H_j . By a transformation of coordinates we can chose such a way that the hyperplane H_j will be transformed into the hyperplane $\xi_j = 0$.

Put $g(x) = F^{-1}\psi * f(x)$. Then $||g(x)||_{N_{\Phi}} = ||F^{-1}\psi * f(x)||_{N_{\Phi}}$. Further, the Fourier transform of g(x) will concentrate on the hyperplane $\xi_j = 0$. Therefore, taking into account of a remark on Theorem 2.3.5 mentioned in Example 5.1.2 [6], we get

(1)
$$g(x) = \sum_{\ell=0}^{N} g_{\ell}(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n) (-ix_j)^{\ell},$$

where N is the order of the distribution $\hat{f}(\xi)$ ($N < \infty$ because supp \hat{f} is compact) and $\hat{g}_{\ell}(\xi_1, \ldots, \xi_{j-1}, \xi_{j+1}, \ldots, \xi_n), 0 \leq \ell \leq N$, are distributions with compact supports.

By virtue of Lemma 4, the equality (1) is possible only if N = 0. So the function g(x) does not depend on x_i .

Further, since $g \in N_{\Phi}$ we get

(2)
$$\int_{0}^{\infty} \Phi(\lambda_g(t)) dt < \infty.$$

We will show that $g(x) \equiv 0$. Actually, assume to the contrary that $g(x^0) \neq 0$ for some point x^0 . Without loss of generality we may assume that $g(x^0) > 0$. Since $g(x) = F^{-1}(\psi \hat{f})(x)$ is continuous, there is a number $\varepsilon > 0$ and a neighbourhood U of x^0 such that $g(x) > \varepsilon$ for every $x \in U$. Since g(x) does not depend on x_j (as seen above), and by the definition [9], we get

$$\lambda_g(\varepsilon) = \mu\{ x \in \mathbb{R}^n : |g(x)| > \varepsilon \} = \infty.$$

Since $\lambda_g(t)$ is a nonincreasing function, $\lambda_g(t) = +\infty$ on the interval $[0, \varepsilon]$. Since $\Phi(t)$ is nondecreasing, it follows that $\Phi(\lambda_g(t)) = +\infty$ on the interval $[0, \varepsilon]$, which contradicts (2). Thus, we get $g(x) \equiv 0$, i.e. $\psi(\xi)\hat{f}(\xi) \equiv 0$. Since $\psi(\xi) \in C_0^{\infty}(G_j)$ is arbitrarily chosen, we get $\hat{f}(\xi) \equiv 0$ on the hyperplane H_j . So $\hat{f}(\xi)$ must concentrate on the planes $H_i \cap H_j$, $i, j \in I$, $i \neq j$.

We get for $i, j \in I, i \neq j$,

$$G_{ij} = \mathbb{R}^n \setminus \bigcup \big\{ H_k \cap H_\ell : (k, \ell) \neq (i, j), k \neq \ell \big\}.$$

Then G_{ij} is open. For any $\psi(\xi) \in C_0^{\infty}(G_{ij})$, the distribution $\psi(\xi)\hat{f}(\xi)$ concentrates on the plane $H_i \cap H_j$.

By an analogous argument we obtain $\psi(\xi)\hat{f}(\xi) \equiv 0$. Since $\psi \in C_0^{\infty}(G_{ij})$ is arbitrarily chosen, we see that $\hat{f}(\xi)$ must concentrate on $H_i \cap H_j \cap H_\ell$, $i, j, \ell = 1, \ldots, m, i \neq j \neq \ell$.

Repeating the above arguments (k-3) times, we deduce that the distribution $\hat{f}(\xi)$ concentrates on $\bigcap_{i=1}^{m} H_i$ and then, by the same way, we get $\hat{f}(\xi) \equiv 0$, which contradicts $f(x) \neq 0$. The proof is complete. \Box

Theorem 1. Let $\Phi \in C$, $f(x) \neq 0$, $f \in N_{\Phi}$, $D^{\alpha}f \in N_{\Phi}$, $|\alpha| = 1, 2, ...$ and $\operatorname{sp}(f)$ is bounded. Then

(3)
$$\lim_{|\alpha|\to\infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\sup_{\mathrm{sp}(f)}|\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} = 1.$$

Proof. We first show that $\sup_{sp(f)} |\xi^{\alpha}| \neq 0$, for all $\alpha \geq 0$. Assume to the contrary that there exists $\alpha \geq 0$ such that $\sup_{sp(f)} |\xi^{\alpha}| = 0$. Then for all $\xi \in sp(f)$, we have $\xi^{\alpha} = 0$. Therefore, $sp(f) \subset \bigcup_{j=1}^{n} \{\xi \in \mathbb{R}^{n} : \xi_{j} = 0\}$, which contradicts Lemma 5.

Now we will prove (3). The proof will be divided into three steps. Step 1. We first establish the inequality

(4)
$$\lim_{|\alpha| \to \infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{|\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} \ge 1$$

for any point $\xi \in \operatorname{sp}(f)$.

Choose $\xi^0 \in \operatorname{sp}(f)$ such that $\xi_j^0 \neq 0, \ j = 1, 2, \ldots, n$. For the sake of convenience we assume that $\xi_j^0 > 0, \ j = 1, \ldots, n$. We choose $0 < \varepsilon < \frac{1}{2} \min_{1 \leq j \leq n} \xi_j^0$ and G is a domain with smooth boundary such that $\xi^0 \in G$ and

$$G \subset \left\{ \xi \in \mathbb{R}^n : \xi_j^0 - \varepsilon \le \xi_j \le \xi_j^0 + \varepsilon, \ j = 1, \dots, n \right\}.$$

We choose $\hat{\psi}(\xi) \in C_0^{\infty}(G)$ such that $\xi^0 \in \operatorname{supp}(\hat{\psi}\hat{f})$. Then for any $\hat{g}(\xi) \in C_0^{\infty}(G)$, we have

(5)
$$\langle \hat{\psi}(\xi) \hat{f}(\xi), \hat{g}(\xi) \rangle = \langle f(x), \hat{\psi} * \check{g}(x) \rangle$$
$$= \langle f(x), \varphi(x) \rangle,$$

where $\varphi(x) = \check{\psi} * \check{g}(x)$ and $\check{g}(x) = g(-x)$. Since $\hat{\psi}(\xi)\hat{f}(\xi)$ is a distribution with compact support, by Theorem 6.27 of [8], it is represented in the form

$$\hat{\psi}(\xi)\hat{f}(\xi) = \sum_{|\alpha| \le m} D^{\alpha}h_{\alpha}(\xi),$$

where $m \in \mathbf{N}$ and $h_{\alpha}(\xi)$ are continuous functions on G.

By an argument analogous to the proof of Theorem 1 of [3], the Dirichlet problem for the elliptic differential equation

$$L_{2m}\hat{z}(\xi) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha}(D^{\alpha}\hat{z}(\xi)) = \hat{\psi}(\xi)\hat{f}(\xi),$$

has a solution $\hat{z}(\xi) \in W^0_{m,2}(G)$ (the space Sobolev [1]).

Because of (5) we get

(6)
$$\langle \hat{z}(\xi), L_{2m}(\xi^{\alpha}\hat{g}(\xi)) \rangle = (-i)^{|\alpha|} \langle D^{\alpha}f(x), \varphi(x) \rangle,$$

where $\hat{g}(\xi) \in W^0_{m,2}(G)$. Let $\hat{g}_0(\xi) \in W^0_{m,2}(G)$ be the solution of $L_{2m}\hat{g}_0(\xi) = \overline{\hat{z}}(\xi)$. Define

$$\hat{g}_{\alpha}(\xi) = \prod_{j=1}^{n} (\xi_j^0 - 2\varepsilon)^{\alpha_j} \xi^{-\alpha} \hat{g}_0(\xi).$$

It follows from $0 \notin G$ that

$$L_{2m}(\xi^{\alpha}\hat{g}_{\alpha}(\xi)) = \prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \overline{\hat{z}}(\xi)$$

By virtue of Lemma 1, we obtain the inequality

(7)
$$\prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \langle \hat{z}(\xi), \overline{\hat{z}}(\xi) \rangle \leq \|D^{\alpha}f\|_{N_{\Phi}} \|\psi * g_{\alpha}\|_{M_{\Phi}}$$
$$\leq \|D^{\alpha}f\|_{N_{\Phi}} \|\psi\|_{1} \|g_{\alpha}\|_{M_{\Phi}}.$$

As in the proof of Theorem 1 of [3] we get the estimate

(8)
$$\sup_{\mathbb{R}^n} (1+x_1^2) \dots (1+x_n^2) |g_{\alpha}(x)| \le C_3, \ \alpha \ge 0.$$

It follows that

(9)
$$|g_{\alpha}(x)| \leq \frac{C_3}{(1+x_1^2)\dots(1+x_n^2)}$$
 for all $x = (x_1,\dots,x_n) \in \mathbb{R}^n$.

By the definition of $\|.\|_{M_{\Phi}}$ in [9] we obtain

$$\|g_{\alpha}\|_{M_{\Phi}} = \sup_{0 < \mu(E) < \infty} \frac{1}{\Phi(\mu(E))} \int_{E} |g_{\alpha}| dx.$$

Let $\delta > 0$. Then for any subset $E \subset \mathbb{R}^n$ such that $0 < \mu(E) < \infty$, there are two cases.

If $\mu(E) \geq \delta$, then $\Phi(\mu(E)) \geq \Phi(\delta) > 0$ because $\Phi \in \mathcal{C}$. Therefore, by (9) we get

$$\frac{1}{\Phi(\mu(E))} \int_{E} |g_{\alpha}| dx \leq \frac{1}{\Phi(\mu(E))} \int_{E} \frac{C_3}{(1+x_1^2)\dots(1+x_n^2)} dx$$
$$\leq \frac{1}{\Phi(\delta)} \int_{\mathbb{R}^n} \frac{C_3}{(1+x_1^2)\dots(1+x_n^2)} dx$$
$$= \frac{C_3 \pi^n}{\Phi(\delta)}.$$

If $\mu(E) < \delta$, then $\frac{\Phi(\mu(E))}{\mu(E)} \ge \frac{\Phi(\delta)}{\delta}$ (since $\frac{\Phi(x)}{x}$ is decreasing [9]). From (9) we have

$$\frac{1}{\Phi(\mu(E))} \int_{E} |g_{\alpha}| dx \leq \frac{1}{\Phi(\mu(E))} \int_{E} \frac{C_{3}}{(1+x_{1}^{2})\dots(1+x_{n}^{2})} dx$$
$$\leq \frac{1}{\Phi(\mu(E))} \int_{E} C_{3} dx$$
$$= \frac{C_{3}\mu(E)}{\Phi(\mu(E))}$$
$$\leq \frac{C_{3}\delta}{\Phi(\delta)}.$$

Hence

$$\frac{1}{\Phi(\mu(E))} \int_{E} |g_{\alpha}| dx \leq C \quad \text{ for all } \quad E \ (0 < \mu(E) < \infty).$$

That means

(10)
$$\|g_{\alpha}\|_{M_{\Phi}} \le C.$$

Combining (7) with (10) we get

$$\prod_{j=1}^{n} (\xi_j^0 - 2\varepsilon)^{\alpha_j} \langle \hat{z}(\xi), \overline{\hat{z}}(\xi) \rangle \le \|D^{\alpha}f\|_{N_{\Phi}} C_1.$$

Therefore

(11)
$$1 \leq \lim_{|\alpha| \to \infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}}} \right)^{\frac{1}{|\alpha|}}.$$

On the other hand, we have

(12)
$$\left[\prod_{j=1}^{n} \left(\frac{\xi_{j}^{0} - 2\varepsilon}{\xi_{j}^{0}}\right)^{-\alpha_{j}}\right]^{\frac{1}{|\alpha|}} \leq \max_{j} \frac{\xi_{j}^{0}}{\xi_{j}^{0} - 2\varepsilon}.$$

From (11) and (12) we obtain

(13)
$$1 \leq \lim_{|\alpha| \to \infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{|\xi^{0^{\alpha}}|}\right)^{\frac{1}{|\alpha|}} \max_{j} \frac{\xi_{j}^{0}}{\xi_{j}^{0} - 2\varepsilon}.$$

Letting $\varepsilon \to 0$ and $\xi^0 \to \xi$, we get

$$1 \leq \lim_{|\alpha| \to \infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{|\xi^{\alpha}|} \right)^{\frac{1}{|\alpha|}}.$$

Step 2. We will prove that

(14)
$$\lim_{|\alpha|\to\infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\sup_{\mathrm{sp}(f)}|\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} \ge 1.$$

Assume to the contrary that there exists a subsequence $I_1 \subset I$ such that

(15)
$$(I_1) \quad \lim_{|\alpha| \to \infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\sup_{\mathrm{sp}(f)} |\xi^{\alpha}|} \right)^{\frac{1}{|\alpha|}} < 1.$$

As in proof of Theorem 1 of [3], given $\lambda > 1$, there exist a number $m \ge 1$ and a subsequence $I_2 \subset I_1$ such that $m\xi^{\alpha} \in \operatorname{sp}(f)$ and

$$(I_2) \quad \lim_{|\alpha|\to\infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\sup_{sp(f)}|\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} \ge (I_2)\frac{1}{\lambda}\lim_{|\alpha|\to\infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{|m\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} \ge \frac{1}{\lambda},$$

which contradicts (15) as $\lambda \to 1$.

Step 3. Finally we will prove that

(16)
$$\frac{\overline{\lim}}{|\alpha| \to \infty} \left(\frac{\|D^{\alpha} f\|_{N_{\Phi}}}{\sup_{\operatorname{sp}(f)} |\xi^{\alpha}|} \right)^{\frac{1}{|\alpha|}} \le 1.$$

We first prove the inequality

(17)
$$\frac{\lim_{|\alpha|\to\infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\sup_{G}|\xi^{\alpha}|}\right)^{\frac{1}{|\alpha|}} \le 1.$$

for an arbitrary domain $G \supset \operatorname{sp}(f)$.

We choose $\psi(\xi) \in C_0^{\infty}(G)$ such that $\psi(\xi) = 1$ in some neighbourhood of $\operatorname{sp}(f)$ (since $\operatorname{sp}(f)$ is bounded). Put $h_{\alpha}(\xi) = \psi(\xi)\xi^{\alpha}$, $\alpha \ge 0$. Then

$$\begin{split} \|F^{-1}h_{\alpha}\|_{1} &= \int_{\mathbb{R}^{n}} |\hat{h}_{\alpha}(\xi)| d\xi \\ &\leq \left(\int_{\mathbb{R}^{n}} |\hat{h}_{\alpha}(\xi)|^{2} (1+|\xi|^{2})^{s} d\xi\right)^{1/2} \left(\int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{-s} d\xi\right)^{1/2} \\ &\leq C_{1}(s) \|h_{\alpha}\|_{(s)}, \quad s > \frac{n}{2}. \end{split}$$

On the other hand, since $H_{(k)} = W_{k,2}(\mathbb{R}^n)$ (see [1]), we obtain

(18)
$$\begin{split} \|D^{\alpha}f\|_{N_{\phi}} &= \|F^{-1}(\psi(\xi)\xi^{\alpha}) * f\|_{N_{\Phi}} \\ &\leq \|F^{-1}(\psi(\xi)\xi^{\alpha})\|_{1} \|f\|_{N_{\Phi}} \\ &\leq C_{1} \|\psi(\xi)\xi^{\alpha}\|_{(k)} \|f\|_{N_{\Phi}} \\ &\leq C_{2} \|\psi(\xi)\xi^{\alpha}\|_{k,2} \|f\|_{N_{\Phi}}, \end{split}$$

where $k = \frac{n}{2} + 1$. As in the proof of Theorem 1 of [3] we can shows that

(19)
$$\|\psi(\xi)\xi^{\alpha}\|_{k,2} \le C_3 |\alpha|^k \sup\left\{\sup_G |\xi^{\alpha-\gamma}| : \gamma \le \alpha, \ |\gamma| \le k\right\} \alpha \ge 0,$$

and

(20)
$$\lim_{|\alpha|\to\infty} \left(\sup\left\{\sup_{G}|\xi^{\gamma-\alpha}|:\gamma\leq\alpha,\ |\gamma|\leq k\right\}\right)^{\frac{1}{|\alpha|}} / \left(\sup_{G}|\xi^{\alpha}|\right)^{\frac{1}{|\alpha|}} = 1.$$

From (18), (19) and (20) we obtain (17).

Now suppose that (16) is false. By an argument analogous to the above proof, there exist $I_1 \subset I$ and $\lambda > 1$, $0 \leq \beta_j \leq 1$, $j = 1, \ldots, n$, such that $|\beta| = 1$ and

$$(I_1)$$
 $\lim_{|\alpha|\to\infty}\frac{\alpha_j}{|\alpha|}=\beta_j, \quad j=1,\ldots,n.$

TRUONG VAN THUONG

$$(I_1) \quad \lim_{|\alpha| \to \infty} \left(\frac{\|D^{\alpha}f\|_{N_{\Phi}}}{\sup_{\operatorname{sp}(f)} |\xi^{\alpha}|} \right)^{\frac{1}{|\alpha|}} = \lambda$$

Therefore, from the previous results we get

$$\sup_{G} \frac{|\xi^{\beta}|}{\sup_{\mathrm{sp}(f)}} |\xi^{\beta}| \ge \lambda$$

for any domain $G \supset \operatorname{sp}(f)$, which is impossible. The proof is complete. \Box

Remark 1. Theorem 1 still holds for functions defined on torus \mathbf{T}^n .

Remark 2. Theorem 1 still holds without the assumption $D^{\alpha}f \in N_{\Phi}$, $|\alpha| = 1, 2, \ldots$

Remark 3. Equality (3) is not true if sp(f) is bounded.

Acknowledgment

The author would like to express his gratitude to Prof. Ha Huy Bang for useful suggestions.

References

- 1. R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- 2. Ha Huy Bang, A Study of the Properties of Functions Depending on the Geometry of Their Spectrum, Russian Doklady Mathematics 56, No 1 (1997), 610-613.
- Ha Huy Bang, Functions with bounded spectrum, Trans. Amer. Math. Soc. 347 (1995), 1067-1080.
- Ha Huy Bang, Properties of functions in Orlicz spaces that depend on the geometry of their spectra, Izvestiya Mathematics 61, 2 (1997), 163-198.
- Ha Huy Bang, Spectrum of functions in Orlicz spaces, J. Math. Sci. Univ. Tokyo 4 (1997), 341-349.
- 6. L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag Berlin-Heidelberg, 1983.
- 7. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, New York, 1995.
- Walter Rudin, *Functional Analysis*, TaTa McGraw-Hill Publishing Company Ltd. New Delhi, 1989.
- M. S. Steigerwalt and A. J. White, Some function spaces related to L_p, Proc. London. Math. Soc. 22 (1971), 137-163.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean Spaces, Princeton, New Jersey, 1975.

DEPARTMENT OF MATHEMATICS HUE UNIVERSITY 34 LE LOI STREET, HUE, VIETNAM