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SOME PROPERTIES OF FUNCTIONS
WITH BOUNDED SPECTRUM

TRUONG VAN THUONG

Abstract. In this paper we prove that the results obtained in [3] for Lp-
norm are still valid for a norm which is generated by a concave function.

Let C denote the family of all non-zero concave functions Φ : [0,+∞) →
[0,+∞], which are non-decreasing and satisfy Φ(0) = 0. For an arbitrary
measurable function f and Φ ∈ C, we define

‖f‖NΦ =

∞∫

0

Φ
(
λf (t)

)
dt,

where λf (t) = µ({x : |f(x)| > t}), t ≥ 0. Let NΦ = NΦ(lRn) be the space
of all measurable functions f such that ‖f‖NΦ < ∞. Then NΦ is a Banach
space [7, 9].

The following relation between the behaviour of a sequence of norms of
the derivatives of a function and the support of its Fourier transform has
been shown in [3]:

lim
|α|→∞

(‖Dαf‖p

sup
sp(f)

|ξα|
) 1
|α|

= 1,

where 0 < p ≤ ∞, f ∈ S ′∩Lp(lRn) and sp(f) = supp(f̂) is bounded (f̂(ξ)
is the Fourier transform of f(x), S ′ is the dual space of the Schwartz space
S of rapidly decreasing infinity differentiable functions). This result has
been extended to any Orlicz norm [2, 4].
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In this paper, by using the technique of [3], we prove that the above
result still holds for the norm ‖.‖NΦ . We do that with the help of the
following results:

Lemma 1 [9]. If f ∈ NΦ and g ∈ MΦ, then fg ∈ L1 and
∫

lRn

|f(x)g(x)|dx ≤ ‖f‖NΦ‖g‖MΦ .

Lemma 2. If f ∈ NΦ and h ∈ L1(lRn), then f ∗h ∈ NΦ and ‖f ∗h‖NΦ ≤
‖f‖NΦ‖h‖1.

Lemma 3. If f ∈ NΦ(lRn) then f ∈ S ′.
Proof. Let f ∈ NΦ and define L = Lf by letting

L(g) = Lf (g) =
∫

lRn

f(x)g(x)dx for any g ∈ S.

It is clear that L is a linear functional on S. To show that it is continuous
we prove that

|L(g)| ≤ C sup
lRn

|(1 + |x|2)g(x)|,

where C is constant. Actually, we have

|L(g)| ≤
∫

lRn

|f(x)g(x)|dx

≤ sup
lRn

(1 + |x|2)N |g(x)|
∫

lRn

(1 + |x|2)−N |f(x)|dx.

On the other hand, since f ∈ NΦ, it follows that µ(E) < ∞, where

E = { x ∈ lRn : |f(x)| > t0}, t0 > 0.

Therefore,
∫

lRn

(1 + |x|)−N |f(x)|dx ≤
∫

lRn\E

|f(x)|
(1 + |x|2)N

dx +
∫

E

|f(x)|
(1 + |x|2)N

dx

≤ C1 + C2 = C.
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By Theorem 3.11 of [10], it follows that L is continuous on S. Hence
f ∈ S ′.

Lemma 4. Let f ∈ NΦ(lRn). If sp(f) is bounded, then f is bounded.

Proof. Since the spectrum of f is bounded, we can choose ψ̂(ξ) ∈ C∞0 (lRn)
such that ψ̂ = 1 in some neighbourhood of sp(f). Then we obtain

‖(F−1f̂)(x)‖∞ = ‖(F−1(ψ̂f̂))(x)‖∞
= ‖ψ ∗ f‖∞
≤ ‖ψ‖1‖f‖NΦ < ∞.

Applying Lemma 4 and using the techniques of the proof of Theorem
1 [5] for spaces NΦ, we obtain the following result:

Lemma 5. Let Φ(t) ∈ C, f ∈ NΦ, f(x) 6≡ 0 and let ξ0 ∈ sp(f) be an
arbitrary point. Then the restriction of f̂ to any neighbourhood of ξ0 can
not concentrate on any finite number of hyperplanes.

Proof. Without loss of generality, we will prove the theorem for functions
f with bounded spectrum and ξ0 = 0.

By contradiction, we assume that there exists a neighbourhood V 3 0
such that the restriction of f̂(ξ) to V concentrates on hyperplanes Hj ,
j = 1, 2 . . . , m.

We put for each j ∈ I = {1, . . . , m},
Gj = lRn \

⋃

i6=j

Hi.

Then Gj is open. For any ψ(ξ) ∈ C∞0 (Gj), the distribution ψ(ξ)f̂(ξ)
concentrates on the hyperplane Hj . By a transformation of coordinates
we can chose such a way that the hyperplane Hj will be transformed into
the hyperplane ξj = 0.

Put g(x) = F−1ψ ∗f(x). Then ‖g(x)‖NΦ = ‖F−1ψ ∗f(x)‖NΦ . Further,
the Fourier transform of g(x) will concentrate on the hyperplane ξj = 0.
Therefore, taking into account of a remark on Theorem 2.3.5 mentioned
in Example 5.1.2 [6], we get

(1) g(x) =
N∑

`=0

g`(x1, . . . , xj−1, xj+1, . . . , xn)(−ixj)`,

where N is the order of the distribution f̂(ξ) (N < ∞ because suppf̂ is
compact) and ĝ`(ξ1, . . . , ξj−1, ξj+1, . . . , ξn), 0 ≤ ` ≤ N , are distributions
with compact supports.
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By virtue of Lemma 4, the equality (1) is possible only if N = 0. So
the function g(x) does not depend on xj .

Further, since g ∈ NΦ we get

(2)

∞∫

0

Φ(λg(t))dt < ∞.

We will show that g(x) ≡ 0. Actually, assume to the contrary that
g(x0) 6= 0 for some point x0. Without loss of generality we may assume
that g(x0) > 0. Since g(x) = F−1(ψf̂)(x) is continuous, there is a number
ε > 0 and a neighbourhood U of x0 such that g(x) > ε for every x ∈ U .
Since g(x) does not depend on xj (as seen above), and by the definition
[9], we get

λg(ε) = µ{ x ∈ lRn : |g(x)| > ε } = ∞.

Since λg(t) is a nonincreasing function, λg(t) = +∞ on the interval [0, ε].
Since Φ(t) is nondecreasing, it follows that Φ(λg(t)) = +∞ on the interval
[0, ε], which contradicts (2). Thus, we get g(x) ≡ 0, i.e. ψ(ξ)f̂(ξ) ≡
0. Since ψ(ξ) ∈ C∞0 (Gj) is arbitrarily chosen, we get f̂(ξ) ≡ 0 on the
hyperplane Hj . So f̂(ξ) must concentrate on the planes Hi ∩Hj , i, j ∈ I,
i 6= j.

We get for i, j ∈ I, i 6= j,

Gij = lRn \
⋃ {

Hk ∩H` : (k, `) 6= (i, j), k 6= `
}
.

Then Gij is open. For any ψ(ξ) ∈ C∞0 (Gij), the distribution ψ(ξ)f̂(ξ)
concentrates on the plane Hi ∩Hj .

By an analogous argument we obtain ψ(ξ)f̂(ξ) ≡ 0. Since ψ ∈ C∞0 (Gij)
is arbitrarily chosen, we see that f̂(ξ) must concentrate on Hi ∩Hj ∩H`,
i, j, ` = 1, . . . , m, i 6= j 6= `.

Repeating the above arguments (k − 3) times, we deduce that the dis-

tribution f̂(ξ) concentrates on
m⋂

i=1

Hi and then, by the same way, we get

f̂(ξ) ≡ 0, which contradicts f(x) 6≡ 0. The proof is complete.

Theorem 1. Let Φ ∈ C, f(x) 6≡ 0, f ∈ NΦ, Dαf ∈ NΦ, |α| = 1, 2, . . .
and sp(f) is bounded. Then

(3) lim
|α|→∞

(‖Dαf‖NΦ

sup
sp(f)

|ξα|
) 1
|α|

= 1.
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Proof. We first show that sup
sp(f)

|ξα| 6= 0, for all α ≥ 0. Assume to the

contrary that there exists α ≥ 0 such that sup
sp(f)

|ξα| = 0. Then for all ξ ∈

sp(f), we have ξα = 0. Therefore, sp(f) ⊂
n⋃

j=1

{ξ ∈ lRn : ξj = 0}, which

contradicts Lemma 5.
Now we will prove (3). The proof will be divided into three steps.
Step 1. We first establish the inequality

(4) lim
|α|→∞

(‖Dαf‖NΦ

|ξα|
) 1
|α| ≥ 1

for any point ξ ∈ sp(f).
Choose ξ0 ∈ sp(f) such that ξ0

j 6= 0, j = 1, 2, . . . , n. For the sake of
convenience we assume that ξ0

j > 0, j = 1, . . . , n. We choose 0 < ε <
1
2

min
1≤j≤n

ξ0
j and G is a domain with smooth boundary such that ξ0 ∈ G and

G ⊂ {
ξ ∈ lRn : ξ0

j − ε ≤ ξj ≤ ξ0
j + ε, j = 1, . . . , n

}
.

We choose ψ̂(ξ) ∈ C∞0 (G) such that ξ0 ∈ supp(ψ̂f̂). Then for any ĝ(ξ) ∈
C∞0 (G), we have

〈ψ̂(ξ)f̂(ξ), ĝ(ξ)〉 = 〈f(x), ψ̌ ∗ ǧ(x)〉
= 〈f(x), ϕ(x)〉,(5)

where ϕ(x) = ψ̌ ∗ ǧ(x) and ǧ(x) = g(−x). Since ψ̂(ξ)f̂(ξ) is a distribution
with compact support, by Theorem 6.27 of [8], it is represented in the
form

ψ̂(ξ)f̂(ξ) =
∑

|α|≤m

Dαhα(ξ),

where m ∈ N and hα(ξ) are continuous functions on G.
By an argument analogous to the proof of Theorem 1 of [3], the Dirichlet

problem for the elliptic differential equation

L2mẑ(ξ) =
∑

|α|≤m

(−1)|α|Dα(Dαẑ(ξ)) = ψ̂(ξ)f̂(ξ),

has a solution ẑ(ξ) ∈ W 0
m,2(G) (the space Sobolev [1]).
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Because of (5) we get

(6) 〈ẑ(ξ), L2m(ξαĝ(ξ)〉 = (−i)|α|〈Dαf(x), ϕ(x)〉,
where ĝ(ξ) ∈ W 0

m,2(G). Let ĝ0(ξ) ∈ W 0
m,2(G) be the solution of L2mĝ0(ξ) =

ẑ(ξ). Define

ĝα(ξ) =
n∏

j=1

(ξ0
j − 2ε)αj ξ−αĝ0(ξ).

It follows from 0 /∈ G that

L2m(ξαĝα(ξ)) =
n∏

j=1

(ξ0
j − 2ε)αj ẑ(ξ).

By virtue of Lemma 1, we obtain the inequality
n∏

j=1

(ξ0
j − 2ε)αj 〈ẑ(ξ), ẑ(ξ)〉 ≤ ‖Dαf‖NΦ‖ψ ∗ gα‖MΦ

≤ ‖Dαf‖NΦ‖ψ‖1‖gα‖MΦ .(7)

As in the proof of Theorem 1 of [3] we get the estimate

(8) sup
lRn

(1 + x2
1) . . . (1 + x2

n)|gα(x)| ≤ C3, α ≥ 0.

It follows that

(9) |gα(x)| ≤ C3

(1 + x2
1) . . . (1 + x2

n)
for all x = (x1, . . . , xn) ∈ lRn.

By the definition of ‖.‖MΦ in [9] we obtain

‖gα‖MΦ = sup
0<µ(E)<∞

1
Φ(µ(E))

∫

E

|gα|dx.

Let δ > 0. Then for any subset E ⊂ lRn such that 0 < µ(E) < ∞,
there are two cases.

If µ(E) ≥ δ, then Φ(µ(E)) ≥ Φ(δ) > 0 because Φ ∈ C. Therefore, by
(9) we get

1
Φ(µ(E))

∫

E

|gα|dx ≤ 1
Φ(µ(E))

∫

E

C3

(1 + x2
1) . . . (1 + x2

n)
dx

≤ 1
Φ(δ)

∫

lRn

C3

(1 + x2
1) . . . (1 + x2

n)
dx

=
C3π

n

Φ(δ)
.



FUNCTIONS WITH BOUNDED SPECTRUM 349

If µ(E) < δ, then
Φ(µ(E))

µ(E)
≥ Φ(δ)

δ
(since

Φ(x)
x

is decreasing [9]).

From (9) we have

1
Φ(µ(E))

∫

E

|gα|dx ≤ 1
Φ(µ(E))

∫

E

C3

(1 + x2
1) . . . (1 + x2

n)
dx

≤ 1
Φ(µ(E))

∫

E

C3dx

=
C3µ(E)
Φ(µ(E))

≤ C3δ

Φ(δ)
.

Hence

1
Φ(µ(E))

∫

E

|gα|dx ≤ C for all E (0 < µ(E) < ∞).

That means

(10) ‖gα‖MΦ ≤ C.

Combining (7) with (10) we get

n∏

j=1

(ξ0
j − 2ε)αj 〈ẑ(ξ), ẑ(ξ)〉 ≤ ‖Dαf‖NΦC1.

Therefore

(11) 1 ≤ lim
|α|→∞

( ‖Dαf‖NΦ
n∏

j=1

(ξ0
j − 2ε)αj

) 1
|α|

.
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On the other hand, we have

(12)
[ n∏

j=1

(ξ0
j − 2ε

ξ0
j

)−αj
] 1
|α| ≤ max

j

ξ0
j

ξ0
j − 2ε

.

From (11) and (12) we obtain

(13) 1 ≤ lim
|α|→∞

(‖Dαf‖NΦ

|ξ0α|
) 1
|α|

max
j

ξ0
j

ξ0
j − 2ε

.

Letting ε → 0 and ξ0 → ξ, we get

1 ≤ lim
|α|→∞

(‖Dαf‖NΦ

|ξα|
) 1
|α|

.

Step 2. We will prove that

(14) lim
|α|→∞

(‖Dαf‖NΦ

sup
sp(f)

|ξα|
) 1
|α| ≥ 1.

Assume to the contrary that there exists a subsequence I1 ⊂ I such
that

(15) (I1) lim
|α|→∞

(‖Dαf‖NΦ

sup
sp(f)

|ξα|
) 1
|α|

< 1.

As in proof of Theorem 1 of [3], given λ > 1, there exist a number m ≥ 1
and a subsequence I2 ⊂ I1 such that mξα ∈ sp(f) and

(I2) lim
|α|→∞

(‖Dαf‖NΦ

sup
sp(f)

|ξα|
) 1
|α| ≥ (I2)

1
λ

lim
|α|→∞

(‖Dαf‖NΦ

|mξα|
) 1
|α| ≥ 1

λ
,

which contradicts (15) as λ → 1.
Step 3. Finally we will prove that

(16) lim
|α|→∞

(‖Dαf‖NΦ

sup
sp(f)

|ξα|
) 1
|α| ≤ 1.
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We first prove the inequality

(17) lim
|α|→∞

(‖Dαf‖NΦ

sup
G
|ξα|

) 1
|α| ≤ 1.

for an arbitrary domain G ⊃ sp(f).
We choose ψ(ξ) ∈ C∞0 (G) such that ψ(ξ) = 1 in some neighbourhood

of sp(f) (since sp(f) is bounded). Put hα(ξ) = ψ(ξ)ξα, α ≥ 0. Then

‖F−1hα‖1 =
∫

lRn

|ĥα(ξ)|dξ

≤
( ∫

lRn

|ĥα(ξ)|2(1 + |ξ|2)sdξ
)1/2( ∫

lRn

(1 + |ξ|2)−sdξ
)1/2

≤ C1(s)‖hα‖(s), s >
n

2
.

On the other hand, since H(k) = Wk,2(lRn) (see [1]), we obtain

‖Dαf‖Nφ
= ‖F−1(ψ(ξ)ξα) ∗ f‖NΦ

≤ ‖F−1(ψ(ξ)ξα)‖1‖f‖NΦ

≤ C1‖ψ(ξ)ξα‖(k)‖f‖NΦ

≤ C2‖ψ(ξ)ξα‖k,2‖f‖NΦ ,(18)

where k =
n

2
+ 1. As in the proof of Theorem 1 of [3] we can shows that

(19) ‖ψ(ξ)ξα‖k,2 ≤ C3|α|k sup
{

sup
G
|ξα−γ | : γ ≤ α, |γ| ≤ k

}
α ≥ 0,

and

(20) lim
|α|→∞

(
sup

{
sup
G
|ξγ−α| : γ ≤ α, |γ| ≤ k

}) 1
|α|

/
(
sup
G
|ξα|)

1
|α| = 1.

From (18), (19) and (20) we obtain (17).
Now suppose that (16) is false. By an argument analogous to the above

proof, there exist I1 ⊂ I and λ > 1, 0 ≤ βj ≤ 1, j = 1, . . . , n, such that
|β| = 1 and

(I1) lim
|α|→∞

αj

|α| = βj , j = 1, . . . , n.
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(I1) lim
|α|→∞

(‖Dαf‖NΦ

sup
sp(f)

|ξα|
) 1
|α|

= λ.

Therefore, from the previous results we get

sup
G
|ξβ |/ sup

sp(f)

|ξβ | ≥ λ

for any domain G ⊃ sp(f), which is impossible. The proof is complete.

Remark 1. Theorem 1 still holds for functions defined on torus Tn.

Remark 2. Theorem 1 still holds without the assumption Dαf ∈ NΦ,
|α| = 1, 2, . . . .

Remark 3. Equality (3) is not true if sp(f) is bounded.
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