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ON THE UNIFORMITY OF
MEROMORPHIC FUNCTIONS

NGUYEN DINH LAN

ABSTRACT. The paper gives, in terms of the linear topological invariants,
some conditions under which every F’-valued meromorphic function on
the dual space of a Frechet-Montel space is of uniform type.

1. INTRODUCTION

For locally convex spaces F, F' we denote by M(E, F') the vector space
of F-valued meromorphic functions on E. A F-valued meromorphic func-
tion f on FE is said to be of uniform type if f can be meromorphically
factorized through a Banach space. This means that there exists a con-
tinuous semi-norm p on F and a meromorphic function g from FE,, the
canonical Banach space associated to p, into F' such that f = gw,, where
w, : B — FE, is the canonical map.

Put M (E,F) = {f € M(E,F) |f is of uniform type}. We are inte-
rested in the equality

(MUN) M(E,F)=M,(E,F).

Let’s recall that in the case of the holomorphic functions, the analogous
identity
(HUN) H(E,F)=Hu(E,F)

was investigated by many authors. Here H(E, F') denotes the space of F-
valued entire functions on E equipped with the compact-open topology
and

Hu(E,F)={f€H(E,F)|fis of uniform type} .

Colombeau and Mujica [1] have shown that (HUN) holds in the case
where E is a dual Frechet-Montel space and F' a Frechet space. The
case where F and F' are either Frechet spaces or dual Frechet spaces was
investigated by Meise and Vogt [7] and recently by Le Mau Hai [5]. In[7]
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Meise and Vogt have proved that (HUN) holds for the scalar entire func-

tions on a nuclear Frechet space E having (€2). Next, Le Mau Hai [5]
has extended this result by proving that (HUN) holds for every nuclear
Frechet space E € (Q) and for every Frechet space F' € (DN). Observe
that this is also true for the dual Frechet case with a suitable hypothesis,
for example E' € (DN) and F’ € (2). However, the equality (MUN) was
only considered recently by Le Mau Hai for the case where E is a dual
Frechet-Schwartz space with an absolute basis [4]. He has proved that if
E' € (DN) and F is a dual Frechet space with F’ € (Q), then (MUN)
holds.

The main aim of this paper is to investigate some sufficient and nec-
essary conditions for E and F' such that (MUN) holds. Unfortunately, a

result of Meise-Vogt type for the meromorphic case remains to be found.

We shall use the standard notations from the theory of locally convex
spaces as presented in the books of Pietsch [9] and Schaefer [10].

Let E be a Frechet space with a fundamental system of semi-norms
{|le]|}. For a subset B of E, put ||lul|z = sup{|u(z)| : = € B} for
u € E'. Write ||o||; for B=Uy={z€E : |z|, <1}

By using these notations we say that E has the property

(DN) if IpVg,d>03k,C >0, |of;*"<C o], [o]l.
DN) if 3pVq Tk, d,C >0, [ell;™"<C Jo|l , I[o5.

(
=\ . *14+d * *d
@) it pIgVid>0 IC>0, el <C ol lef "
(LB*>) if Vp, T oo Vp dq Yk Ing,C > 0 Yu € E' 3In,, € [k;ngl,
*1 Ny * *Pry
lullg ™o < C ally, Nlull -
The above properties were introduced and investigated by Vogt (see [12],
[13]).

Let E, F be two locally convex spaces and let D C E be an open subset.
A function f : D — F is called holomorphic if f is continuous and if
for every y € F’, the dual space of F, the function y o f € F’ is Gateaux
holomorphic. By H(D, F') we denote the space of F-valued holomorphic
function on D equipped with the compact-open topology. A holomorphic
function f : D, — F, where D, is a dense open subset of D, is said to
be meromorphic on D if for every z € D there exist a neighbourhood U
of z and holomorphic functions h : U — F, 0 : U — C (0 # 0) such
that

h

f’DomU T oD NU
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By M(D, F) we denote the vector space of F-valued meromorphic func-
tions on D. For details concerning holomorphic functions on locally convex
spaces we refer to the book of Dineen [3].

We shall prove the following assertions.

Theorem 1.1. (i) Let E be a nuclear Frechet space. Then M(E', F') =
M (E',F'") for every Frechet space F € (LB®) if and only if E € (DN).

(ii) Let F' be a Frechet space. Then M(E', F") = M, (E', F") for every
nuclear Frechet space E € (DN) if and only if F € (LB>).

Theorem 1.2. Let E be a Frechet-Montel space with the property (DN)

and F' a Frechet space with the property (2). Then M(E', F') = M, (E', F'").

2. PROOF OF THEOREM 1.1

Lemma 2.1. Let E be a nuclear Frechet space with the property (DN) and
F a Frechet space with the property (LB*°). Assume that f : E' — F’
18 a holomorphic function. Then f is of uniform type.

Proof. Consider the continuous linear map f : Hy(F') — H(E') asso-
ciated to f:

f(@)(uw) = p(f(u)) for ¢ € Hy(F') and u € E'.

Since F' € (LB*) and H(E') € (DN) [8], we can find by [10] a neighbour-
hood V of 0 € F such that f(V) is bounded. Then, for every bounded
subset B in E’, we have

sup {|f(W)(w)] : ue B, yeVi=sw{lf@l : ueB yeV} <o

Thus, f : E' — F{,, where Fy is the Banach space associated to V, is
bounded and Gateaux holomorphic. Hence f : E’ — F{, is holomorphic.
By Colombeau and Mujica [1], f is of uniform type. [

Lemma 2.2. Let 8 and o be holomorphic functions on an open set D
in a locally convex space and let g be a holomorphic function with values
By

in a locally convex space. Assume that — 1is holomorphic on D and
o

codim Z(g,0) > 2. Then p is holomorphic on D.
o
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Proof. Given z, € D. Since the local ring O,  of germs of holomorphic
functions at 2, is factorial [6], we can write ¢ = o™ 05" ...0, " in a
neighbourhood U of z, such that o1.,,02;,,...,0,., are irreducible. By

the hypothesis and by the equality

Bg _BI mi-1 _m,
— = —0 Oy,
g1 g

it follows that @ is holomorphic at z,. On the other hand, from the
01

P
hypothesis codim Z(g,0) > 2 and Z (o) = |J Z(0;) it follows that codim
i=1
Z(g,04) >2fori=1,...,p. Hence, by the irreducibility of o1, 6 we infer

that
Z(1),, < Z(B)

This again implies 3 = (1071 at z,. By continuing this process we infer

2o

that é is holomorphic at z,. [
o

Proof of Theorem 1.1.

(i) Assume that £ € (DN) and F € (LB*). Given f : E' — F' a
meromorphic function. By Opg/ (resp. M g/) we denote the sheaf of germs
of holomorphic (resp. meromorphic) functions on E’. Let

O = {0 € Op : 0 is invertible} ,
My, = Mg \ {0},
Dgr = My, /OF.

Then we have the two exact sequences on E’:

0—2Z — 0 =5 03 —0,

0—)O*E’ —>ME/L> DE/ —>O7

where exp(c) = 2™ and 7 is the canonical map. By [2] , HY(E',Og/) =
0. On the other hand, since H?(E’,Z) = 0, the exact cohomology se-
quences associated to the above exact sheaf sequences give that for ev-
ery divisor d € H°(E', Dg/), there exists a meromorphic function 7 €
H°(E',M},) such that n(r) =d.
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By the meromorphicity of f, for every z € E’ we can choose a neigh-
bourhood Vi of z and the holomorphic functions h : Vi — F/,
o : Vi — C, o # 0, such that

h
Flvi =5
Write o = 0" 05" ... 0, in a neighbourhood V3 of z in V; such that the
germs o1, 02z, .. ,0p, at z are irreducible [6]. Without loss of generality
we may assume that h, can be not divisible by o01.,02,,...,0,.. Then
there exists a neighbourhood U of z in V5 such that

h
Moo= 5

o

and codim Z(h,c) > 2 in U (where Z(h,o) = h=1(0)No~1(0)). Thus, we
can find an open cover {U;} of E’ and holomorphic functions h; : U; —
F', 0 : Uj — C such that

1y
fly, =2
|U] 0j
and codim Z(hj;,o;) > 2 for j > 1.
hi  hj .
Since — = —L on U; N U;, for all i,j > 1, Lemma 2.2 implies that the
g; 0
form z +— (GJ)ZO*E’,Z for z € U; defines a divisor d on E’. Thus, there

B-

exists a meromorphic function 3 on E’ such that 8 # 0 and n € Op ,

z
for = € E’. Tt is easy to see that (3 is holomorphic on E’ and hence h = 3 f
is holomorphic on E’. From Lemma 2.1, we infer that h, 3 are of uniform
type, and hence so is f.

Conversely, assume that E is a nuclear Frechet space such that M (E’, F")
= M, (E', F') for every Frechet space F' € (LB*). By Vogt [12], in order
to prove E € (DN) it suffices to prove that each continuous linear map-
ping T from H(A) into E is bounded on some neighbourhood of 0, where
H(A) denotes the space of holomorphic functions on the open unit disc A
in C.

Since H(A) € (LB*) [12], by the hypothesis we obtain M(E’, [H(A)]) =
My (B [H(A)]). Let T" : B/ — [H(A)]" be the dual mapping of
T : H(A) — E. Obviously, 7" € M(E’,[H(A)]") and hence T" € M, (£,
[H(A)]"). Therefore we have T = g o w,, where w, is the canonical
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mapping from E’ into £y, the Banach space associated with E’, and g :
E;, — [H(A)]" is a meromorphic function. Because 7", w, are linear and
wq is surjective, we have the linearity of g.

Put V = w;'(U) where U is the open unit ball of E/. Then V is a
neighbourhood of 0 € E’. We have T"(V) = gow,(V) C ¢(U), which is
bounded in [H(A)]’. This means 7" is bounded on a neighbourhood of in
H(A) and hence T is also bounded on a neighbourhood of in E.

(ii) The sufficiency follows from (i). By the (DN)-characterization
of Vogt [12] and by applying the equality M(E’, F') = M, (E',F’) to
E = H(C) which has (DN) [12], the necessity can be proved as in (i).
The proof of Therem 1.1 is now complete.

3. PROOF OF THEOREM 1.2

Let A(A) be a nuclear Frechet-Kother space. Let D, a € A(A), denote
an open polydisc in A’(A). Assume that E is a Banach space with the
unit ball B. Put

DE = {ij ®§j6;

J=1

T = (z;) C B, €=(€j)€Da}-

Since D, is open, it is easy to see that D is also open in

BE&N(A) = {> a; @ | (lail) € A (A)].

Jj=21

By Hy(D2) we denote the Frechet space of holomorphic functions f on
DZ for which

Il =sw{|fQ a0 &e)| [ B, ¢=(g) e K} < oo

jz1
for every compact subset K C D,.

Lemma 3.1. There exists a matriz Q = [q;x], ¢jx > 0, such that
(i) Vn Jk,e > 0 qjl.:{E < qrgiy Vj=>1, and
an

YA <o, B 1 forj1,
=1 ik qjk
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(ii) Hp(D2B) is a subspace of the space

A5, QY) = { (€ (@) menrsep | [16n (@) <00 Wk 21},

where M = {m = (m;) C Zy/mj # 0 only for finitely many j},

[€m (D)}, = sup{ £ (T) ¢ + T € B, m € M} and qi' = g1} ...q," for
m = (mq,...,my,0...) € M.

Proof. By [8] there exists a matrix @ = [g;i] satisfying (i). Moreover, the
form

Z )\Jej

fr—>(am(f)=(2im) / / /\m+1 — =),

[A1]=r1

1
0 <rj < —,Vj>1 defines an isomorphism of H(D,) and A(M, QM).
a;
Given f € Hy(D5). For each T C B, we define fz € H(D,) by

= f(Z x; ®§je;’7> for £ € D,.

j>1
It follows that

LNl = sup {lam(fz)lgx" | T C B, m eM}
Ssup{‘f(ijQ@&jej) T C B, §€Nk}
j=1

= [ F Wl = Wl

where N = {(&;) / &1 < ¢jx Vj >1}. Hence |[e]||, is a continuous
seminorm on Hy(DZ) for k > 1.

On the other hand, since for n > 1 there exists k > n such that

Zqﬂn<oo and qm<1 Vi >1,
]>1QJk dik

we have
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£, <sup{>" lan(f)lIE"] |7 C B, & € N, |
M
<l < 3 (22)"

meM
- qjn \ P
=l < TTDZ (22)
jip=1 Bk
Il
(-5
j>1 ik

Since {Nj} is an exhaustion sequence of compact sets in D, it follows
that the form

fr— (am(ff))meM,ch

defines an embedding from H,(DZ) into Ap(M,QM). O

Lemma 3.2. Let E be a Frechet space with the property (ﬁ) and QQ =
lgjx > 0] @ matriz satisfying the condition

Vn Jk, e >0 q}:s < ijQ§1 Vi > 1.

Then every continuous linear map from E into Ap (M, QM) is bounded on
a neighbourhood of 0 € E.

Proof. Given a sequence K (N) of positive integers numbers. Since E €

(), for K (1) there exists K such that
VE(N) Ve >03C >0 felli ™" < Cllollicn) lollica) -

Given n > 1. Choose k > n, € > 0 such that ql-JrE < qjkqul V7 > 1. Let

an

gin ull i > g1 ||u||*K(1). Then the inequality

1+
lull e ™ < Cllullg ey llullz

q. g
< Cllulleq lull; (22)
QJl
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implies that
djk
lullie < Cllulli ==
9jn
Hence

* * . !
Gjn ||ullz < Cénz\&rwg(k 4in HUHK(N) , VjzlandVue E.

From this we get

1T, 5 = sup {1yl | Iyl <1}
= sup {|an (T)(TY)lg," | T C B, me M, [ly|x <1}

= sup {la (@) o T 47 | # C B, m € M)

< e Tl |75, me )
_Cén]ggk{sup{lla @) o Tllxnyan |TC B, me

< T
< C max [Ty v

for T € L(E,Ap(M,Q™)). By [12], every T € L (E,Ap(M,QM)) is
bounded on a neighbourhood of 0 € E.

Lemma 3.3. Let E and F be Frechet spaces having (DN) and (ﬁ) re-
spectively. Assume that E is a Montel space. Then every holomorphic

function f: D — F’ on an open set D in E' is locally bounded.

Proof. By Vogt [13] E is a subspace of the space B ® s for some Banach
space B. It follows that the restriction map R : [B&s] 2 B'® s — E’

is open. Let D = R™Y(D) and g = f o R. It suffices to show that g is

locally bounded at every w, € D. Without loss of generality we may

assume that 0 € D and w, = 0. Choose an open polydisc D, C s’ with

a = (a;) € s, a;j > 0 for all j > 1, such that R(conv(V ® D,)) C D,

where V' denotes the unit ball in E. Take k > 1 sufficiently large such

that gljik < 2. Put b = (25%a;) € s. Then D} is a neighbourhood of
J>

0 € B'® s’ contained in D because
s

* 1 . *
ij ®¢je; = Zj_k(% ®]k§j€j)

j=1 Jj=1
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and
xj ®jk£je;f e V®D, for £ € D, and (z;) C V.

Consider the continuous linear map g : F — H(D}') induced by g:
3(2)(w) = g(w)(2) for z € F and w € D} .

By applying Lemmas 3.1 and 3.2, we can find a neighbourhood U of 0 € F
such that g(U) is bounded in H,(D}'). Then, for every compact set K in
D, we have

sup {|g(w)(2)| ‘w eKY, 2z ¢ U} =sup {|§(z)(w)] ‘w eKY, z¢€ U} < oo

with
KV:{ijQ@Sje;f )ECV, SEK}.

Jj=1

Thus ¢ : DY — F}; is holomorphic. This yields that g is locally
bounded at 0 € D). O

Proof of Theorem 1.2. Given f € M(E’,F'). By Lemma 3.3 and by the
Lindelofness of E’ we can find a sequence {u; };’;1 C E’ and a sequence of

balanced convex neighbourhoods {U; }511 of 0 € E’ such that

El = U (Uj—i—Uj)

Jj=1

and for each j > 1 there exists bounded holomorphic functions h;
uj +U; — F', 0; : wu; +U; — C for which

h;

|Uj+Uj %

Hence h; and o; induce the bounded holomorphic functions Bj and 0,
respectively, on a neighbourhood W; of w,, (u; + Uj) in Ej , where p;
denotes the semi-norm generated by U; and w,; the canonical map from
E' into E, , the Banach space associated to py;.
By [1] there exists a sequence p; / +o0o such that (] p;U; is a neigh-
Jj>1
bourhood of 0 € E'. Let w(U,U;) : E|,, — Ej be the canonical map.
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~

hjw(Uv UJ)
c}jw(U, Uj)
neighbourhood Z of E'/ker py in E}, . Let Z 7 be the domain of existence

Then the family defines a meromorphic function f on a

of f over E;, - Let Z be the domain of existence of f over E7, - Then Zis
a pseudoconvex domain in Ej, . Hence the function ¢(z) = —logd(z,0Z})
is plurisubharmonic on Z i Since every plurisubharmonic function on a
nuclear dual Frechet space is of uniform type [11], we can find a continuous
seminorm p on E’ and a plurisubharmonic function on E/’J such that p > py
and pw), = Yw,. It suffices to show that Im w,,, C Z;. Indeed, in the
converse case we can find z € Ej, such that wp,,(z) € 9Z;. Take a
sequence {z,} C E’ such that w,(z,) — 2. Then

+oo = lim pw,,, (z,) = im pw,, (2,) = lim Yw,(z,) < ¥(2) < +o0.

n—oo
This is impossible. The proof of Theorem 1.2 is now complete.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Nguyen Van Khue for helpful
suggestions during the preparation of the paper.

REFERENCES

1. J. F. Colombeau and J. Mujica, Holomorphic and differentiable mappings of uni-
form type, in: Functional Analysis, Holomorphy and Approximation Theory, J. A.
Barroso (ed.). North-Holland Math. Stud. 71 (1981), 179-200.

2. J. F. Colombeau and B. Perrot, L’équation & dans ouverts pseudoconvezes des
espaces (DFN), Bull. Soc. Math. France 110 (1982), 15-26.

3. S. Dineen, Complex analysis in locally conver spaces, North-Holland Math. Stud.
57 (1981).

4. L. Mau Hai, Meromorphic functions of uniform type, Vietnam J. Math. 23 (1995),
145-161.

5. L. Mau Hai, Weak extension of Frechet-valued holomorphic functions on compact
sets and linear topological invariants, Acta Math. Vietnam 21 (1996), 183-199.

6. L. Hormander, An Introduction to Complexr Analysis in Several Variables, North-
Holland, 1973.

7. R.Meise and D. Vogt, Holomorphic functions of uniformly bounded type on nuclear
Frechet spaces, Studia Math. 83 (1986), 147-166.

8. R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite
dimensional polydiscs, Studia Math. 75 (1983), 235-252.

9. A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer-
Verlag, 1972.

10. H. H. Schaefer, Topologicasl Vector Spaces, Springer-Verlag, 1971.
11. B. Dac Tac and N. Thu Nga, Oka-Weil theorem and plurisubharmonic functions
of uniform type, Acta Math. Vietnam 16 (1991), 95-110.



342 NGUYEN DINH LAN

12. D. Vogt, Frechetrdume, zwischen denen jede stetige lineare Abbildung beschrdankt
ist, J. Reine Angew. Math. 345 (1983), 182-200.
13. D. Vogt, On two classes of (F)-spaces, Arch. Math. 45 (1985), 255-266.

DEPARTMENT OF M ATHEMATICS
PEDAGOGICAL COLLEGE OF Ho CHl MINH CITY
280 AN DuoNG VUONG, DisTrICT 5, HO CHI MINH CITY, VIETNAM.



