ON THE UNIFORMITY OF MEROMORPHIC FUNCTIONS

NGUYEN DINH LAN

Abstract. The paper gives, in terms of the linear topological invariants, some conditions under which every F' -valued meromorphic function on the dual space of a Frechet-Montel space is of uniform type.

1. INTRODUCTION

For locally convex spaces E, F we denote by $\mathcal{M}(E, F)$ the vector space of F -valued meromorphic functions on E . A F -valued meromorphic function f on E is said to be of uniform type if f can be meromorphically factorized through a Banach space. This means that there exists a continuous semi-norm ρ on E and a meromorphic function g from E_{ρ} , the canonical Banach space associated to ρ , into F such that $f = g\omega_{\rho}$, where $\omega_{\rho}: E \longrightarrow E_{\rho}$ is the canonical map.

: $E \longrightarrow E_{\rho}$ is the canonical map.
Put $\mathcal{M}_u(E, F) = \{ f \in \mathcal{M}(E, F) \}$ |f is of uniform type}. We are interested in the equality

$$
(MUN) \quad \mathcal{M}(E, F) = \mathcal{M}_u(E, F).
$$

Let's recall that in the case of the holomorphic functions, the analogous identity

$$
(HUN) \quad \mathcal{H}(E, F) = \mathcal{H}_u(E, F)
$$

was investigated by many authors. Here $\mathcal{H}(E, F)$ denotes the space of Fvalued entire functions on E equipped with the compact-open topology and \overline{a}

$$
\mathcal{H}_u(E,F) = \{ f \in \mathcal{H}(E,F) \mid f \text{ is of uniform type} \}.
$$

Colombeau and Mujica [1] have shown that (HUN) holds in the case where E is a dual Frechet-Montel space and F a Frechet space. The case where E and F are either Frechet spaces or dual Frechet spaces was investigated by Meise and Vogt [7] and recently by Le Mau Hai [5]. In [7]

Received March 25, 1998; in revised form July 7, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 46G20, 32A30

Key words and phrases. Meromorphic functions, uniform type, locally bounded.

Meise and Vogt have proved that (HUN) holds for the scalar entire functions on a nuclear Frechet space E having (Ω) . Next, Le Mau Hai [5] has extended this result by proving that (HUN) holds for every nuclear Frechet space $E \in (\Omega)$ and for every Frechet space $F \in (DN)$. Observe that this is also true for the dual Frechet case with a suitable hypothesis, for example $E' \in (DN)$ and $F' \in (\tilde{\Omega})$. However, the equality (MUN) was only considered recently by Le Mau Hai for the case where E is a dual Frechet-Schwartz space with an absolute basis [4]. He has proved that if $E' \in (DN)$ and F is a dual Frechet space with $F' \in (\tilde{\Omega})$, then (MUN) holds.

The main aim of this paper is to investigate some sufficient and necessary conditions for E and F such that (MUN) holds. Unfortunately, a result of Meise-Vogt type for the meromorphic case remains to be found.

We shall use the standard notations from the theory of locally convex spaces as presented in the books of Pietsch [9] and Schaefer [10].

Let E be a Frechet space with a fundamental system of semi-norms $\{ \|\bullet\|_k \}.$ For a subset B of E, put $||u||_B^* = \sup \{ |u(x)| : x \in B \}$ for $u \in E'$. Write $||\bullet||_k^*$ for $B = U_k = \{x \in E^* : ||x||_k < 1 \}.$

By using these notations we say that E has the property

(DN) if
$$
\exists p \forall q, d > 0 \exists k, C > 0
$$
, $\|\bullet\|_q^{1+d} \le C \|\bullet\|_k \|\bullet\|_p^d$.
\n(DN) if $\exists p \forall q \exists k, d, C > 0$, $\|\bullet\|_q^{1+d} \le C \|\bullet\|_k \|\bullet\|_p^d$.
\n $(\overline{\Omega})$ if $\forall p \exists q \forall k, d > 0 \exists C > 0$, $\|\bullet\|_q^{*1+d} \le C \|\bullet\|_k^* \|\bullet\|_p^{*d}$.
\n (LB^{∞}) if $\forall \rho_n \uparrow \infty \forall p \exists q \forall k \exists n_k, C > 0 \forall u \in E' \exists n_u \in [k; n_k]$,
\n $\|u\|_q^{*1+\rho_{n_u}} \le C \|u\|_{n_u}^* \|u\|_p^{*\rho_{n_u}}$.

The above properties were introduced and investigated by Vogt (see [12], $[13]$.

Let E, F be two locally convex spaces and let $D \subset E$ be an open subset. A function $f : D \longrightarrow F$ is called holomorphic if f is continuous and if for every $y \in F'$, the dual space of F, the function $y \circ f \in F'$ is Gâteaux holomorphic. By $\mathcal{H}(D, F)$ we denote the space of F-valued holomorphic function on D equipped with the compact-open topology. A holomorphic function $f : D_{\circ} \longrightarrow F$, where D_{\circ} is a dense open subset of D, is said to be meromorphic on D if for every $z \in D$ there exist a neighbourhood U of z and holomorphic functions $h : U \longrightarrow F$, $\sigma : U \longrightarrow C$ ($\sigma \neq 0$) such that \overline{a}

$$
f|_{D_{\circ} \cap U} = \left. \frac{h}{\sigma} \right|_{D_{\circ} \cap U}.
$$

By $\mathcal{M}(D, F)$ we denote the vector space of F-valued meromorphic functions on D. For details concerning holomorphic functions on locally convex spaces we refer to the book of Dineen [3].

We shall prove the following assertions.

Theorem 1.1. (i) Let E be a nuclear Frechet space. Then $\mathcal{M}(E', F') =$ $\mathcal{M}_u(E', F')$ for every Frechet space $F \in (LB^{\infty})$ if and only if $E \in (DN)$.

(ii) Let F be a Frechet space. Then $\mathcal{M}(E', F') = \mathcal{M}_u(E', F')$ for every nuclear Frechet space $E \in (DN)$ if and only if $F \in (LB^{\infty})$.

Theorem 1.2. Let E be a Frechet-Montel space with the property (DN) and F a Frechet space with the property $(\overline{\Omega})$. Then $\mathcal{M}(E', F') = \mathcal{M}_u(E', F')$.

2. Proof of Theorem 1.1

Lemma 2.1. Let E be a nuclear Frechet space with the property (DN) and F a Frechet space with the property (LB^{∞}). Assume that $f : E' \longrightarrow F'$ is a holomorphic function. Then f is of uniform type.

Proof. Consider the continuous linear map \hat{f} : $\mathcal{H}_b(F') \longrightarrow \mathcal{H}(E')$ associated to f:

$$
\hat{f}(\varphi)(u) = \varphi(f(u))
$$
 for $\varphi \in \mathcal{H}_b(F')$ and $u \in E'.$

Since $F \in (LB^{\infty})$ and $\mathcal{H}(E') \in (DN)$ [8], we can find by [10] a neighbourhood V of $0 \in F$ such that $\hat{f}(V)$ is bounded. Then, for every bounded subset B in E' , we have

$$
\sup\{|f(u)(y)| \ : \ u \in B, \ y \in V\} = \sup\{|f(y)(u)| \ : \ u \in B, \ y \in V\} < \infty.
$$

Thus, $f : E' \longrightarrow F'_{V}$, where F_{V} is the Banach space associated to V, is bounded and Gâteaux holomorphic. Hence $f : E' \longrightarrow F'_{V}$ is holomorphic. By Colombeau and Mujica [1], f is of uniform type. \square

Lemma 2.2. Let β and σ be holomorphic functions on an open set D in a locally convex space and let g be a holomorphic function with values in a locally convex space. Assume that $\frac{\beta g}{\beta}$ σ is holomorphic on D and codim $Z(g, \sigma) \geq 2$. Then $\frac{\beta}{\sigma}$ σ is holomorphic on D.

Proof. Given $z_o \in D$. Since the local ring \mathcal{O}_{z_o} of germs of holomorphic functions at z_o is factorial [6], we can write $\sigma = \sigma_1^{m_1} \sigma_2^{m_2} \dots \sigma_p^{m_p}$ in a neighbourhood U of z_o such that $\sigma_{1z_o}, \sigma_{2z_o}, \ldots, \sigma_{pz_o}$ are irreducible. By the hypothesis and by the equality

$$
\frac{\beta g}{\sigma_1} = \frac{\beta g}{\sigma} \sigma_1^{m_1 - 1} \dots \sigma_p^{m_p},
$$

it follows that $\frac{\beta g}{\beta}$ σ_1 is holomorphic at z_o . On the other hand, from the hypothesis codim $Z(g, \sigma) \geq 2$ and $Z(\sigma) = \bigcup_{r=1}^{p}$ $i=1$ $Z(\sigma_i)$ it follows that codim $Z(g, \sigma_i) \geq 2$ for $i = 1, ..., p$. Hence, by the irreducibility of σ_{1z_o} we infer that ¡ ¢ ¡ ¢

$$
Z(\sigma_1)_{z_o} \subseteq Z(\beta)_{z_o}.
$$

This again implies $\beta = \beta_1 \sigma_1$ at z_o . By continuing this process we infer that $\frac{\beta}{\zeta}$ $\frac{\beta}{\sigma}$ is holomorphic at z_o .

Proof of Theorem 1.1.

(i) Assume that $E \in (DN)$ and $F \in (LB^{\infty})$. Given $f : E' \longrightarrow F'$ a meromorphic function. By $\mathcal{O}_{E'}$ (resp. $\mathcal{M}_{E'}$) we denote the sheaf of germs of holomorphic (resp. meromorphic) functions on E' . Let

$$
\mathcal{O}_{E'}^* = \{ \sigma \in \mathcal{O}_{E'} : \sigma \text{ is invertible} \},
$$

$$
M_{E'}^* = M_{E'} \setminus \{0\},
$$

$$
D_{E'} = M_{E'}^* / \mathcal{O}_{E'}^*.
$$

Then we have the two exact sequences on E' :

$$
0 \longrightarrow Z \longrightarrow \mathcal{O}_{E'} \stackrel{\exp}{\longrightarrow} \mathcal{O}_{E'}^* \longrightarrow 0,
$$

$$
0 \longrightarrow \mathcal{O}_{E'}^* \longrightarrow M_{E'}^* \stackrel{\eta}{\longrightarrow} D_{E'} \longrightarrow 0,
$$

where $\exp(\sigma) = e^{2\pi i \sigma}$ and η is the canonical map. By [2], $H^1(E', \mathcal{O}_{E'}) =$ 0. On the other hand, since $H^2(E', Z) = 0$, the exact cohomology sequences associated to the above exact sheaf sequences give that for every divisor $d \in H^o(E', D_{E'})$, there exists a meromorphic function $\tau \in$ $H^o(E', M_{E'}^*)$ such that $\eta(\tau) = d$.

By the meromorphicity of f, for every $z \in E'$ we can choose a neighbourhood V_1 of z and the holomorphic functions $h : V_1 \longrightarrow F'$, $\sigma : V_1 \longrightarrow \mathbf{C}, \, \sigma \neq 0$, such that

$$
f\left|_{V_1}=\frac{h}{\sigma}\right|\cdot
$$

Write $\sigma = \sigma_1^{m_1} \sigma_2^{m_2} \dots \sigma_p^{m_p}$ in a neighbourhood V_2 of z in V_1 such that the germs $\sigma_{1z}, \sigma_{2z}, \ldots, \sigma_{pz}$ at z are irreducible [6]. Without loss of generality we may assume that h_z can be not divisible by $\sigma_{1z}, \sigma_{2z}, \ldots, \sigma_{pz}$. Then there exists a neighbourhood U of z in V_2 such that

$$
f|_{U} = \frac{h}{\sigma}
$$

and codim $Z(h,\sigma) \geq 2$ in U (where $Z(h,\sigma) = h^{-1}(0) \cap \sigma^{-1}(0)$). Thus, we can find an open cover $\{U_j\}$ of E' and holomorphic functions $h_j : U_j \longrightarrow$ $F', \sigma_j: U_j \longrightarrow \mathbf{C}$ such that

$$
f|_{U_j} = \frac{h_j}{\sigma_j}
$$

and codim $Z(h_j, \sigma_j) \geq 2$ for $j \geq 1$.

Since $\frac{h_i}{h}$ σ_i $=\frac{h_j}{h_j}$ σ_j on $U_i \cap U_j$ for all $i, j \geq 1$, Lemma 2.2 implies that the form $z \mapsto$ ¡ σ_j $\overline{\mathcal{F}}$ $\mathcal{L}_z \mathcal{O}_{E',z}^*$ for $z \in U_j$ defines a divisor d on E'. Thus, there exists a meromorphic function β on E' such that $\beta \neq 0$ and $\frac{\beta_z}{\beta}$ d_z $\in O_{E',z}^*$ for $z \in E'$. It is easy to see that β is holomorphic on E' and hence $h = \beta f$ is holomorphic on E'. From Lemma 2.1, we infer that h, β are of uniform type, and hence so is f .

Conversely, assume that E is a nuclear Frechet space such that $\mathcal{M}(E', F')$ $=\mathcal{M}_u(E', F')$ for every Frechet space $F \in (LB^{\infty})$. By Vogt [12], in order to prove $E \in (DN)$ it suffices to prove that each continuous linear mapping T from $\mathcal{H}(\Delta)$ into E is bounded on some neighbourhood of 0, where $\mathcal{H}(\Delta)$ denotes the space of holomorphic functions on the open unit disc Δ in C.

Since $\mathcal{H}(\Delta) \in (LB^{\infty})$ [12], by the hypothesis we obtain $\mathcal{M}(E', [\mathcal{H}(\Delta)]') =$ $\mathcal{M}_u(E', [\mathcal{H}(\Delta)]')$. Let $T' : E' \longrightarrow [\mathcal{H}(\Delta)]'$ be the dual mapping of $T: \mathcal{H}(\Delta) \longrightarrow E$. Obviously, $T' \in \mathcal{M}(E', [\mathcal{H}(\Delta)]')$ and hence $T' \in \mathcal{M}_u(E',$ $[\mathcal{H}(\Delta)]'$). Therefore we have $T' = g \circ \omega_q$, where ω_q is the canonical

mapping from E' into E_q' , the Banach space associated with E', and g: $E_q' \longrightarrow [\mathcal{H}(\Delta)]'$ is a meromorphic function. Because T', ω_q are linear and ω_q is surjective, we have the linearity of g.

Put $V = \omega_q^{-1}(U)$ where U is the open unit ball of E_q' . Then V is a neighbourhood of $0 \in E'$. We have $T'(V) = g \circ \omega_q(V) \subset g(U)$, which is bounded in $[\mathcal{H}(\Delta)]'$. This means T' is bounded on a neighbourhood of in $\mathcal{H}(\Delta)$ and hence T is also bounded on a neighbourhood of in E.

(ii) The sufficiency follows from (i). By the (DN) -characterization of Vogt [12] and by applying the equality $\mathcal{M}(E', F') = \mathcal{M}_u(E', F')$ to $E = \mathcal{H}(\mathbf{C})$ which has (DN) [12], the necessity can be proved as in (i). The proof of Therem 1.1 is now complete.

3. Proof of Theorem 1.2

Let $\Lambda(A)$ be a nuclear Frechet-Köther space. Let $\mathbf{D}_a, a \in \Lambda(A)$, denote an open polydisc in $\Lambda'(A)$. Assume that E is a Banach space with the unit ball B. Put

$$
\mathbf{D}_a^B = \Big\{ \sum_{j \ge 1} x_j \otimes \xi_j e_j^* \; \Big| \; \overline{x} = (x_j) \subset B \, , \; \xi = (\xi_j) \in \mathbf{D}_a \Big\}.
$$

Since \mathbf{D}_a is open, it is easy to see that \mathbf{D}_a^B is also open in

$$
E \underset{\pi}{\hat{\otimes}} \Lambda'(A) = \Bigl\{ \sum_{j \ge 1} x_j \otimes e_j^* \Big| \left(||x_j|| \right) \in \Lambda'(A) \Bigr\}.
$$

By $\mathcal{H}_b(\mathbf{D}_a^B)$ we denote the Frechet space of holomorphic functions f on \mathbf{D}_a^B for which

$$
\|f\|_{K} = \sup \left\{ \left| f(\sum_{j\geq 1} x_j \otimes \xi_j e_j^*) \right| \middle| \overline{x} \subset B, \ \xi = (\xi_j) \in K \right\} < \infty
$$

for every compact subset $K \subset \mathbf{D}_a$.

Lemma 3.1. There exists a matrix $Q = [q_{jk}]$, $q_{jk} \ge 0$, such that (i) $\forall n \exists k, \varepsilon > 0 \ q_{jn}^{1+\varepsilon} \leq q_{jk} q_{j1}^{\varepsilon} \ \forall j \geq 1, \text{ and}$

$$
\sum_{j\geq 1} \frac{q_{jn}}{q_{jk}} < \infty, \quad \frac{q_{jn}}{q_{jk}} < 1 \quad \text{for } j \geq 1,
$$

(ii) $\mathcal{H}_b(D_a^B)$ is a subspace of the space

$$
\Lambda_B(M, Q^M) = \left\{ \left. (\xi_m(\bar{x}))_{m \in M, \bar{x} \in B} \, \right| \|\xi_m(\bar{x})\|_k < \infty \ \forall k \ge 1 \right\},
$$

where $\mathbf{M} = \{ m = (m_j) \subset Z_+/m_j \neq 0 \text{ only for finitely many } j \},$ $\|\xi_m(\bar{x})\|_k = \sup \{ |\xi_m(\bar{x})| \, q_k^m : \ \bar{x} \in B, \ m \in \mathbf{M} \} \ \text{and} \ q_k^m = q_{1k}^{m_1}$ $\frac{m_1}{1k}...q_{nk}^{m_n}$ for $m = (m_1, ..., m_n, 0...) \in \mathbf{M}.$

Proof. By [8] there exists a matrix $Q = [q_{jk}]$ satisfying (i). Moreover, the form

$$
f \longmapsto (a_m(f) = \left(\frac{1}{2\pi i}\right)^n \int\limits_{|\lambda_1| = r_1} \cdots \int\limits_{|\lambda_n| = r_n} \frac{f\left(\sum\limits_{j=1}^n \lambda_j e_j^*\right)}{\lambda^{m+1}} d\lambda,
$$

 $0 < r_j <$ 1 a_j , $\forall j \geq 1$ defines an isomorphism of $\mathcal{H}(\mathbf{D}_a)$ and $\Lambda(\mathbf{M}, Q^{\mathbf{M}})$.

Given $f \in \mathcal{H}_b(\mathbf{D}_a^B)$. For each $\overline{x} \subset B$, we define $f_{\overline{x}} \in \mathcal{H}(\mathbf{D}_a)$ by

$$
f_{\overline{x}}(\xi) = f\left(\sum_{j\geq 1} x_j \otimes \xi_j e_j^*\right) \text{ for } \xi \in \mathbf{D}_a.
$$

It follows that

$$
\begin{aligned} |||f|||_{k} &:= \sup \left\{ |a_m(f_{\overline{x}})| q_k^m \mid \overline{x} \subset B, \ m \in M \right\} \\ &\leq \sup \left\{ \left| f\left(\sum_{j\geq 1} x_j \otimes \xi_j e_j^* \right) \right| \mid \overline{x} \subset B, \ \xi \in N_k \right\} \\ &= \|f\|_{N_k} := \|f\|_{k}, \end{aligned}
$$

where $N_k = \{(\xi_j) \mid |\xi_j| \le q_{jk} \ \forall j \ge 1\}$. Hence $\|\cdot\|_k$ is a continuous seminorm on $\mathcal{H}_b(\mathbf{D}_a^B)$ for $k \geq 1$.

On the other hand, since for $n \geq 1$ there exists $k > n$ such that

$$
\sum_{j\geq 1}\frac{q_{jn}}{q_{jk}} < \infty \quad \text{and} \quad \frac{q_{jn}}{q_{jk}} < 1 \quad \forall j \geq 1,
$$

we have

$$
||f||_n \le \sup \left\{ \sum_M |a_m(f_{\overline{x}})||\xi^m| \mid \overline{x} \subset B, \ \xi \in N_n \right\}
$$

$$
\le |||f|||_k \times \sum_{m \in M} \left(\frac{q_n}{q_k}\right)^m
$$

$$
= |||f|||_k \times \prod_{j\ge 1} \sum_{p=1}^\infty \left(\frac{q_{jn}}{q_{jk}}\right)^p
$$

$$
= \frac{|||f|||_k}{\prod_{j\ge 1} \left(1 - \frac{q_{jn}}{q_{jk}}\right)}
$$

Since $\{N_k\}$ is an exhaustion sequence of compact sets in \mathbf{D}_a , it follows that the form \sim

$$
f \longmapsto \big(a_m(f_{\overline{x}})\big)_{m \in \mathbf{M}, \, \overline{x} \subset B}
$$

defines an embedding from $\mathcal{H}_b(\mathbf{D}_a^B)$ into Λ_B ¡ $\mathbf{M}, Q^\mathbf{M}$ ¢ .

Lemma 3.2. Let E be a Frechet space with the property $(\overline{\overline{\Omega}})$ and $Q =$ $[q_{jk} \geq 0]$ a matrix satisfying the condition

$$
\forall n \ \exists k, \ \varepsilon > 0 \quad q_{jn}^{1+\varepsilon} \le q_{jk} q_{j1}^{\varepsilon} \quad \forall j \ge 1.
$$

Then every continuous linear map from E into Λ_B ¡ M, Q^M ¢ is bounded on a neighbourhood of $0 \in E$.

Proof. Given a sequence $K(N)$ of positive integers numbers. Since $E \in$ $(\overline{\Omega})$, for $K(1)$ there exists K such that

$$
\forall K(N) \ \forall \varepsilon > 0 \ \exists C > 0 \quad \|\bullet\|_{K}^{*1+\varepsilon} \leq C \, \|\bullet\|_{K(N)}^{*} \, \|\bullet\|_{K(1)}^{* \, \varepsilon} \, .
$$

Given $n \geq 1$. Choose $k \geq n$, $\varepsilon > 0$ such that $q_{jn}^{1+\varepsilon} \leq q_{jk} q_{j1}^{\varepsilon} \quad \forall j \geq 1$. Let $q_{jn} ||u||_K^* \geq q_{j1} ||u||_{K(1)}^*$. Then the inequality

$$
||u||_{K}^{*1+\varepsilon} \leq C ||u||_{K(k)}^{*} ||u||_{K(1)}^{*\varepsilon}
$$

$$
\leq C ||u||_{K(k)}^{*} ||u||_{K}^{*\varepsilon} \left(\frac{q_{jn}}{q_{j1}}\right)^{\varepsilon}
$$

implies that

$$
||u||_K^* \leq C ||u||_{K(k)}^* \frac{q_{jk}}{q_{jn}}.
$$

Hence

$$
q_{jn} ||u||_K^* \leq C \max_{1 \leq N \leq k} q_{jN} ||u||_{K(N)}^*, \quad \forall j \geq 1 \text{ and } \forall u \in E'.
$$

From this we get

$$
||T||_{n,K} = \sup \{ ||Ty||_n \mid ||y||_K \le 1 \}
$$

= $\sup \{ |a_m(\overline{x})(Ty)|_q_m^m \mid \overline{x} \subset B, m \in M, ||y||_K \le 1 \}$
= $\sup \{ ||a_m(\overline{x}) \circ T||_K^* q_n^m \mid \overline{x} \subset B, m \in M \}$
 $\le C \max_{1 \le N \le k} \{ \sup \{ ||a_m(\overline{x}) \circ T||_{K(N)}^* q_n^m \mid \overline{x} \subset B, m \in M \} \}$
 $\le C \max_{1 \le N \le k} ||T||_{N,K(N)}$

for $T \in L$ ¡ $E, \Lambda_B(M, Q^M)$ ¢ . By [12], every $T \in L$ ¡ $E, \Lambda_B(M, Q^M)$ ¢ is bounded on a neighbourhood of $0 \in E$.

Lemma 3.3. Let E and F be Frechet spaces having (DN) and $(\overline{\overline{\Omega}})$ respectively. Assume that E is a Montel space. Then every holomorphic function $f: D \longrightarrow F'$ on an open set D in E' is locally bounded.

Proof. By Vogt [13] E is a subspace of the space $B \hat{\otimes} s$ for some Banach space B. It follows that the restriction map $\mathcal{R}: [B \underset{\pi}{\hat{\otimes}} s]' \cong B' \underset{\pi}{\hat{\otimes}} s' \longrightarrow E'$ is open. Let $\tilde{D} = \mathcal{R}^{-1}(D)$ and $g = f \circ \mathcal{R}$. It suffices to show that g is locally bounded at every $\omega_{\circ} \in \tilde{D}$. Without loss of generality we may assume that $0 \in \tilde{D}$ and $\omega_{\circ} = 0$. Choose an open polydisc $\mathbf{D}_a \subset s'$ with $a = (a_j) \in s, a_j \geq 0$ for all $j \geq 1$, such that $\mathcal{R}(conv(V \otimes \mathbf{D}_a)) \subset D$, where V denotes the unit ball in E. Take $k \geq 1$ sufficiently large such that \sum j≥1 1 $\frac{1}{j^k} \leq 2$. Put $b = (2j^k a_j) \in s$. Then \mathbf{D}_b^V is a neighbourhood of $0 \in B' \hat{\otimes} s'$ contained in \tilde{D} because

$$
\sum_{j\geq 1} x_j \otimes \xi_j e_j^* = \sum_{j\geq 1} \frac{1}{j^k} (x_j \otimes j^k \xi_j e_j^*)
$$

and

$$
x_j \otimes j^k \xi_j e_j^* \in V \otimes \mathbf{D}_a
$$
 for $\xi \in \mathbf{D}_a$ and $(x_j) \subset V$.

Consider the continuous linear map \hat{g} : $F \longrightarrow \mathcal{H}_b(\mathbf{D}_b^V)$ induced by g:

$$
\hat{g}(z)(\omega) = g(\omega)(z)
$$
 for $z \in F$ and $\omega \in D_b^V$.

By applying Lemmas 3.1 and 3.2, we can find a neighbourhood U of $0 \in F$ such that $\hat{g}(U)$ is bounded in $\mathcal{H}_b(\mathbf{D}_b^V)$. Then, for every compact set K in \mathbf{D}_b , we have

$$
\sup\left\{|g(\omega)(z)| \, \big|\, \omega \in K^V, \, z \in U\right\} = \sup\left\{| \hat{g}(z)(\omega)| \, \big|\, \omega \in K^V, \, z \in U\right\} < \infty
$$

with

$$
K^{V} = \Bigl\{\sum_{j\geq 1} x_j \otimes \xi_j e_j^* \mid \overline{x} \subset V, \ \xi \in K\Bigr\}.
$$

Thus $g : D_b^V \longrightarrow F'_U$ is holomorphic. This yields that g is locally bounded at $0 \in \mathbf{D}_b^V$.

Proof of Theorem 1.2. Given $f \in \mathcal{M}(E', F')$. By Lemma 3.3 and by the Lindelofness of E' we can find a sequence ${u_j}_{j=1}^{\infty} \subset E'$ and a sequence of balanced convex neighbourhoods ${U_j}_{j=1}^{\infty}$ of $0 \in E'$ such that

$$
E' = \bigcup_{j \ge 1} (u_j + U_j)
$$

and for each $j \geq 1$ there exists bounded holomorphic functions h_j : $u_j + U_j \longrightarrow F', \sigma_j : u_j + U_j \longrightarrow \mathbf{C}$ for which

$$
f\,\big|_{\mathcal{U}_j\,+\, U_j}=\frac{h_j}{\sigma_j}
$$

·

Hence h_j and σ_j induce the bounded holomorphic functions \hat{h}_j and $\hat{\sigma}_j$, respectively, on a neighbourhood W_j of $\omega_{\rho_j}(u_j+U_j)$ in E'_{ρ_j} , where ρ_j denotes the semi-norm generated by U_j and ω_{ρ_j} the canonical map from E' into E'_{ρ_j} , the Banach space associated to ρ_{U_j} .

By [1] there exists a sequence $\mu_j \nearrow +\infty$ such that \bigcap j≥1 $\mu_j U_j$ is a neighbourhood of $0 \in E'$. Let $\omega(U, U_j)$: $E'_{\rho_U} \longrightarrow E'_{\rho_j}$ be the canonical map.

Then the family $\left\{ \right.$ $\hat{h}_j\omega(U,U_j)$ $\hat{\sigma}_j \omega(U,U_j)$ \mathbf{r} defines a meromorphic function \hat{f} on a neighbourhood Z of $E'/\ker \rho_U$ in E'_{ρ_U} . Let $Z_{\hat{f}}$ be the domain of existence of \hat{f} over E'_{ρ_U} . Let $Z_{\hat{f}}$ be the domain of existence of \hat{f} over E'_{ρ_U} . Then $Z_{\hat{f}}$ is a pseudoconvex domain in E'_{ρ_U} . Hence the function $\varphi(z) = -\log d(z,\partial \tilde{Z}_{\hat{f}})$ is plurisubharmonic on $Z_{\hat{f}}$. Since every plurisubharmonic function on a nuclear dual Frechet space is of uniform type [11], we can find a continuous seminorm ρ on E' and a plurisubharmonic function on E'_{ρ} such that $\rho \geq \rho_U$ and $\varphi \omega_{\rho U} = \Psi \omega_{\rho}$. It suffices to show that Im $\omega_{\rho \rho U} \subset Z_{\hat{f}}$. Indeed, in the converse case we can find $z \in E'_{\rho}$ such that $\omega_{\rho \rho_U}(z) \in \partial Z_{\hat{f}}$. Take a sequence $\{z_n\} \subset E'$ such that $\omega_\rho(z_n) \to z$. Then

$$
+\infty = \lim_{n \to \infty} \varphi \omega_{\rho \rho_U}(z_n) = \lim_{n \to \infty} \varphi \omega_{\rho_U}(z_n) = \lim_{n \to \infty} \Psi \omega_{\rho}(z_n) \leq \Psi(z) < +\infty.
$$

This is impossible. The proof of Theorem 1.2 is now complete.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Nguyen Van Khue for helpful suggestions during the preparation of the paper.

REFERENCES

- 1. J. F. Colombeau and J. Mujica, Holomorphic and differentiable mappings of uniform type, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.). North-Holland Math. Stud. 71 (1981), 179-200.
- 2. J. F. Colombeau and B. Perrot, L'équation $\overline{\partial}$ dans ouverts pseudoconvexes des espaces (DFN), Bull. Soc. Math. France 110 (1982), 15-26.
- 3. S. Dineen, Complex analysis in locally convex spaces, North-Holland Math. Stud. 57 (1981).
- 4. L. Mau Hai, Meromorphic functions of uniform type, Vietnam J. Math. 23 (1995), 145-161.
- 5. L. Mau Hai, Weak extension of Frechet-valued holomorphic functions on compact sets and linear topological invariants, Acta Math. Vietnam 21 (1996), 183-199.
- 6. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
- 7. R. Meise and D. Vogt, Holomorphic functions of uniformly bounded type on nuclear Frechet spaces, Studia Math. 83 (1986), 147-166.
- 8. R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. **75** (1983), 235-252.
- 9. A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer-Verlag, 1972.
- 10. H. H. Schaefer, Topologicasl Vector Spaces, Springer-Verlag, 1971.
- 11. B. Dac Tac and N. Thu Nga, Oka-Weil theorem and plurisubharmonic functions of uniform type, Acta Math. Vietnam 16 (1991), 95-110.

- 12. D. Vogt, Frecheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
- 13. D. Vogt, On two classes of (F)-spaces, Arch. Math. 45 (1985), 255-266.

Department of Mathematics Pedagogical College of Ho Chi Minh City 280 An Duong Vuong, District 5, Ho Chi Minh City, Vietnam.