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ON THE UNIFORMITY OF
MEROMORPHIC FUNCTIONS

NGUYEN DINH LAN

Abstract. The paper gives, in terms of the linear topological invariants,
some conditions under which every F ′-valued meromorphic function on
the dual space of a Frechet-Montel space is of uniform type.

1. Introduction

For locally convex spaces E, F we denote by M(E, F ) the vector space
of F -valued meromorphic functions on E. A F -valued meromorphic func-
tion f on E is said to be of uniform type if f can be meromorphically
factorized through a Banach space. This means that there exists a con-
tinuous semi-norm ρ on E and a meromorphic function g from Eρ, the
canonical Banach space associated to ρ, into F such that f = gωρ, where
ωρ : E −→ Eρ is the canonical map.

Put Mu(E,F ) =
{
f ∈M(E, F )

∣∣f is of uniform type
}
. We are inte-

rested in the equality

(MUN) M(E, F ) = Mu(E,F ).

Let’s recall that in the case of the holomorphic functions, the analogous
identity

(HUN) H(E, F ) = Hu(E,F )

was investigated by many authors. Here H(E, F ) denotes the space of F -
valued entire functions on E equipped with the compact-open topology
and

Hu(E,F ) =
{

f ∈ H(E, F )
∣∣ f is of uniform type

}
.

Colombeau and Mujica [1] have shown that (HUN) holds in the case
where E is a dual Frechet-Montel space and F a Frechet space. The
case where E and F are either Frechet spaces or dual Frechet spaces was
investigated by Meise and Vogt [7] and recently by Le Mau Hai [5]. In [7]
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Meise and Vogt have proved that (HUN) holds for the scalar entire func-
tions on a nuclear Frechet space E having (Ω̃). Next, Le Mau Hai [5]
has extended this result by proving that (HUN) holds for every nuclear
Frechet space E ∈ (Ω̃) and for every Frechet space F ∈ (DN). Observe
that this is also true for the dual Frechet case with a suitable hypothesis,
for example E′ ∈ (DN) and F ′ ∈ (Ω̃). However, the equality (MUN) was
only considered recently by Le Mau Hai for the case where E is a dual
Frechet-Schwartz space with an absolute basis [4]. He has proved that if
E′ ∈ (DN) and F is a dual Frechet space with F ′ ∈ (Ω̃), then (MUN)
holds.

The main aim of this paper is to investigate some sufficient and nec-
essary conditions for E and F such that (MUN) holds. Unfortunately, a
result of Meise-Vogt type for the meromorphic case remains to be found.

We shall use the standard notations from the theory of locally convex
spaces as presented in the books of Pietsch [9] and Schaefer [10].

Let E be a Frechet space with a fundamental system of semi-norms
{ ‖•‖k}. For a subset B of E, put ‖u‖∗B = sup { |u(x)| : x ∈ B} for
u ∈ E′. Write ‖•‖∗k for B = Uk = {x ∈ E : ‖x‖k < 1 }.

By using these notations we say that E has the property

(DN) if ∃p ∀q, d > 0 ∃k, C > 0, ‖•‖1+d
q ≤ C ‖•‖ k ‖•‖d

p.

(DN) if ∃p ∀q ∃k, d, C > 0, ‖•‖1+d
q ≤ C ‖•‖ k ‖•‖d

p.

(Ω) if ∀p ∃q ∀k, d > 0 ∃C > 0, ‖•‖∗1+d
q ≤ C ‖•‖∗k ‖•‖∗dp .

(LB∞) if ∀ρn ↑ ∞ ∀p ∃q ∀k ∃nk, C > 0 ∀u ∈ E′ ∃nu ∈ [k; nk],

‖u‖∗1+ρnu
q ≤ C ‖u‖∗nu

‖u‖∗ρnu
p .

The above properties were introduced and investigated by Vogt (see [12],
[13]).

Let E, F be two locally convex spaces and let D ⊂ E be an open subset.
A function f : D −→ F is called holomorphic if f is continuous and if
for every y ∈ F ′, the dual space of F , the function y ◦ f ∈ F ′ is Gâteaux
holomorphic. By H(D,F ) we denote the space of F -valued holomorphic
function on D equipped with the compact-open topology. A holomorphic
function f : D◦ −→ F , where D◦ is a dense open subset of D, is said to
be meromorphic on D if for every z ∈ D there exist a neighbourhood U
of z and holomorphic functions h : U −→ F , σ : U −→ C (σ 6= 0) such
that

f |D◦ ∩ U
=

h

σ

∣∣∣∣
D◦ ∩ U

.
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By M(D, F ) we denote the vector space of F -valued meromorphic func-
tions on D. For details concerning holomorphic functions on locally convex
spaces we refer to the book of Dineen [3].

We shall prove the following assertions.

Theorem 1.1. (i) Let E be a nuclear Frechet space. Then M(E′, F ′) =
Mu(E′, F ′) for every Frechet space F ∈ (LB∞) if and only if E ∈ (DN).

(ii) Let F be a Frechet space. Then M(E′, F ′) = Mu(E′, F ′) for every
nuclear Frechet space E ∈ (DN) if and only if F ∈ (LB∞).

Theorem 1.2. Let E be a Frechet-Montel space with the property (DN)
and F a Frechet space with the property (Ω). ThenM(E′, F ′) = Mu(E′, F ′).

2. Proof of Theorem 1.1

Lemma 2.1. Let E be a nuclear Frechet space with the property (DN) and
F a Frechet space with the property (LB∞). Assume that f : E′ −→ F ′

is a holomorphic function. Then f is of uniform type.

Proof. Consider the continuous linear map f̂ : Hb(F ′) −→ H(E′) asso-
ciated to f :

f̂(ϕ)(u) = ϕ(f(u)) for ϕ ∈ Hb(F ′) and u ∈ E′.

Since F ∈ (LB∞) and H(E′) ∈ (DN) [8], we can find by [10] a neighbour-
hood V of 0 ∈ F such that f̂(V ) is bounded. Then, for every bounded
subset B in E′, we have

sup {|f(u)(y)| : u ∈ B, y ∈ V } = sup
{
|f̂(y)(u)| : u ∈ B, y ∈ V

}
< ∞.

Thus, f : E′ −→ F ′V , where FV is the Banach space associated to V , is
bounded and Gâteaux holomorphic. Hence f : E′ −→ F ′V is holomorphic.
By Colombeau and Mujica [1], f is of uniform type.

Lemma 2.2. Let β and σ be holomorphic functions on an open set D
in a locally convex space and let g be a holomorphic function with values

in a locally convex space. Assume that
βg

σ
is holomorphic on D and

codim Z(g, σ) ≥ 2. Then
β

σ
is holomorphic on D.
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Proof. Given zo ∈ D. Since the local ring Ozo
of germs of holomorphic

functions at zo is factorial [6], we can write σ = σm1
1 σm2

2 . . . σ
mp
p in a

neighbourhood U of zo such that σ1zo
, σ2zo

, . . . , σpzo
are irreducible. By

the hypothesis and by the equality

βg

σ1
=

βg

σ
σm1−1

1 . . . σmp
p ,

it follows that
βg

σ1
is holomorphic at zo. On the other hand, from the

hypothesis codim Z(g, σ) ≥ 2 and Z(σ) =
p⋃

i=1

Z(σi) it follows that codim

Z(g, σi) ≥ 2 for i = 1, . . . , p. Hence, by the irreducibility of σ1zo we infer
that

Z
(
σ1

)
zo
⊆ Z

(
β
)
zo

.

This again implies β = β1σ1 at zo. By continuing this process we infer

that
β

σ
is holomorphic at zo.

Proof of Theorem 1.1.
(i) Assume that E ∈ (DN) and F ∈ (LB∞). Given f : E′ −→ F ′ a

meromorphic function. By OE′ (resp. ME′) we denote the sheaf of germs
of holomorphic (resp. meromorphic) functions on E′. Let

O∗E′ = {σ ∈ OE′ : σ is invertible} ,

M∗
E′ = ME′ \ {0},

DE′ = M∗
E′

/O∗E′ .

Then we have the two exact sequences on E′:

0 −→ Z −→ OE′
exp−→ O∗E′ −→ 0,

0 −→ O∗E′ −→ M∗
E′

η−→ DE′ −→ 0,

where exp(σ) = e2πiσ and η is the canonical map. By [2] , H1(E′,OE′) =
0. On the other hand, since H2(E′, Z) = 0, the exact cohomology se-
quences associated to the above exact sheaf sequences give that for ev-
ery divisor d ∈ Ho(E′, DE′), there exists a meromorphic function τ ∈
Ho(E′,M∗

E′) such that η(τ) = d.
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By the meromorphicity of f , for every z ∈ E′ we can choose a neigh-
bourhood V1 of z and the holomorphic functions h : V1 −→ F ′,
σ : V1 −→ C, σ 6= 0, such that

f |V1
=

h

σ
·

Write σ = σm1
1 σm2

2 . . . σ
mp
p in a neighbourhood V2 of z in V1 such that the

germs σ1z, σ2z, . . . , σpz at z are irreducible [6]. Without loss of generality
we may assume that hz can be not divisible by σ1z, σ2z, . . . , σpz. Then
there exists a neighbourhood U of z in V2 such that

f |U =
h

σ

and codim Z(h, σ) ≥ 2 in U (where Z(h, σ) = h−1(0)∩σ−1(0)). Thus, we
can find an open cover {Uj} of E′ and holomorphic functions hj : Uj −→
F ′, σj : Uj −→ C such that

f |Uj
=

hj

σj

and codim Z(hj , σj) ≥ 2 for j ≥ 1.

Since
hi

σi
=

hj

σj
on Ui ∩ Uj for all i, j ≥ 1, Lemma 2.2 implies that the

form z 7→ (
σj

)
z
O∗E′,z for z ∈ Uj defines a divisor d on E′. Thus, there

exists a meromorphic function β on E′ such that β 6= 0 and
βz

dz
∈ O∗

E′,z

for z ∈ E′. It is easy to see that β is holomorphic on E′ and hence h = βf
is holomorphic on E′. From Lemma 2.1, we infer that h, β are of uniform
type, and hence so is f .

Conversely, assume that E is a nuclear Frechet space such thatM(E′, F ′)
= Mu(E′, F ′) for every Frechet space F ∈ (LB∞). By Vogt [12], in order
to prove E ∈ (DN) it suffices to prove that each continuous linear map-
ping T from H(∆) into E is bounded on some neighbourhood of 0, where
H(∆) denotes the space of holomorphic functions on the open unit disc ∆
in C.

SinceH(∆) ∈ (LB∞) [12], by the hypothesis we obtainM(E′, [H(∆)]′) =
Mu(E′, [H(∆)]′). Let T ′ : E′ −→ [H(∆)]′ be the dual mapping of
T : H(∆) −→ E. Obviously, T ′ ∈M(E′, [H(∆)]′) and hence T ′ ∈Mu(E′,
[H(∆)]′). Therefore we have T ′ = g ◦ ωq, where ωq is the canonical
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mapping from E′ into E′
q, the Banach space associated with E′, and g :

E′
q −→ [H(∆)]′ is a meromorphic function. Because T ′, ωq are linear and

ωq is surjective, we have the linearity of g.
Put V = ω−1

q (U) where U is the open unit ball of E′
q. Then V is a

neighbourhood of 0 ∈ E′. We have T ′(V ) = g ◦ ωq(V ) ⊂ g(U), which is
bounded in [H(∆)]′. This means T ′ is bounded on a neighbourhood of in
H(∆) and hence T is also bounded on a neighbourhood of in E.

(ii) The sufficiency follows from (i). By the (DN)-characterization
of Vogt [12] and by applying the equality M(E′, F ′) = Mu(E′, F ′) to
E = H(C) which has (DN) [12], the necessity can be proved as in (i).
The proof of Therem 1.1 is now complete.

3. Proof of Theorem 1.2

Let Λ(A) be a nuclear Frechet-Köther space. Let Da, a ∈ Λ(A), denote
an open polydisc in Λ′(A). Assume that E is a Banach space with the
unit ball B. Put

DB
a =

{∑

j≥1

xj ⊗ ξje
∗
j

∣∣∣ x = (xj) ⊂ B , ξ = (ξj) ∈ Da

}
.

Since Da is open, it is easy to see that DB
a is also open in

E ⊗̂
π

Λ′(A) =
{∑

j≥1

xj ⊗ e∗j
∣∣∣ (‖xj‖) ∈ Λ′(A)

}
.

By Hb(DB
a ) we denote the Frechet space of holomorphic functions f on

DB
a for which

‖f‖K = sup
{∣∣∣f(

∑

j≥1

xj ⊗ ξje
∗
j )

∣∣∣
∣∣∣ x ⊂ B, ξ = (ξj) ∈ K

}
< ∞

for every compact subset K ⊂ Da.

Lemma 3.1. There exists a matrix Q = [qjk] , qjk ≥ 0, such that
(i) ∀n ∃k, ε > 0 q1+ε

jn ≤ qjkqε
j1 ∀j ≥ 1, and

∑

j≥1

qjn

qjk
< ∞,

qjn

qjk
< 1 for j ≥ 1,
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(ii) Hb(DB
a ) is a subspace of the space

ΛB(M, QM ) =
{

(ξm(x̄))m∈M,x̄∈B

∣∣∣ ‖ξm(x̄)‖k < ∞ ∀k ≥ 1
}

,

where M = {m = (mj) ⊂ Z+/mj 6= 0 only for finitely many j},
‖ξm(x̄)‖k = sup { |ξm(x̄)| qm

k : x̄ ∈ B, m ∈ M} and qm
k = qm1

1k ...qmn

nk for
m = (m1, ..., mn, 0...) ∈ M.

Proof. By [8] there exists a matrix Q = [qjk] satisfying (i). Moreover, the
form

f 7−→ (am(f) =
( 1

2πi

)n
∫

|λ1|=r1

· · ·
∫

|λn|=rn

f
( n∑

j=1

λje
∗
j

)

λm+1
dλ,

0 < rj <
1
aj

, ∀j ≥ 1 defines an isomorphism of H(Da) and Λ(M, QM).

Given f ∈ Hb(DB
a ). For each x ⊂ B, we define fx ∈ H(Da) by

fx(ξ) = f
(∑

j≥1

xj ⊗ ξje
∗
j

)
for ξ ∈ Da.

It follows that

|‖f‖|k := sup {|am(fx)|qm
k | x ⊂ B, m ∈M}

≤ sup
{∣∣∣f

( ∑

j≥1

xj ⊗ ξje
∗
j )

∣∣∣
∣∣∣ x ⊂ B, ξ ∈ Nk

}

= ‖f‖Nk
:= ‖f‖k ,

where Nk = {(ξj) / |ξj | ≤ qjk ∀j ≥ 1}. Hence |‖•‖|k is a continuous
seminorm on Hb(DB

a ) for k ≥ 1.

On the other hand, since for n ≥ 1 there exists k > n such that

∑

j≥1

qjn

qjk
< ∞ and

qjn

qjk
< 1 ∀j ≥ 1,

we have
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‖f‖n ≤ sup
{∑

M

|am(fx)||ξm|
∣∣ x ⊂ B, ξ ∈ Nn

}

≤ |‖f‖|k ×
∑

m∈M

(qn

qk

)m

= |‖f‖|k ×
∏

j≥1

∞∑
p=1

(qjn

qjk

)p

=
|‖f‖|k∏

j≥1

(
1− qjn

qjk

)

Since {Nk} is an exhaustion sequence of compact sets in Da, it follows
that the form

f 7−→ (
am(fx)

)
m∈M, x⊂B

defines an embedding from Hb(DB
a ) into ΛB

(
M, QM

)
.

Lemma 3.2. Let E be a Frechet space with the property (Ω) and Q =
[qjk ≥ 0] a matrix satisfying the condition

∀n ∃k, ε > 0 q1+ε
jn ≤ qjkqε

j1 ∀j ≥ 1.

Then every continuous linear map from E into ΛB

(
M, QM

)
is bounded on

a neighbourhood of 0 ∈ E.

Proof. Given a sequence K(N) of positive integers numbers. Since E ∈
(Ω), for K(1) there exists K such that

∀K(N) ∀ε > 0 ∃C > 0 ‖•‖∗ 1+ε
K ≤ C ‖•‖∗K(N) ‖•‖∗ ε

K(1) .

Given n ≥ 1. Choose k ≥ n, ε > 0 such that q1+ε
jn ≤ qjkqε

j1 ∀j ≥ 1. Let
qjn ‖u‖∗K ≥ qj1 ‖u‖∗K(1). Then the inequality

‖u‖∗ 1+ε
K ≤ C ‖u‖∗K(k) ‖u‖∗εK(1)

≤ C ‖u‖∗K(k) ‖u‖∗εK

(qjn

qj1

)ε
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implies that
‖u‖∗K ≤ C ‖u‖∗K(k)

qjk

qjn
·

Hence

qjn ‖u‖∗K ≤ C max
1≤N≤k

q
jN
‖u‖∗K(N) , ∀j ≥ 1 and ∀u ∈ E′.

From this we get

‖T‖n,K = sup {‖Ty‖n | ‖y‖K ≤ 1}
= sup {|am(x)(Ty)|qm

n | x ⊂ B, m ∈ M, ‖y‖K ≤ 1}
= sup

{‖am(x) ◦ T‖∗K qm
n

∣∣ x ⊂ B, m ∈ M
}

≤ C max
1≤N≤k

{
sup

{
‖am(x) ◦ T‖∗K(N) qm

n

∣∣∣ x ⊂ B, m ∈ M
}}

≤ C max
1≤N≤k

‖T‖N,K(N)

for T ∈ L
(
E, ΛB(M, QM )

)
. By [12], every T ∈ L

(
E, ΛB(M,QM )

)
is

bounded on a neighbourhood of 0 ∈ E.

Lemma 3.3. Let E and F be Frechet spaces having (DN) and (Ω) re-
spectively. Assume that E is a Montel space. Then every holomorphic
function f : D −→ F ′ on an open set D in E′ is locally bounded.

Proof. By Vogt [13] E is a subspace of the space B ⊗̂
π

s for some Banach

space B. It follows that the restriction map R : [B ⊗̂
π

s]′ ∼= B′ ⊗̂
π

s′ −→ E′

is open. Let D̃ = R−1(D) and g = f ◦ R. It suffices to show that g is
locally bounded at every ω◦ ∈ D̃. Without loss of generality we may
assume that 0 ∈ D̃ and ω◦ = 0. Choose an open polydisc Da ⊂ s′ with
a = (aj) ∈ s, aj ≥ 0 for all j ≥ 1, such that R(conv(V ⊗Da)) ⊂ D,
where V denotes the unit ball in E. Take k ≥ 1 sufficiently large such

that
∑
j≥1

1
jk
≤ 2. Put b = (2jkaj) ∈ s. Then DV

b is a neighbourhood of

0 ∈ B′ ⊗̂
π

s′ contained in D̃ because

∑

j≥1

xj ⊗ ξje
∗
j =

∑

j≥1

1
jk

(xj ⊗ jkξje
∗
j )
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and
xj ⊗ jkξje

∗
j ∈ V ⊗Da for ξ ∈ Da and (xj) ⊂ V.

Consider the continuous linear map ĝ : F −→ Hb(DV
b ) induced by g:

ĝ(z)(ω) = g(ω)(z) for z ∈ F and ω ∈ DV
b .

By applying Lemmas 3.1 and 3.2, we can find a neighbourhood U of 0 ∈ F
such that ĝ(U) is bounded in Hb(DV

b ). Then, for every compact set K in
Db, we have

sup
{|g(ω)(z)|

∣∣ ω ∈ KV , z ∈ U
}

= sup
{|ĝ(z)(ω)|

∣∣ ω ∈ KV , z ∈ U
}

< ∞

with
KV =

{∑

j≥1

xj ⊗ ξje
∗
j

∣∣∣ x ⊂ V, ξ ∈ K
}

.

Thus g : DV
b −→ F ′U is holomorphic. This yields that g is locally

bounded at 0 ∈ DV
b .

Proof of Theorem 1.2. Given f ∈ M(E′, F ′). By Lemma 3.3 and by the
Lindelofness of E′ we can find a sequence {uj}∞j=1 ⊂ E′ and a sequence of
balanced convex neighbourhoods {Uj}∞j=1 of 0 ∈ E′ such that

E′ =
⋃

j≥1

(uj + Uj)

and for each j ≥ 1 there exists bounded holomorphic functions hj :
uj + Uj −→ F ′, σj : uj + Uj −→ C for which

f |uj + Uj

=
hj

σj
·

Hence hj and σj induce the bounded holomorphic functions ĥj and σ̂j ,
respectively, on a neighbourhood Wj of ωρj (uj + Uj) in E′

ρj
, where ρj

denotes the semi-norm generated by Uj and ωρj the canonical map from
E′ into E′

ρj
, the Banach space associated to ρUj .

By [1] there exists a sequence µj ↗ +∞ such that
⋂

j≥1

µjUj is a neigh-

bourhood of 0 ∈ E′. Let ω(U,Uj) : E′
ρU
−→ E′

ρj
be the canonical map.
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Then the family

{
ĥjω(U,Uj)
σ̂jω(U,Uj)

}
defines a meromorphic function f̂ on a

neighbourhood Z of E′/ ker ρU in E′
ρU

. Let Zf̂ be the domain of existence
of f̂ over E′

ρU
. Let Zf̂ be the domain of existence off̂ over E′

ρU
. Then Zf̂ is

a pseudoconvex domain in E′
ρU

. Hence the function ϕ(z) = − log d(z, ∂Zf̂ )
is plurisubharmonic on Zf̂ . Since every plurisubharmonic function on a
nuclear dual Frechet space is of uniform type [11], we can find a continuous
seminorm ρ on E′ and a plurisubharmonic function on E′

ρ such that ρ ≥ ρU

and ϕωρU
= Ψωρ. It suffices to show that Im ωρρU

⊂ Zf̂ . Indeed, in the
converse case we can find z ∈ E′

ρ such that ωρρU
(z) ∈ ∂Zf̂ . Take a

sequence {zn} ⊂ E′ such that ωρ(zn) → z. Then

+∞ = lim
n→∞

ϕωρρU
(zn) = lim

n→∞
ϕωρU

(zn) = lim
n→∞

Ψωρ(zn) ≤ Ψ(z) < +∞.

This is impossible. The proof of Theorem 1.2 is now complete.
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