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GEOMETRIC MONODROMY OF POLYNOMIALS
OF TWO COMPLEX VARIABLES

PHAM TIEN SON

Abstract. We establish some relations between the polar curve and the
discriminant locus of a polynomial f of two complex variables. We then
describe the set of bifurcation values of f via its discriminant locus. Based
on the Puiseux expansions at infinity of the discriminant locus of f , we
also give certain sufficient conditions for the geometric monodromy of f
around a critical value at infinity to have no fixed points.

1. Introduction

Let f : lC2 −→ lC be a polynomial of two complex variables. For a non-
zero linear form l(x, y) := l1x+l2y of lC2, we define a mapping Φ : lC2 → lC2

by Φ(x, y) := (l(x, y), f(x, y)) and put

C(Φ) :=
{

(x, y) ∈ lC2 | l2fx − l1fy = 0
}

.

The set C(Φ) (resp., ∆(Φ) := Φ(C(Φ))) is called the polar curve (resp.,
the Cerf diagram or the discriminant locus) of f with respect to l.

In this paper we establish some relations between the polar curve and
the discriminant locus of a polynomial f of two complex variables. Besides,
we shall give certain sufficient conditions for the geometric monodromy of
f around a given critical value at infinity to have no fixed points.

In what follows we shall need some facts on the topology of polynomials
of two variables. It is well-known that f induces a locally trivial C∞-
fibration

(1.1) f : lC2 \ f−1(A(f)) −→ lC \A(f)
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over the complement of the so-called bifurcation set A(f) of f , which is the
set of either critical values or atypical values coming from “the singularities
at infinity of f” (see, for example, [7], [14], [16], [17]). A value t0 ∈ lC is
called regular at infinity if there exist a small η > 0 and a compact K ⊂ lC2

such that the restriction

f : f−1({t | |t− t0| ≤ η}) \K −→ {t | |t− t0| ≤ η}
is a trivial C∞-fibration ([13]). If t0 is not regular at infinity, it is called
a critical value at infinity of f . If we denote by Af (resp., A∞) the set of
critical values (resp., the set of critical values at infinity) of f , then (see,
for example, [7])

A(f) = Af ∪A∞.

In view of (1.1) one can introduce the geometric monodromy of f over a
circle small enough around a given critical value at infinity. More precisely,
consider the restriction

f : f−1({t | |t− t0| = η}) −→ {t | |t− t0| = η},
where t0 ∈ A∞ and η > 0 small enough. The map associated with the
path

[0, 1] −→ {t | |t− t0| = η}, s 7→ ηe2π
√−1s + t0,

is a diffeomorphism from f−1(η) onto itself, which is called the geometric
monodromy of f .

The paper is organized as follows. In Section 2 we describe a geometric
characterization of the set A(f) via the discriminant locus ∆(Φ). We then
give normal forms for polynomials with particular minimal discriminants.
In Section 3 we establish a relation between the Puiseux exponents at
infinity of the polar curve and that of the discriminant locus, which is a
version at infinity of a result of [12]. Finally, in Section 4, based on the
carrousel method of Lê D. T. [10], we give certain sufficient conditions for
the geometric monodromy of f around a critical value at infinity to have
no fixed points. As a corollary, we obtain an analogue of A’Campo’s result
on Lefschetz’s number of the local monodromy of Milnor’s fibration [2].

2. Geometric characterization of the bifurcation values

Assume that the polynomial f is reduced and n := deg f −1. The map
Φ is said to be simple if the inverse image f−1(t) consists of n distinct
points for every critical value (x, t) ∈ lC2 of Φ. Let

∆(x, t) := discy(f(x, y)− t)



GEOMETRIC MONODROMY 285

be the discriminant of f with respect to y. From the properties of resultants
(see, for example, [18]) it follows that ∆(x, t) does not vanish identically.

Lemma 2.1. Suppose that l(x, y) = x is a generic linear form with respect
to f . Then

∆(Φ) =
{
(x, t) ∈ lC2 | ∆(x, t) = 0

}
.

Moreover, if Φ is simple then it induces a homeomorphism from C(Φ) onto
∆(Φ).

Proof. Since n + 1 = deg f , we may write

f(x, y) = a0(x)yn+1 + · · ·+ an+1(x),

where ai ∈ lC[x], deg ai ≤ i, i = 0, . . . , n + 1. Since l(x, y) = x is a generic
linear form with respect to f ,

a0(x) = const 6= 0.

On the other hand, by definition, (x, t) ∈ ∆(Φ) if and only if there
exists y ∈ lC satisfying the system of equations:

(2.1)

{
f(x, y)− t = 0,

fy(x, y) = 0.

Or equivalently, by definition, ∆(x, t) = 0. Moreover, if Φ is simple, then
for any (x, t) ∈ lC2, the system of equations (2.1) has a unique solution y
in lC. Hence Φ induces a homeomorphism from C(Φ) onto ∆(Φ).

From now on there is no loss of generality in assuming that l(x, y) = x
is a generic linear form with respect to f .

Definition 2.2. The line t− t0 = 0 is said to be contained in the tangent
cone of the discriminant locus ∆(x, t) = 0 if and only if the following
conditions hold:

(i) there exists x0 in lC such that ∆(x0, t0) = 0, and
(ii) if the Taylor expansion of ∆(x, t) at (x0, t0) is

∆ = ∆j + ∆j+1 + · · · ,

∆i being a homogeneous polynomial of degree i, then ∆j(x, t0) ≡ 0.
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The next theorem describes the set of bifurcation values A(f) of the
polynomial f via the discriminant locus.

Theorem 2.3. With the notations as above we have:
(i) t0 is a critical value of f if and only if the line t−t0 = 0 is contained

in the tangent cone of the discriminant locus {∆(x, t) = 0}.
(ii) t0 is a critical value at infinity of f if and only if the line t− t0 = 0

is an asymptote of {∆(x, t) = 0}.

Proof. The second part of Theorem 2.3 is essentially a result of [6]. Sup-
pose that t0 ∈ Af , i.e., there exists (x0, y0) ∈ lC2 such that

{
f(x0, y0) = t0,

fx(x0, y0) = fy(x0, y0) = 0.

Let
p : (lC, 0) −→ (C(Φ), (x0, y0)) , τ 7→ (x(τ), y(τ)),

be a parametrization of the polar curve C(Φ) in a small neighborhood of
(x0, y0). Then the map

(lC, 0) −→ (∆(Φ), (x0, t0)) , τ 7→ (x(τ), t(τ) := f(x(τ), y(τ))),

is a parametrization of ∆(Φ) in a small neighborhood of (x0, t0). We have

dt(τ)
dτ

=
df(p(τ))

dτ
= fx(p(τ))ẋ(τ) + fy(p(τ))ẏ(τ)

= fx(p(τ))ẋ(τ).

It follows that

lim
τ→0

ṫ(τ)
ẋ(τ)

= lim
τ→0

fx(p(τ)) = fx(x0, y0) = 0.

In other words, the line t − t0 = 0 is contained in the tangent cone of
∆(x, t) = 0.

Conversely, suppose that the line t − t0 = 0 is contained in the tan-
gent cone of ∆(x, t) = 0. By definition, Lemma 2.1 implies that there
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exist (x0, y0) ∈ C(Φ) ∩ f−1(t0) and a parametrization of C(Φ) in a small
neighborhood of (x0, y0)

p : (lC, 0) −→ (C(Φ), (x0, y0)) , τ 7→ (x(τ), y(τ)),

such that

lim
τ→0

ṫ(τ)
ẋ(τ)

= 0,

where t(τ) := f(x(τ), y(τ)). It follows that

fx(x0, y0) = lim
τ→0

fx(p(τ)) = lim
τ→0

ṫ(τ)
ẋ(τ)

= 0,

i.e., t0 ∈ Af .
From Theorem 2.3 we obtain the following corollary.

Corollary 2.4. If t0 is a bifurcation value of f, i.e., t0 ∈ A(f), then

#
(
{t = t0} ∩∆(Φ)

)
< m = degx(∆(x, t)).

Theorem 2.3 allows us to make the following definition.

Definition 2.5. The discriminant ∆(x, t) of the polynomial f is minimal
if the factorization of ∆(x, t) into irreducible factors in lC[x, t] is of the form
∆ = ∆α1

1 · · ·∆αr
r such that for any i = 1, . . . , r there exists t0 ∈ lC with

the property that either the line t − t0 = 0 is contained in the tangent
cone of the curve ∆i = 0 or it is an asymptote of ∆i = 0.

For a polynomial function f : lC2 −→ lC, the degree of f depends on
the coordinate system of lC2: if ϕ is an algebraic isomorphism of lC2, then
it may happen that deg(f) 6= deg(f ◦ ϕ). Following [13], we define the
intrinsic degree of f to be

degint(f) := min{deg(f ◦ ϕ) | ϕ ∈ Aut(lC2)}.

For each ϕ ∈ Aut(lC2), we will denote by ∆ϕ(x, t) the discriminant of
(f ◦ ϕ − t) with respect to y. Obviously, ∆id(x, t) = ∆(x, t), where id is
the identity map.

By [8], [9], for any ϕ ∈ Aut(lC2) such that the map

lC2 −→ lC2, (x, y) 7→ (x, f ◦ ϕ(x, y)),
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is proper, we have

degx∆ϕ = degy(f ◦ ϕ)− χ((f ◦ ϕ)−1(t)),

where χ((f ◦ ϕ)−1(t)) is the Euler-Poincaré charateristic of the fibre (f ◦
ϕ)−1(t) for t generic.

Therefore, one might hope that if ϕ ∈ Aut(lC2), with deg(f ◦ ϕ) =
degint(f), then ∆ϕ is a minimal discriminant of f . But the following
example shows that this is not true.

Example 2.6. Let f(x, y) = y3 − 3x2y + 2x3 − 12x. We have A∞ = ∅
and A(f) = Af = {−8,−16}. Thus, it is easy to check that deg(f) =
degintf = 3. But, by definition, the discriminant of f

∆(x, t) = 27(t + 12x)(t + 12x− 4x3)

is not a minimal discriminant.
The following theorem provides the normal forms for some classes of

minimal discriminants.

Theorem 2.7. Let

∆(x, t) = c

r∏

i=1

(t− P (x)− ci)αi

be the discriminant of f , where c 6= 0, P ∈ lC[x], P (0) = 0, ci 6= cj

(i 6= j). Moreover, let the map Φ be simple. Then there exists an algebraic
isomorphism ϕ ∈ Aut lC2 such that

(f ◦ ϕ)(x, y) = g(x) + h(y),

where g, h are some polynomials of one complex variable.

Proof. By the properties of the discriminant ∆(x, t) (see, for instance, §9,
Chap. I, [18]), it may be concluded that there exist polynomials H, G ∈
lC[x, t] such that

H(x, t)y = G(x, t),

where x, y, t ∈ lC satisfy the following system of equations
{

fx(x, y) = t,

fy(x, y) = 0.
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So, if all solutions t = t(x) of the equation ∆(x, t) = 0 are polynomial
functions, then all solutions y = y(x) of fy(x, y) = 0 are rational functions.
Hence, by the assumption, all solutions y = y(x) of the equation fy(x, y) =
0 are rational functions of x.

On the other hand, since l = x is a generic linear form with respect to
f , the map Φ is proper. Hence these solutions are polynomial functions.

Moreover, from the definition of resultants (see [18]), it is easy to check
that

degt(∆(x, t)) = degy(f)− 1 = n.

Therefore, we may write

fy(x, y) = c′
k∏

i=1

(y − yi(x))ni ,

where c′ 6= 0, yi ∈ lC[x],
k∑

i=1

ni = n.

Let
Γi := {(x, y) ∈ lC2 | y = yi(x)}, i = 1, . . . , k,

and
Di := {(x, t) ∈ lC2 | t = P (x) + ci}, i = 1, . . . , r.

By Lemma 2.1, Φ induces a homeomorphism from C(Φ) =
k∪

i=1
Γi onto

∆(Φ) =
r∪

i=1
Di. But Di ∩Dj = ∅ (i 6= j), so

r = k, ni = αi, Γi ∩ Γj = ∅ (i 6= j).

Moreover, by reindexing if necessary, we can assume that the restrictions

Φ|Γi : Γi −→ Di, i = 1, . . . , k,

are homeomorphisms.
From Γi ∩ Γj = ∅, i 6= j, we have yi(x) − yj(x) = const 6= 0. On the

other hand, since yi(x), i = 1, . . . , k, are polynomials, it follows that there
exist a polynomial function Q ∈ lC[x] and constants bi, i = 1, . . . , k, bi 6= bj

(i 6= j), such that yi(x) = Q(x) + bi. Therefore, one may rewrite

fy(x, y) = c′
k∏

i=1

(y −Q(x)− bi)ni .
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It follows that there exists a polynomial ḡ ∈ lC[x] such that

f(x, y) = ḡ(x) +

y∫

0

c′
k∏

i=1

(u−Q(x)− bi)nidu

= ḡ(x) +

y−Q(x)∫

−Q(x)

c′
k∏

i=1

(z − bi)nidz.

From this we conclude that

f(x, y) = ḡ(x) + h(y −Q(x))− h(−Q(x)),

where h is some polynomial of one complex variable with deg h = n + 1.
Let

ϕ : lC2 −→ lC2, (x, y) 7→ (x, y + Q(x)).

Then ϕ is an algebraic isomorphism of lC2. It is easy to check that

(f ◦ ϕ)(x, y) = g(x) + h(y),

where g(x) := ḡ(x)− h(−Q(x))
The following corollary shows that Theorem 2.7, in a certain case,

agrees with a result of Ahbyankar-Moh (see [1], [3]).

Corollary 2.8. Under the assumptions of Theorem 2.7, if moreover P =
ax (a = const 6= 0), then

f ∼ x (Aut lC2).

Proof. Actually, by Theorem 2.7, there exists an algebraic isomorphism
ϕ ∈ Aut lC2 such that

(f ◦ ϕ)(x, y) = g(x) + h(y),

where g, h (deg h = n + 1) are some polynomials of one complex variable.
On the other hand, by the assumption and Theorem 2.3, Af = ∅.

Therefore, the system of equations
{

gx(x) = 0,

hy(y) = 0
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has no solution. So deg g = 1. In other words, we may write

g(x) = αx + β (α 6= 0).

Hence, the map
(x, y) 7→ (g(x) + h(y), y)

is an algebraic isomorphism of lC2, and so f ∼ x (Aut lC2).

3. The Puiseux exponents at infinity of disciminants

In this section, we will establish a relation between the Puiseux ex-
ponents at infinity of the polar curve and that of the discriminant locus,
which is a version at infinity of [12]. First, we recall the definition of the
Puiseux exponents at infinity of a plane curve (see [5]).

Let P be a polynomial of two complex variables. Denote by V ⊂ lC lP2

the compactification of the curve V := {P (x, y) = 0}. Let

{Z1, . . . , Zr} := V ∩ {z = 0}.

Assume that the curve V is irreducible at all the points Zi, i = 1, . . . , r,
with the same geometrical multiplicity m. Then, according to [5], for x
sufficiently large we can write

(3.1) P (x, y) = c

r∏

i=1

ni∏

l=1

(
y − ϕi(e

2π
√−1
ni

`
x
)m

,

where c = const 6= 0, m
( r∑

i=1

ni

)
= deg P , and ϕi(x), i = 1, . . . , r, are of

the form

ϕi(x) = cix + xϕi0(x−1) +
gi∑

j=1

x
1− βij

ni ϕij

(
x
− eij

ni

)
,

where ci 6= cj (i 6= j), ϕij(0) 6= 0 (j > 0),

ni = ei0, ei0 = ni1ei1, ei1 = ni2ei2, eigi−1 = nigieigi , eigi = 1,

βi1 = mi1ei1 < βi2 = mi2ei2 < · · · < βigi = migieigi ,

and mij and nij are relatively prime.
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Let γij = 1− βij

ni
.

Definition 3.1. The tuples (ni, γi1, γi2, . . . , γigi), i = 1, . . . , r, are called
Puiseux exponents at infinity of the curve V .

We now formulate the main result of this section.

Theorem 3.2. Suppose that (ni, γi1, . . . , γigi) (resp., (ni, γ
′
i1, . . . , γ′igi

))
are Puiseux exponents at infinity of the polar curve C(Φ) (resp., the dis-
criminant locus ∆(Φ)). Then

γ′i1 = (mni + 1)γi1 + (n−mni),

γ′ij = (meij−1 + 1)γij + m(hi1γi1 + · · ·+ hij−1γij−1) + (n−mni), j > 1,

where hij := eij−1 − eij .
Following Maisonobe [12], we divide the proof into a sequence of lem-

mas. We begin with a definition. Let

val(ψ(x)) :=
r0

n0
,

where ψ(x) is of the form ψ(x) =
−∞∑
j=r0

ajx
j

n0 (n0 > 0, ar0 6= 0).

Lemma 3.3. (i) For each i = 1, . . . , r, j = 1, . . . , gi, we have

ϕi(εlx)− ϕi(x) ∼ (εlγij − 1)ϕij(0)xγij (|x| À 1)

if and only if l is not a multiplicity of ni1ni2 . . . nij but of ni1ni2 . . . nij−1,
where ε = e2π

√−1. Moreover,

hij = #{l | 1 ≤ l ≤ ni − 1, val(ϕi(εlx)− ϕi(x)) = γij}.

(ii) For each i, j = 1, . . . , r (i 6= j), l = 0, . . . , nj − 1, we have

val(ϕj(εlx)− ϕi(x)) = 1.

Proof. The proof follows from the definition.
To calculate the Puiseux exponents at infinity of the polar curve C(Φ),

it is sufficient by Lemma 3.3 to compute the valuation of ϕi(εlx)−ϕi(x),
l = 0, . . . , ni − 1.
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According to (3.1),

f(x, ϕi(εlx))− f(x, ϕi(x)) =(3.2)

=
mni∑
s=m

(ϕi(εlx)− ϕi(x))s+1

(s + 1)!
∂sfy

∂ys
(x, ϕi(x))

+ h(x)(ϕi(εlx)− ϕi(x))mni+2,

where

h(x) :=
1

(mni + 2)!
∂mni+1fy

∂ymni+1
(x, ϕi(x))

+
1

(mni + 3)!
∂mni+2fy

∂ymni+2
(x, ϕi(x))(ϕi(εlx)− ϕi(x))+

+ · · ·+ 1
(n + 1)!

∂nfy

∂yn
(x, ϕi(x))(ϕi(εlx)− ϕi(x))n−mni−1.

We first compute val(f(x, ϕi(εlx))− f(x, ϕi(x))). For this purpose we set

Qi(x, y) :=
ni−1∏

l=0

(y − ϕi(εlx))m.

Then

(3.3)
∂sQi

∂ys
(x, ϕi(x)) = s!

∑

0<l1<...<ls−m<mni

lα is not a mult. of ni

ni−1∏
l=1

(ϕi(x)− ϕi(εlx))m

s−m∏
α=1

(ϕi(x)− ϕi(εlαx))
·

Suppose that

m(higi + · · ·+ hij+1) ≤ s−m ≤ m(higi + · · ·+ hij).

This means that
meij ≤ s ≤ meij−1,

because higi + · · ·+ hij = eij−1 − 1. By Lemma 3.3,
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#{lα | 0 < lα < mni, val(ϕi(x)− ϕi(εlαx)) = γigi
} = mhigi

,

· · ·
#{lα | 0 < lα < mni, val(ϕi(x)− ϕi(εlαx)) = γij+1} = mhij+1.

Hence we can write

∂sQi

∂ys
(x, ϕi(x)) = Ai

sB
i
sx

ki
s +

∑

α<ki
s

aαxα,

where

ki
s = m

ni−1∑

l=1

hilγil −m

gi∑

l=j+1

hilγil − [s−m−m(higi + · · ·+ hij+1)]γij

= (meij−1 − s)γij + m(hi1γi1 + · · ·+ hij−1γij−1),

Ai
s :=

0<l<ni∏

l is not a mult. of ni1

(1− εlγi1)m · · ·

0<l<ni∏

l is not a mult. of ni1···nij−1

l is a mult. of ni1...nij−2

(1− εlγij−1)mϕmhi1
i1 (0) · · ·ϕmhij−1

ij−1 (0),

and

Bi
s :=s!

0<l1<...<ls−meij
<mni∑

lα is not a mult. of ni1···nij

lα is a mult. of ni1...nij−1

0<l<ni∏
l is not a mult. of ni1···nij

l is a mult. of ni1...nij−1

(1− εlγij )m

s−meij∏
α=1

(1− εlαγij )
×

× ϕij(0)meij−1−s.

Lemma 3.4.

0<l<ni∏

l is not a mult. of ni1···nip

l is a mult. of ni1···nip−1

(1− εlγip) = (nip)eip .
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Proof. It is clear that if l ∈ {1, . . . , ni−1} is not a multiplicity of ni1 · · ·nip

but of ni1 · · ·nip−1, then l should be of the form l = ni1 · · ·nip−1(αnip+β),
where α ∈ {0, . . . , eip − 1}, β ∈ {1, . . . , nip − 1}.

On the other hand, we have

xn − 1
x− 1

=
n−1∏

j=1

(x− e−j 2π
√−1
n ) = 1 + x + · · ·+ xn−1.

Therefore,

0<l<ni∏

l is not a mult. of ni1···nip

l is a mult. of ni1···nip−1

(1− εlγip) =
0<l<ni∏

l is not a mult. of ni1···nip

l is a mult. of ni1···nip−1

(1− ε
−l

βip
ni )

= (nip)eip .

By Lemma 3.4,

Ai
s = nmei1

i1 · · ·nmeij−1
ij−1 .ϕmhi1

i1 (0) · · ·ϕmhij−1
ij−1 (0).

On the other hand, from the identify

(
xnij − 1
x− 1

)meij

=
0<l<ni∏

l is not a mult. of ni1···nij

l is a mult. of ni1...nij−1

(
x− εlγij

)m
,

we deduce that

Bi
s =

s!
(s−meij)!

∂s−meij

∂xs−meij

(
xnij − 1
x− 1

)meij

(1)ϕmeij−1−s
ij (0).

It follows that Ai
sB

i
s 6= 0. Consequently, for i = 1, . . . , r, j = 1, . . . , gi,

with
meij ≤ s ≤ meij−1,

we have
∂sQi

∂ys
(x, ϕi(x)) ∼ Ai

sB
i
sx

ki
s (|x| À 1).

The following lemma can be easily derived from Leibnitz’s formula.
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Lemma 3.5. We have

∂sfy

∂ys
(x, ϕi(x)) ∼ c

1≤α≤r∏

α 6=i

(ci − cα)Ai
sB

i
sx

ki
s+(n−mni)

for each s with meij ≤ s ≤ meij−1 and x sufficiently large.

Lemma 3.6. Suppose val(ϕi(εlx)−ϕi(x)) = γij for some l ∈ {1, . . . , ni−
1}, j ∈ {1, . . . , gi}. Then

val
(

(ϕi(εlx)− ϕi(x))s+1.
∂sfy

∂ys
(x, ϕi(x))

)

= (meij−1 + 1)γij + m(hi1γi1 + · · ·+ hij−1γij−1) + (n−mni)

for each s with meij ≤ s ≤ meij−1.

Proof. In fact, by Lemma 3.5, we have

val
(

(ϕi(εlx)− ϕi(x))s+1.
∂sfy

∂ys
(x, ϕi(x))

)

= (s + 1)γij + ki
s + (n−mni)

= (meij−1 + 1)γij + m(hi1γi1 + · · ·+ hij−1γij−1) + (n−mni).

Lemma 3.7. Suppose val(ϕi(εlx)−ϕi(x)) = γij for some j ∈ {1, . . . , gi}.
Then

val
(
h(x)(ϕi(εlx)− ϕi(x))mni+2

)

< (meij−1 + 1)γij + m(hi1γi1 + · · ·+ hij−1γij−1) + (n−mni).

Proof. Since

m(hi1γi1 + · · ·+ hij−1γij−1)

+(meij−1 + 1)γij > m(hi1 + · · ·+ hij−1 + eij−1)γij + γij

= mniγij + γij

= (mni + 1)γij

and γij = 1− βij

ni
< 1, it follows that

val
(
h(x)(ϕi(εlx)− ϕi(x))mni+2

)

= (mni + 2)γij + (n + 1)− (mni + 2)

< (mni + 1)γij + (n−mni)

< (meij−1 + 1)γij + m(hi1γi1 + · · ·+ hij−1γij−1) + (n−mni).
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Lemma 3.8. Suppose val(ϕi(εlx)−ϕi(x)) = γij for some j ∈ {1, . . . , gi}
Then, for x sufficiently large, we have

f(x, ϕi(εlx))− f(x, ϕi(x)) ∼
nmei1

i1 . . . n
meij−1
ij−1 ϕmhi1

i1 (0) . . . ϕ
mhij−1
ij−1 (0).ϕmeij−1+1

ij (0)×
(∫ 1

0

(unij − 1)meij du

)
x(meij−1+1)γij+m(hi1γi1+···+hij−1γij−1)+(n−mni).

Proof. From what has already been proved, it follows that for |x| À 1,

f(x, ϕi(εlx))− f(x, ϕi(x)) ∼
D.S.x(meij−1+1)γij+m(hi1γi1+···+hij−1γij−1)+(n−mni),

where

D := nmei1
i1 . . . n

meij−1
ij−1 ϕmhi1

i1 (0) . . . ϕ
mhij−1
ij−1 (0).ϕmeij−1+1

ij (0)

and

S :=
meij−1∑
s=meij

1
(s−meij)!

1
(s + 1)

∂s−meij

∂xs−meij

(
xnij − 1
x− 1

)meij

(1).
(
εlγij − 1

)s+1
.

Let

S(x) :=
s=m(eij−1−eij)∑

u=0

1
u!

1
(u + meij + 1)

∂u

∂xu

(
xnij − 1
x− 1

)meij

(1).(x− 1)u+meij+1.

A trivial verification shows that

S = S
(
εlγij

)
= S(ε−l

βij
ni ).

Moreover, by Taylor’s formula,

S′(x) =
(

xnij − 1
x− 1

)meij

(x− 1)meij = (xnij − 1)meij .




