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ON A PROPERTY OF INFINITELY
DIFFERENTIABLE FUNCTIONS

HOANG MAI LE

Abstract. In this paper, the existence of lim
n→∞

‖f(n)‖1/n
NΦ

for an arbi-

trary function f∈C∞(IR) such that f(n)∈NΦ, n=0,1,... and the concrete

calculation of lim
n→∞

‖f(n)‖1/n
NΦ

are shown.

1. Introduction

Ha Huy Bang has proved the following result [1]: Let 1 ≤ p ≤ ∞ and
f ∈ C∞(lR) such that f (n) ∈ Lp(lR), n = 0, 1, . . . . Then there always
exists the limit

df = lim
n→∞

‖f (n)‖1/n
p ,

and moreover
df = σf = sup{|ξ| : ξ ∈ suppf̂(ξ)},

where the last equality is the definition of σf and f̂(ξ) is the Fourier
transform of the function f(x). This result has been extended to any
Orlicz norm by techniques special for convex functions [2].

In this paper, modifying the methods of [1, 2] we prove this result
for another norm generated by concave functions. Note that the Orlicz
norm is generated by convex functions and here we must overcome some
essential difficulties arising by the difference between convex and concave
functions.

2. Results.

Let L denote the family of all non-zero concave functions Φ(t) : [0,∞) →
[0,∞] which are non-decreasing and satisfy Φ(0) = 0. For an arbitrary
measurable function f, Φ ∈ L we define
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‖f‖NΦ =

∞∫

0

Φ
(
λf (y)

)
dy,

where λf (y) = mes{x : |f(x)| > y} (y ≥ 0). If the space NΦ = NΦ(lR)
consists of measurable functions f(x) such that ‖f‖NΦ < ∞, then NΦ

is a Banach space. Denote by MΦ = MΦ(lR), the space of measurable
functions g, such that

‖g‖MΦ = sup
{ 1

Φ(mes∆)

∫

∆

|g(x)|dx : ∆ ⊂ lR, 0 < mes ∆ < ∞
}

< ∞.

Then MΦ is also a Banach space [3, 4].
We need the following results:

Lemma 1 [3]. If f ∈ NΦ and g ∈ MΦ, then fg ∈ L1 and

∞∫

−∞
|f(x)g(x)|dx ≤ ‖f‖NΦ‖g‖MΦ .

Lemma 2. If f ∈ NΦ, then

‖f(· − y)‖NΦ = ‖f‖NΦ , ∀y ∈ lR.

Proof. By virtue of Theorem 4.3 of [3], it is clear that N∗
Φ = MΦ, and if

f ∈ NΦ and g ∈ MΦ, then

< f, g >= J(g)(f) =

∞∫

−∞
f(x)g(x)dx.

Therefore, since ‖x‖X = ‖x‖X∗∗ for any normed space X [7, p. 113], we
have

‖f‖NΦ = sup
‖g‖MΦ=1

| < f, g > | =

= sup
‖g‖MΦ=1

∣∣∣
∞∫

−∞
f(x)g(x)dx

∣∣∣.
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Hence

‖f(· − y)‖NΦ = sup
‖v‖MΦ=1

∣∣∣
∞∫

−∞
f(x− y)v(x)dx

∣∣∣ =

= sup
‖v(t+y)‖MΦ=1

∣∣∣
∞∫

−∞
f(t)v(t + y)dt

∣∣∣ =

= sup
‖v1‖MΦ=1

∣∣∣
∞∫

−∞
f(t)v1(t)dt

∣∣∣ = ‖f‖NΦ

because of ‖v(t + y)‖MΦ = ‖v‖MΦ . The lemma is proved.
Now, we state the main theorem of this paper.

Theorem 1. Let Φ ∈ L and f ∈ C∞(lR) such that f (n) ∈ NΦ, n =
0, 1, . . . . Then there always exists the limit

df = lim
n→∞

‖f (n)‖1/n
NΦ

.

Moreover, if we put

σf := sup{|ξ| : ξ ∈ suppf̂(ξ)},

where f̂(ξ) is the Fourier transform of the function f(x), then df = δf .

Proof. We first observe that

(1) lim
n→∞

‖f (n)‖1/n
NΦ

≤ σf .

It is enough to show (1) for σf < ∞. Using f ∈ S ′ (this follows from f ∈
NΦ) and the well-known Paley-Wiener-Schwartz theorem, we obtain that
f is an analytic function of exponential type ≤ σf . It is easily seen that
the Bernstein-Nikolsky inequality holds for the norm ‖ . ‖NΦ . Therefore,
we get

‖f (n)‖NΦ ≤ σn
f ‖f‖NΦ , n = 0, 1, . . . ,

and (1) is an immediate consequence of the last inequalities.
Finally, we claim that

σf ≤ lim
n→∞

‖f (n)‖1/n
NΦ

,
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from which the statement immediately follows.
Let ψλ(x) ∈ C∞0 (R), ψλ(x) ≥ 0, ψλ(x) = 0 for |x| ≥ λ and

∫
ψλ(x) = 1.

We put fλ = f ∗ ψλ. Then fλ ∈ C∞(lR) because of f ∈ L1,loc(lR).
Therefore, f

(n)
λ = f (n) ∗ ψλ. By virtue of Lemma 2 we get

‖f (n) ∗ ψλ‖NΦ ≤ ‖f (n)(· − y)‖NΦ‖ψλ‖1 = ‖f (n)‖NΦ .

Hence, f
(n)
λ ∈ NΦ. It is clear that ψλ ∈ MΦ because of ψλ ∈ C∞0 (lR).

Thus, by virtue of Lemma 1,

|f (n)
λ (x)| ≤

∞∫

−∞

∣∣f (n)(x− y)ψλ(y)
∣∣dy

≤ ‖f (n)(· − y)‖NΦ‖ψλ(y)‖MΦ = ‖f (n)‖NΦ‖ψλ‖MΦ .(2)

Therefore, f
(n)
λ ∈ L∞(lR). It follows from (2) and [1] that

σfλ
= dfλ

≤ lim
n→∞

‖f (n)‖1/n
NΦ

.

Consequently, to complete the proof it remains to show that

σf ≤ lim
λ→0

σfλ
,

and therefore the problem is now reduced to proving the inequality

(3) |ξ| ≤ lim
λ→0

σfλ
, ∀ξ ∈ suppf̂(ξ).

Assume to the contrary that (3) is not satified. Then there exist a point
ξ0 ∈ suppf̂(ξ), a number ε > 0, and a subsequence λk (for simplicity we
assume ξ0 > 0) such that

(4) σfλk
≤ ξ0 − 2ε, k = 1, 2, . . . .

Assume that for some ε0 > 0, g ∈ MΦ and a subsequence λk → 0,

(5)
∣∣∣
∞∫

−∞

(
fλk

(x)− f(x)
)
g(x)dx

∣∣∣ ≥ ε0 , k ≥ 1 .
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It is known that fλ → f, λ → 0 in L1,loc(lR). Therefore, there exists a
subsequence {km} (for simplicity we assume km = m) such that fλk

(x) →
f(x) a.e.

On the other hand, {fλk
} is bounded in NΦ because of ‖fλk

‖NΦ ≤
‖f‖NΦ . So {fλk

} is a weak precompact sequence. Therefore, there exists
a subsequence, denoted again by {fλk

}, and a function f∗ ∈ NΦ such that

(6)

∞∫

−∞
fλk

(x)v(x)dx →
∞∫

−∞
f∗(x)v(x)dx, ∀ v ∈ MΦ.

Let u be an arbitrary function in C∞0 (lR), then u ∈ MΦ. By (6) we get

∞∫

−∞
fλk

(y)u(y)dy →
∞∫

−∞
f∗(y)u(y)dy, ∀ u ∈ C∞0 (lR).

Because each u ∈ C∞0 (lR) has a finite support, it follows from fλk
(x) →

f(x) a.e. that

(7)

∞∫

−∞
fλk

(y)u(y)dy →
∞∫

−∞
f(y)u(y)dy, ∀ u ∈ C∞0 (lR).

Combining (6) and (7) we get

∞∫

−∞
f(y)u(y)dy =

∞∫

−∞
f∗(y)u(y)d(y), ∀ u ∈ C∞0 (lR).

It is known [6, p. 15] that

f(x) = f∗(x) a.e.

Therefore,
∞∫

−∞
fλk

(x)v(x)dx →
∞∫

−∞
f(x)v(x)dx.

because of (6), which contradicts (5). So fr weakly converges to f .
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It follows that f̂λ also converges weakly to f̂ . Now we choose a function
ϕ(x) ∈ C∞0 (lR) such that < f̂, ϕ >6= 0, supp ϕ(x) ⊂ [ξ0 − ε, ξ0 − ε]. Then
(4) implies that

0 =< f̂k, ϕ >→< f̂, ϕ >6= 0, k →∞.

So we arrive at a contradiction. The proof of Theorem 1 is complete.

For periodic functions we have the following result.

Theorem 2. Let Φ ∈ L, and suppose that f(x) ∈ C∞(lR) is an arbitrary
2π-periodic function. Then there always exists the limit

df = lim
n→∞

|||f (n)|||1/n
NΦ

.

Moreover, if we put

σf := sup{|k| : k ∈ suppf̂(ξ)},

where ||| · |||NΦ is the NΦ(0, 2π)− norm, then df = δf .

Proof. We proof this theorem by an argument similar to [1]. Representing
the function f by its Fourier series, we have

f(x) =
∞∑

k=−∞
fk exp(ikx),

where
fk = (2π)−1(f, exp(−ikx)), k = 0,±1, . . . .

Therefore,

f (n)(x) =
∞∑

k=−∞
fk(ik)n exp(ikx), n = 0, 1, . . . .

From the definition of ‖.‖MΦ we see that ||| exp(−ik·)|||MΦ =
2π

Φ(2π)
< ∞.

Then

|fkkn| = (2π)−1|(f (n), exp(−ikx))|
≤ 1

Φ(2π)
|||f (n)|||NΦ ,



ON A PROPERTY OF INFINITELY DIFFERENTIABLE FUNCTIONS 269

where n = 0,±1, . . . ; k = 0, 1, . . . . Consequently,

(8) lim
n→∞

|fkkn|1/n = |k| ≤ lim
n→∞

|||f (n)|||1/n
NΦ

for any index k such that fk 6= 0. Using

f̂(ξ) =
∞∑

k=−∞
fkδ(ξ + k)

and (8), we get

(9) σf ≤ lim
n→∞

|||f (n)|||1/n
NΦ

.

Further, we shall show that

(10) lim
n→∞

|||f (n)|||1/n
NΦ

≤ σf .

It is enough to prove (10) for σf < ∞. By the Paley-Wiener-Schwartz
theorem, f is an analytic function of exponential type ≤ σ. Hence, it
follows from the Bernstein-Nikolsky inequality for ||| . |||NΦ that

|||f (n)|||NΦ ≤ σn
f |||f |||NΦ , n = 0, 1, . . . ,

and (10) is an immediate consequence of the last inequalities.
Combining (9) and (10) yields

lim
n→∞

|||f (n)|||1/n
NΦ

= lim
n→∞

|||f (n)|||1/n
NΦ

= σf .

The proof for Theorem 2 is now complete.
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