THE PROPERTIES (Ω) AND (DN) OF SPACES OF ENTIRE FUNCTIONS OF BOUNDED TYPE

LE MAU HAI, NGUYEN VAN KHUE, AND NGUYEN HA THANH

ABSTRACT. The first goal of this paper is to establish properties (Ω) and (DN) for spaces of entire functions of bounded type on (DF) -spaces. Next we show the connection between the property (DN) fulfilled on $H(E'_b)$ and the existence of a non-pluripolar compact set in E'_b under the assumption that E is a Frechet-Montel space.

1. INTRODUCTION

Let E be a Frechet space with a fundamental system of semi-norms \overline{a} $\|\cdot\|_k$ defining the topology of E. For each subset B of E define

$$
\|\cdot\|_B^* : E' \longrightarrow [0, +\infty]
$$

given by

$$
||u||_{B}^{*} = \sup\{|u(x)| : x \in B\}
$$

where $u \in E'$, the topological dual space of E. Instead of $\|\cdot\|_{I}^*$ $\begin{array}{c} \ast \\ U_q \end{array}$ we write $\begin{array}{c} \end{array} \left\| \cdot \right\|_q^*$ q ^{*} where

$$
U_q = \Big\{ x \in E : ||x||_q \le 1 \Big\}.
$$

Using the above notations we consider the following property of E :

$$
\begin{aligned}\n\left(DN\right) \exists p \,\forall q \,\exists k, C > 0, d > 0: \left\|x\right\|_{q}^{1+d} \leq C \|x\|_{k} \|x\|_{p}^{d}, \ x \in E, \\
\left(DN\right) \exists p \,\forall q, d > 0 \,\exists k, C > 0: \left\|x\right\|_{q}^{1+d} \leq C \|x\|_{k} \|x\|_{p}^{d}, \ x \in E, \\
\left(\Omega\right) \forall p \,\exists q \,\forall k \,\exists d, C > 0: \quad \left\|u\right\|_{q}^{*1+d} \leq C \|u\|_{k}^{*} \|u\|_{p}^{*d}, \ \forall u \in E'.\n\end{aligned}
$$

Received November 22, 1997

¹⁹⁹¹ Mathematics Subject Classification. 32A15, 46A04, 46A11, 46A45.

Key words and phrases. Entire function of bounded type, Frechet-Montel space, absolute basis, property (DN) , property (DN) .

The above properties were introduced and investigated by Vogt (see [14], [15], [16]). In the case E has property (DN) (resp. (DN)) the semi-norm p in the above definition is a norm on E and is called to be a (DN) -norm (resp. a (DN) -norm)

For a complex locally convex space E let $H(E)$ denote the vector space of all entire functions on E , i.e. of all continuous complex-valued functions on E which are Gâteaux-holomorphic.

An entire function $f: E \to \mathbb{C}$ is said to be of bounded type if f is bounded on every bounded subset of E. By $H_b(E)$ we denote the vector space of all entire functions of bounded type on E . It is endowed with the topology τ_b of uniform convergence on bounded subsets. It is known [9] that if E is a bornological (DF) -space then $(H_b(E), \tau_b)$ is a Frechet space.

In [7] Meise and Vogt investigated the properties (DN) and (Ω) for $H_b(E'_b)$ in the case where E is a nuclear Frechet space having the property (DN) (respectively (Ω)).

The first aim of this paper is to establish the property (Ω) for $H_b(E'_b)$ in the case E is a non-nuclear Frechet space. We prove the following

Theorem A. Let E be a Frechet space having the property (Ω) . Then $H_b(E'_b)$ also has the property (Ω) if one of the following holds

 (i) E is Hilbertisable,

(ii) E is a Montel space with an absolute basis.

Next we establish the property (DN) by the following theorem.

Theorem B. Let E be a Frechet space such that E has property (DN) and E'_b has an absolute basis. Then $H_b(B\widehat{\otimes}_{\pi}E'_b)$ has property (DN) for every Banach space B.

Another characterization of a nuclear Frechet space E having property (DN) has been established by Dineen-Meise-Vogt. In [3] they have proved that a nuclear Frechet space E has property (DN) if and only if there exists a non-pluripolar bounded set B in E'_{b} . Here a subset B of a locally convex space E is said to be pluripolar if there exists a plurisubharmonic function φ on E, $\varphi \neq -\infty$ such that

$$
B \subset \{x \in E : \varphi(x) = -\infty\}.
$$

The second section of the paper is devoted to the relation between property (DN) of $H_b(E'_b)$ and the existence of a non-pluripolar compact subset in E'_b in the case \overline{E} is not assumed to be nuclear.

2. THE PROPERTIES
$$
(\Omega)
$$
 and (\underline{DN})

To prove Theorem A we need some auxiliary lemmas.

Lemma 2.1. Let E be a Hilbert-Frechet space having property (Ω) . Then there exists an index set I such that E'_b is a subspace of $\ell^2(I)\widehat{\otimes}_{\pi} s'$, where s is the space of rapidly decreasing sequences.

Proof. By the hypothesis and [8] E is quasi-normable. Let $\{\|\cdot\|_k\}$ ª be a system of Hilbert semi-norms defining the topology of E and satisfying the condition: $\forall k \geq 1 \ \forall \varepsilon > 0 \ \exists \ \text{a bounded set } M_k \subset E \ \text{such that}$

$$
U_{k+1} \subset M_k + \varepsilon U_k.
$$

(i) Let us consider the exact sequence of Palamodov [10]

(1)
$$
0 \longrightarrow E \stackrel{e}{\longrightarrow} \prod_{k \geq 1} E_k \stackrel{q}{\longrightarrow} \prod_{k \geq 1} E_k \longrightarrow 0
$$

where

$$
q(x_k) = (\pi_{k+1,k}x_{k+1} - x_k),
$$

\n
$$
e(x) = (\omega_k x),
$$

\n
$$
\pi_{k+1,k}: E_{k+1} \longrightarrow E_k,
$$

\n
$$
\omega_k: E \longrightarrow E_k
$$

are the canonical maps and E_k are Hilbert spaces associated to $\|\cdot\|_k$. Now are the canonical maps and E_k are mibert spaces associated to $|| \cdot ||_k$. Now
we prove that every bounded set in $\prod E_k$ is an image of a bounded set $k\geq 1$ in \prod $k\geq 1$ E_k under q. Indeed, by virtue of [10] it is enough to check that for any index set I the space $\ell^{\infty}(I, E)$ is dense in $\ell^{\infty}(I, E_{k+1})$ with respect to the norm of $\ell^{\infty}(I, E_k)$.

Given $\sigma \in \ell^{\infty}(I, E_{k+1})$ and $\varepsilon > 0$. Choose a bounded set M_k in E such that

$$
U_{k+1} \subset M_{k+1} + \frac{\varepsilon}{\|\sigma\|_{k+1}} U_k.
$$

Since $\left\{\frac{\sigma(t)}{\ln \frac{1}{t}}\right\}$ $\|\sigma\|_{k+1}$: $t \in I$ o $\subset U_{k+1}$, it implies that there exists $\beta \in \ell^{\infty}(I, E)$ such that ° °

$$
\left\|\frac{\sigma(t)}{\|\sigma\|_{k+1}} - \beta(t)\right\|_{k} < \frac{\varepsilon}{\|\sigma\|_{k+1}}
$$

for $t \in I$. Put $\gamma(t) = ||\sigma||_{k+1} \beta(t) \in \ell^{\infty}(I, E)$. Then we have $||\sigma - \gamma||_{k} < \varepsilon$. (ii) Adapting [14] we put

$$
F = \Big\{ x = (x_k) \in \prod_{k \ge 1} E_k : ||x||^2 = \sum_{k=1}^{\infty} ||x_k||_k^2 < +\infty \Big\}.
$$

For each k let F_k be the topological complement of E_k in F, i.e. $F =$ $E_k \oplus F_k$. Taking the direct sum of the resolution (1) above with the exact sequence

$$
0 \longrightarrow 0 \longrightarrow \prod_{k \geq 1} F_k \stackrel{id}{\longrightarrow} \prod_{k \geq 1} F_k \longrightarrow 0
$$

we get an exact sequence

$$
0 \longrightarrow E \longrightarrow F^{\mathbf{N}} \stackrel{\tilde{q}}{\longrightarrow} F^{\mathbf{N}} \longrightarrow 0,
$$

in which every bounded set in F^N is an image of a bounded set in F^N under the map \tilde{q} . Using the same argument as in [14] we infer that E is isomorphic to a quotient space of $\ell^2(I)\widehat{\otimes}_{\pi} s$ for some index I and s such that every bounded set in E is an image of a bounded set in $\ell^2(I)\widehat{\otimes}_{\pi} s$. It follows that E'_b is isomorphic to a subspace of $\left[\ell^2(I)\widehat{\otimes}_{\pi} s\right]_k^{\prime}$ $\theta_b' = \ell^2(I) \widehat{\otimes}_{\pi} s'.$ The lemma is proved.

Lemma 2.2. Let B be a Banach space. Then $H_b(B\widehat{\otimes}_{\pi} s')$ has property (Ω) .

Proof. Let $\{e_j\}$ ª $j \geq 1$ be the canonical basis of s and $\{e_j^*\}$ ª $j\geq 1$ the basis of s' given by $\frac{1}{\sqrt{2}}$

$$
e_k^*\left(\left\{\xi_j\right\}_{j=1}^\infty\right) = \xi_k
$$

for every $\xi =$ \overline{a} ξ_j ⊲
∞ د $\xi = \left\{ \xi_j \right\}_{j=1}^{\infty} \in s.$

Since $||e_j||_p = j^p$, it is easy to check that the topology of H_b $(B\widehat{\otimes}_{\pi} s')$ defined by the system of semi-norms $\{ ||| \cdot |||_p \}_{p \geq 1}$ given by $\frac{1}{2}$

$$
|||f|||_p = \sup \Big\{ p^n \sum_{j_1, \dots, j_n \ge 1} |\widehat{P_n f}(u_1 \otimes e_{j_1}^*, \dots, u_n \otimes e_{j_n}^*)|(j_1 \dots j_n)^p : u_1, \dots, u_n \in W, n \ge 0 \Big\}
$$

where W is the unit ball of B ,

$$
f(w) = \sum_{n=0}^{\infty} P_n f(w)
$$

with

$$
w = \sum_{k=1}^{\infty} u_k \otimes v_k \in B \widehat{\otimes}_{\pi} s'
$$

is the Taylor expansion of f at $0 \in B \widehat{\otimes}_{\pi} s'$,

$$
P_n f(w) = \frac{1}{2\pi i} \int\limits_{|t|=\rho} \frac{f(tw)}{t^{n+1}} dt
$$

and $\widehat{P_n f}$ is the continuous symmetric *n*-linear map associated to $P_n f$. Put n ¡ ¢ o

$$
V_p = \Big\{ f \in H_b\big(B\widehat{\otimes}_{\pi} s'\big) : |||f|||_p \leq 1 \Big\}.
$$

By [15] in order to prove H_b $(B\widehat{\otimes}_{\pi} s')$ has property (Ω) it suffices to show

$$
(*) \,\,\forall p\,\,\exists q\geq p\,\,\forall k\,\,\exists d>0: V_q\subset r^dV_k+\frac{1}{r}V_p\quad\text{for all}\,\,r>0.
$$

Now let $p > 1$, choose $q > ep$ and take $k > 0$. Obviously (*) holds for $0 < r \leq 1$ and $d > 0$. Let $f \in V_q$ and $r > 1$. We have

$$
\left\| \sum_{n\geq N} P_n f \right\|_p
$$

\n
$$
\leq \sup \left\{ p^n \sum_{j_1,\dots,j_n\geq 1} |\widehat{P_n f}(u_1 \otimes e_{j_1}^*, \dots, u_n \otimes e_{j_n}^*)| (j_1 \dots j_n)^p :
$$

\n
$$
u_1, \dots, u_n \in W, n \geq N \right\}
$$

\n
$$
\leq \sup \left\{ \left(\frac{p}{q} \right)^n q^n \sum_{j_1,\dots,j_n\geq 1} |\widehat{P_n f}(u_1 \otimes e_{j_1}^*, \dots, u_n \otimes e_{j_n}^*)| (j_1 \dots j_n)^q :
$$

\n
$$
u_1, \dots, u_n \in W, n \geq N \right\}
$$

\n
$$
\leq \left(\frac{1}{e} \right)^N \leq \frac{1}{r}
$$

if $N = \lfloor \log r \rfloor + 1$.

For each positive integer $s > 0$

$$
P_s\Big(\sum_{k\geq 1} u_k \otimes v_k\Big) = \sum_{0\leq n\leq N-1} \sum_{k_1,\dots,k_n\geq 1} \sum_{j_1\dots j_n\leq s} \widehat{P_n f}(u_{k_1} \otimes e_{j_1}^*,\dots,u_{k_n} \otimes e_{j_n}^*) v_{k_1}(e_{j_1})\dots v_{k_n}(e_{j_n})
$$

and

$$
Q_s\Big(\sum_{k\geq 1} u_k \otimes v_k\Big) = \sum_{0\leq n\leq N-1} \sum_{k_1,\dots,k_n\geq 1} \sum_{j_1\dots j_n>s} \widehat{P_n f}(u_{k_1} \otimes e_{j_1}^*,\dots,u_{k_n} \otimes e_{j_n}^*) v_{k_1}(e_{j_1})\dots v_{k_n}(e_{j_n})
$$

It is easy to see that P_s and Q_s are defined correctly because if \sum $k>1$ $u_k \otimes v_k$ $\overline{ }$

$$
= \sum_{k\geq 1} x_k \otimes y_k
$$
 then

$$
\sum_{k=1}^{\infty} v_k(e_j) u_k = \sum_{k=1}^{\infty} y_k(e_j) x_k \text{ for all } j \ge 1.
$$

We have

$$
\left|\left\|Q_s\right\|\right|_p = \sup\left\{\left(\frac{p}{q}\right)^n \sum_{j_1\ldots j_n>s} q^n \left|\widehat{P_n f}(u_1\otimes e_{j_1}^*,\ldots,u_n\otimes e_{j_n}^*)\right|\times
$$

$$
(j_1\ldots j_n)^q (j_1\ldots j_n)^{p-q} : 0 \le n \le N, u_1\ldots u_n \in W\right\}
$$

$$
\le s^{p-q} < \frac{1}{r}
$$

if $r = s$. At the same time,

$$
\left|\left\|P_s\right\|\right|_k = \sup \left\{ \left(\frac{k}{q}\right)^n \sum_{j_1...j_n \le s} q^n \left|\widehat{P_n f}(u_1 \otimes e_{j_1}^*, \dots, u_n \otimes e_{j_n}^*)\right| (j_1 \dots j_n)^q \cdot (j_1 \dots j_n)^{k-q} : 0 \le n \le N-1, u_1, \dots, u_n \in W \right\} \le \left(\frac{k}{q}\right)^{N-1} s^{k-q} \le r^d
$$

if $(N-1)k + k\log s \leq d\log r$ or $k\log r + k\log r \leq d\log r$ or $d \geq 2k$. Hence

$$
f = P_s + Q_s + \sum_{n>N} P_n f \in r^d V_k + \frac{2}{r} V_p.
$$

The lemma is proved. \Box

Lemma 2.3. Let E be a Frechet-Montel space with an absolute basis. Then for every continuous semi-norm ρ on E'_{b} there exists a continuous semi-norm $\rho_1 \ge \rho$ on E'_b such that the canonical map

$$
\omega_{\rho_1,\rho}: \bigl(E'_b\bigr)_{\rho_1} \longrightarrow \bigl(E'_b\bigr)_{\rho}
$$

can be factorized through the space ℓ^{∞} .

Proof. Since E has an absolute basis, it follows that E is the Köthe space *Proof.* Since *E* has an absolute basis, i
 $\Lambda(A)$ for some matrix $A = (a_{j,k})_{j,k \geq 1}$,

$$
\Lambda(A) = \Big\{ x = (x_j) \in \omega : \sum_{j \ge 1} |x_j| a_{j,k} < +\infty \ \forall \ k \ge 1 \Big\}.
$$

Given ρ a continuous semi-norm on $E'_b = \Lambda'(A)$. By [13] we can assume that ρ is of the form

$$
\rho(u) = \sup \left\{ \left| \sum_{j \ge 1} x_j u_j \right| : (x_j) \in B \right\}
$$

for $u =$ ¡ u_j ¢ $j>1$ $\in \Lambda'(A)$, where B is a bounded set in $\Lambda(A)$ of the form

$$
B = \left\{ (x_j) \in \Lambda(A) : \sum_{j \ge 1} |x_j| \lambda_j \le 1 \right\}
$$

for some sequence of positive numbers (λ_j) ¢ $j\geq 1$ [.]

Since E'_b is Schwartz we can find a continuous semi-norm $\rho_1 \ge \rho$ on E'_b such that the canonical map $\pi_{\rho_1\rho}: \Lambda'(A)_{\rho_1} \longrightarrow \Lambda'(A)_{\rho}$ is compact. Again we can assume that ρ_1 is defined by a bounded subset B_1 of $\Lambda(A)$ of the form as B : n o

$$
B_1 = \left\{ (x_j) \in \Lambda(A) : \sum_{j \ge 1} |x_j| \lambda_j^1 \le 1 \right\}
$$

and $B \subset B_1$.

The compactness of $\pi_{\rho_1\rho}$ yields $\lim_{j\to\infty}$ λ_j^1 λ_j = 0. Define the continuous linear maps

$$
T : \lambda'(A)_{\rho_1} \longrightarrow \ell^{\infty},
$$

$$
S : \ell^{\infty} \longrightarrow (\lambda(A)[B])'
$$

by

$$
T((u_j)) = \left(\frac{u_j}{\lambda_j^1}\right)
$$
 for $(u_j) \in \Lambda'(A)_{\rho_1}$

and

$$
S((v_j)) = (\lambda_j^1 v_j) \text{ for } (v_j) \in \ell^{\infty}.
$$

 λ_j^1 $= 0$ we infer that Im $S \subset \Lambda'(A)_{\rho}$. Obviously From the equality $\lim_{j \to \infty}$ λ_j $\pi = S_0 T$. \Box

Proof of Theorem A.

(i) By Lemma 2.1 E'_b is a subspace of $\ell^2(I)\widehat{\otimes}_{\pi} s'$. Since s' is nuclear, it follows that $\ell^2(I)\widehat{\otimes}_{\pi} s'$ has a fundamental system of Hilbert seminorms. Combining this together with the fact that every entire function of bounded type on a (DF) -space can be factorized through a Banach space [4] we infer that the restriction map

$$
R: H_b\big(\ell^2(I)\widehat{\otimes}_\pi s'\big) \longrightarrow H_b(E'_b)
$$

is surjective. From the Lemma 2.2 we deduce that $H_b(E'_b)$ has property $(\Omega).$

(ii) Since E has property (Ω), by [14] E is a quotient space of $B\widehat{\otimes}_{\pi}s$, where B is a Banach space. Let $Q : B\widehat{\otimes}_{\pi} s \longrightarrow E$ be the projection. By the Monteless of E every bounded set of E is an image of a bounded
 $\mathcal{L}^{\text{(D)}}$ By the Monteness of E every bounded set of E is an image of a bounded
set of $B\widehat{\otimes}_{\pi} s$ under the map Q. Hence E'_b is a subspace of $(B\widehat{\otimes}_{\pi} s)'_b$ = $B' \widehat{\otimes}_{\pi} s'$. As in (i) every entire function of bounded type on E'_b can be $B \otimes_{\pi} s$. As in (i) every entire function of bounded type on E_b can be factorized through $(E'_b)_{\rho}$ for some continuous semi-norm ρ on E'_b and by using Lemma 2.3 it implies that $H_b(E'_b)$ is a quotient space of $H_b(B' \widehat{\otimes}_{\pi} s')$. By Lemma 2.2 this yields that $H_b(E'_b)$ has property (Ω) . \perp

Proof of Theorem B.

Assume that E is a Frechet space having property (DN) and E'_b has an absolute basis $\{e_j^*\}_{j=1}^{\infty}$ and B a Banach space. Choose $p \ge 1$ such that ⊔ة
∞ו $\sum_{j=1}^{\infty}$ and B a Banach space. Choose $p \geq 1$ such that

(2)
$$
\forall q \exists k, C, d > 0 \ \forall r > 0 : U_q^0 \subseteq Cr^dU_k^0 + \frac{1}{r}U_p^0.
$$

(i) From (2) we have

$$
||z||_q = \sup \{ |z(u)| : u \in U_q^0 \}
$$

\n
$$
\leq \sup \{ |z(Cr^dv + \frac{1}{r}w)| : v \in U_k^0, w \in U_p^0 \}
$$

\n
$$
\leq Cr^d \sup \{ |z(v)| : v \in U_k^0 \} + \frac{1}{r} \sup \{ |z(w)| : w \in U_p^0 \}
$$

\n
$$
\leq Cr^d ||z||_k + \frac{1}{r} ||z||_p \text{ for all } z \in (E'', \beta(E'', E')), \forall r > 0,
$$

and by [17] we infer that $(E'', \beta(E'', E'))$ ¢ has property (DN) .

(ii) Choose an index set I such that B is quotient space of $\ell^1(I)$. Since

$$
B \widehat{\otimes}_{\pi} E'_b = \left\{ (x_j)_{j \ge 1} : \right.
$$

$$
x_j \in B, \sum_{j \ge 1} ||x_j|| \rho(e_j^*) < +\infty \text{ for all continuous semi-norms } \rho \text{ on } E'_b \right\}
$$

it follows that $H_b(B\widehat{\otimes}_{\pi}E'_b)$ is a subspace of H_b ¡ $\ell^1(I)\widehat{\otimes}_\pi E_b'$ ¢ E'_b) is a subspace of $H_b(l^1(I)\widehat{\otimes}_{\pi} E'_b)$. Thus it remains to shows that $H_b(\ell^1(I)\widehat{\otimes}_{\pi} E_b')$ has property (\underline{DN}) .

(iii) Since $\ell^1(I)\widehat{\otimes}_{\pi}E_b' \cong \ell^1(I, E_b')$ it follows that

$$
\ell^1(I)\widehat{\otimes}_{\pi}E'_b = \left\{ z = (t_{ij}) : (i,j) \in I \times \mathbf{N}, \ t_{ij} \in \mathbf{C}, \sum_{\substack{j \geq 1 \\ i \in I}} |t_{ij}|\rho(e_j^*) < +\infty \text{ for all continuous semi-norms } \rho \text{ on } E'_b \right\}
$$

For each $k \geq 1$, put

$$
F(k) = \left\{ z = (t_{ij})_{i \in I, j \ge 1} : ||z|||_{k} = \sum_{\substack{j \ge 1 \\ i \in I}} |t_{ij}| ||e_{j}^{*}||_{k}^{*} < +\infty \right\}
$$

where

$$
||e_j^*||_k^* = \sup \Big\{ |e_j^*(t)| : ||t||_k \le 1, t \in E \Big\}.
$$

Since $\{e_j^*\}$ ª $j \geq 1$ is an absolute basis of E'_b it implies that for every bounded set A in $\ell^1(I)\widehat{\otimes}_{\pi} E'_b$ there exist $k \geq 1$ such that A is contained and bounded set A in $\ell^-(I) \otimes_{\pi} L_b$ there exist $\kappa \geq 1$ such that A is contained and bounded
in $F(k)$. Otherwise, for every k there exists $z^k = (t_{ij}^k)_{j \geq 1, i \in I} \in A$ such that \overline{a} ° ° \overline{a} $\overline{}$ ° °

$$
\left|\left|\left|z^k\right|\right|\right|_k = \sum_{\substack{j\geq 1\\i\in I}} \left|t_{ij}^k\right|\left|e_j^*\right|\right|_k^* = +\infty.
$$

Hence, for each k we can find u_k^j $k_k^j \in U_k$, $J_k \subset \mathbf{N}$, $I_k \subset I$ are finite such that

$$
\sum_{j \in J_k, i \in I_k} |t_{ij}^k| |e_j^*(u_k^j)| > k.
$$

Put $M = \{u_k^j\}$ k : k ≥ 1, j ∈ Jk} and consider the semi-norm ρ^M on E⁰ b induced by M. Since $A \subset \ell^1(I) \widehat{\otimes}_{\pi} E'_b$ is bounded, it implies that for every mauced by *M*. Since $A \subset \ell^*$
 $z = (t_{ij})_{j \geq 1, i \in I} \subset A$ we have

$$
\sum_{j\geq 1, i\in I} |t_{ij}|\rho_M(e_j^*) \leq C.
$$

However, this is impossible by choosing $\{z^k\} \subset A$. Hence $H_b(\ell^1(I)\widehat{\otimes}_{\pi}E'_b)$ is a subspace of $\lim_k \text{proj } H_b(F(k)).$

(iv) Put

 ${\bf M} =$ n $\sigma: I \times \mathbf{N} \longrightarrow \mathbf{N}: \sigma(i, j) \neq 0$ only for finitely many $(i, j) \in I \times \mathbf{N}$ o . For $\sigma \in \mathbf{M}$ and $z = (t_{ij}), t_{ij} \in \mathbf{C}, i \in I, j \in \mathbf{N}$ put

$$
\sigma^{\sigma} = \prod_{i,j} \sigma_{(i,j)}^{\sigma(i,j)}, \quad \sigma! = \prod_{i,j} \sigma(i,j)!,
$$

$$
|\sigma| = \sum_{i,j} \sigma(i,j), \quad z^{\sigma} = \prod_{i,j} t_{i,j}^{\sigma(i,j)},
$$

where the usual convention $0! = 1$ and 0^0 is defined to be 1. By a modification of Ryan [11] it follows that the topology of $\lim_{h \to 0} \text{proj } H_b(F(k))$ can be defined by the system of semi-norms $\{ ||| \cdot |||_{(r,k)} \}$ \mathbf{v}^{\prime} $r>0,k\geq 1$ given by

(3)
$$
\left|\|f\|\right|_{(r,k)} = \sup \left\{ \frac{|a_{\sigma(f)}| \sigma^{\sigma} r^{|\sigma|} b^{\sigma}_{.,k}}{|\sigma|^{|\sigma|}} \ : \ \sigma \in \mathbf{M} \right\}
$$

where

$$
a_{\sigma}(f) = \left(\frac{1}{2\pi i}\right)^n \int \frac{f\left(\sum_{\sigma(i,j)\neq 0} \lambda_{ij} d_i \otimes e_j^*\right)}{\prod_{i,j} \lambda_{i,j}^{\sigma(i,j)+1}} d\lambda,
$$

$$
b_{i,j,k} = \frac{1}{\left\|e_j^*\right\|_k^*}, n = \#\{(i,j), \sigma(i,j) \neq 0\},
$$

$$
d\lambda = \prod_{i,j} d\lambda_{i,j}, \{d_i\}_{i \in I} \text{ is the canonical basis of } \ell^1(I).
$$

(v) Since $(E'', \beta(E'', E'))$ ¢ has property (DN) we can choose $p \geq 1$ such that

(4)
$$
\forall q \exists k, C, d > 0: \|\cdot\|_q^{1+d} \leq C \|\cdot\|_k \|\cdot\|_p^d \text{ on } E''.
$$

Let $\{e_j$ $j\geq 1$ be the coefficient functional sequence associated to a basis ${e_j^*}$. Since ${e_j^*}_{j\geq 1}$ is an absolute basis, it follows that ${e_j}_{j\geq 1} \subset E''$ de comotent ranchemir sequence associated and ° °

$$
||e_j||_k = \frac{1}{||e_j^*||_k^*} = b_{i,j,k}.
$$

Now applying (4) for $\{e_j\}$ $j>1$ we get

(5)
$$
b_{i,j,q}^{1+d} \le Cb_{i,j,k} \cdot b_{i,j,p}^d \quad \text{for every } i,j.
$$

From (3) , (5) we have

$$
\|\|f\|\|_{(r,q)}^{1+d} = \sup \left\{ \frac{|a_{\sigma}(f)|\sigma^{\sigma}r^{|\sigma|}b^{\sigma}_{.,q}}{|\sigma|^{|\sigma|}} \ : \ \sigma \in \mathbf{M} \right\}^{1+d}
$$

$$
\leq \sup \left\{ \frac{|a_{\sigma}(f)|}{|\sigma|^{|\sigma|}}\sigma^{\sigma}r^{|\sigma|(1+d)}C^{|\sigma|}b^{\sigma}_{.,k} : \sigma \in \mathbf{M} \right\} \sup \left\{ \frac{|a_{\sigma}(f)|}{|\sigma|^{|\sigma|}}\sigma^{\sigma}b^{\sigma}_{.,p} : \sigma \in \mathbf{M} \right\}^{d}
$$

$$
= \|\|f\|\|_{(Cr^{1+d},k)}\|\|f\|\|_{(1,p)}^{d}
$$

for $f \in \lim \text{proj } H_b(F(k))$. Consequently, $\lim \text{proj } H_b(F(k))$ has property (DN) . Theorem B is proved. \Box

3. THE PROPERTY (DN) AND PLURIPOLAR SETS

In this section we establish the relation between the property (DN) on

a Frechet space and the existence of pluripolar sets on its strongly dual space E'_b . This result has been shown earlier by Dineen-Meise-Vogt [3] in the case E is nuclear. Here we have

Theorem 3.1. Let E be a Frechet-Montel space such that E'_b has an absolute basis. Then the following are equivalent

- (i) E has property (DN) ,
- (ii) $H(E'_b)$ has property (DN) ,
- (iii) E'_b contains a non-pluripolar compact set.

Proof. (i) \Leftrightarrow (ii) follows from the fact that E is a subspace of $H(E'_b)$ and by the Theorem B. (iii) \Rightarrow (i) follows from [3], where as (ii) \Rightarrow (iii) is an immediate consequence of the following result.

Proposition 3.2. Let E be a Frechet-Montel space having the approximation property. If $H(E'_b)$ has property (DN) , then E'_b contains a nonpluripolar compact set.

Proof. Since $H(E'_b)$ has property (DN) , there exists a compact set B in E'_b satisfying property (DN) on $H(E'_b)$ such that

$$
\forall q \ \exists k, C, d > 0 : \left\| \cdot \right\|_q^{1+d} \le C \left\| \cdot \right\|_k \left\| \cdot \right\|_B^d,
$$

where $\{\|\cdot\|_q$ ª $q\geq 1$ is the fundamental system of semi-norms on $H(E'_b)$ given by o

$$
\|\sigma\|_q = \sup \Big\{ |\sigma(z)| : z \in U_q^0 \Big\}, \quad \sigma \in H(E'_b),
$$

and $\{U_q$ ª $q \geq 1$ is a neighbourhood basis of $0 \in E$, U_q^0 is a polar of U_q .

We shall prove that B is not pluripolar. If B is pluripolar, we can find a plurisubharmonic function φ on E'_{b} such that

$$
\varphi \not\equiv -\infty \text{ and } \varphi\big|_B = -\infty.
$$

Consider the Hartogs domain $\Omega_{\varphi} \subset E'_b \times {\bf C}$ defined by

$$
\Omega_{\varphi} = \Big\{ (z, \lambda) \in E'_b \times \mathbf{C} : |\lambda| < e^{-\varphi(z)} \Big\}.
$$

Note that Ω_{φ} is pseudoconvex in $E'_{b} \times \mathbf{C}$. Since E'_{b} and hence $E'_{b} \times \mathbf{C}$ has the approximation property, there exists $f \in H(\Omega_{\varphi})$ such that Ω_{φ} is the domain of existence of f [12]. Write the Hartogs expansion of f at $(0, 0) \in \Omega_{\varphi}$ as

$$
f(z,\lambda) = \sum_{n=0}^{\infty} h_n(z)\lambda^n \text{ for } (z,\lambda) \in \Omega_{\varphi},
$$

where

$$
h_n(z) = \frac{1}{2\pi i} \int_{|\lambda| = \frac{1}{2}e^{-\varphi(z)}} \frac{f(z, \lambda)}{\lambda^{n+1}} d\lambda, \quad n \ge 0.
$$

Since φ is upper semi-continuous, h_n is holomorphic on E'_b for each $n \geq 0$. On the other hand, since φ $\Big|_B = -\infty$ it follows that the series $\sum_{i=1}^{\infty}$ $n=0$ $h_n(z)\lambda^n$ converges to f uniformly on $K \times r\overline{\Delta}$ for all $r > 0$, where $\overline{\Delta} = \{z : |z| \leq 1\}$ ª and K is an arbitrary compact set in B . Hence

$$
\lim_{n \to \infty} \sup \frac{1}{n} \log ||h_n||_B = -\infty.
$$

Let $q \geq 1$. Choose k, C, $d > 0$ such that

$$
||h_n||_q^{1+d} \le C ||h_n||_k ||h_n||_B^d, \quad \forall n \ge 1.
$$

These inequalities imply that

$$
\lim_{n} \sup \frac{1+d}{n} \log ||h_n||_q \le \log C + \lim_{n} \sup \frac{1}{n} \log ||h_n||_k + \lim_{n} \sup \frac{d}{n} \log ||h_n||_B
$$

= -\infty.

Hence, the series \sum $h_n(z) \lambda^n$ converges uniformly on every compact set in $n>0$ $E'_b \times \mathbf{C}$. Since Ω_{φ} is the domain of existence of f, we infer that $E'_b \times \mathbf{C} \subset \Omega_{\varphi}$. This is impossible, because $\varphi \neq -\infty$. \Box

Here arises the question whether the implication (i) \Rightarrow (iii) of Theorem 3.1 holds if we do not assume that E'_b has an absolute basis. Concerning this question we have the following

Proposition 3.3. Let E be a Frechet space having property (DN) . Then E'_b contains a non-pluripolar bounded set.

Proof. By Vogt [14] E is isomorphic to a subspace of $B\widehat{\otimes}_{\pi}s$, where B is a Banach space. Let $R: (B\widehat{\otimes}_{\pi} s)' \cong B'\widehat{\otimes}_{\pi} s' \to E'_{b}$ be the restriction map. Since every Banach space is a quotient space of $\ell^1(I)$ for some index set I, we may assume without loss of generality that $B' \cong \ell^1(I)$. On the other hand, if $B\widehat{\otimes}_{\pi}s$ has property (DN) , so does $H_b(B'\widehat{\otimes}s') =$ $H_b(\ell^1(I)\widehat{\otimes}_\pi s')$ and from the definition of property (DN) it is easy to check that s has property (DN) . Hence we may assume that $A = \text{conv}(U \otimes$ U_p^0) $\subset \ell^1(I)\widehat{\otimes}_{\pi} s'$ such that the semi-norm on $H_b(\ell^1(I)\widehat{\otimes}_{\pi} s')$ induced by A is the (DN) -norm for $H_b(\ell^1(I)\widehat{\otimes}_{\pi} s')$, where U is the unit ball of $\ell^1(I)$ and U_p is a neighbourhood of $0 \in s$ induces the (DN) -norm for s.

Put $B = R(A)$. If B is pluripolar in E'_{b} , there exists a plurisubharmonic function φ on E'_b such that $\varphi \not\equiv -\infty$ and $\varphi|_B = -\infty$. Put

$$
\Omega = \Big\{ (\omega, \lambda) \in \left(\ell^1(I) \widehat{\otimes}_{\pi} s \right) \times \mathbf{C} : |\lambda| < e^{-\varphi R(\omega)} \Big\}.
$$

It follows that Ω is pseudoconvex in $(\ell^1(I)\widehat{\otimes}_{\pi} s)$ \times **C** and $A \times$ **C** $\subset \Omega$.

For each countable subset J of I let $\Omega_J = \Omega \cap (l^1(J) \widehat{\otimes}_{\pi} s') \times \mathbf{C}$. Then Ω_J is the domain of existence of a holomorphic function f_J . Write

$$
f_J(\omega, \lambda) = \sum_{n \geq 0} h_{J,n}(\omega) \lambda^n
$$
 for $(\omega, \lambda) \in \Omega_J$,

where

$$
h_{J,n}(\omega) = \frac{1}{2\pi i} \int\limits_{|t|=\frac{1}{2}e^{-\varphi R(\omega)}} \frac{f(w,t)}{t^{n+1}} dt.
$$

Since φ is upper-continuous, it follows that $h_{J,n}$ are holomorphic on $\ell^1(J)\widehat{\otimes}_{\pi} s'.$ But $A_J = A \cap (l^1(J) \widehat{\otimes}_{\pi} s')$. Since $A_J \times \mathbf{C} \subset \Omega_J$, the series \sum $n>0$ $h_{J,n}(\omega)\lambda^n$ converges uniformly to f_J on $K \otimes r\overline{\Delta}$ for $r > 0$, where $\overline{\Delta} = \{z \in \mathbf{C} : |z| \leq \overline{\Delta}\}$ 1} and K is a compact set in A_J . Thus,

$$
\lim_n \sup \frac{1}{n} \log \|h_{J,n}\|_{A_J} = -\infty.
$$

Let $q \geq 1$. Choose $k, C > 0$ such that

$$
||h_{J,n}||_q^2 \leq C||h_{J,n}||_k ||h_{J,n}||_{A_J}
$$

This inequality yields

$$
\lim_{n} \sup \frac{2}{n} \log \|h_{J,n}\|_{q} \le \log C + \lim_{n} \sup \log \|h_{J,n}\|_{k} + \lim_{n} \sup \log \|h_{J,n}\|_{A_{J}}
$$

= - ∞

where

$$
||h_{J,n}||_q = \sup \{ |h_{J,n}(\omega)| : \omega \in \text{conv}(U_J \otimes U_q^0) \}
$$

 $U_J = U \cap \ell^1(J)$ and similarly for $||h_{J,n}||_k$. Hence the series $\sum_{i=1}^{\infty}$ $n\geq 0$ $h_{J,n}(\omega)\lambda^n$

converges uniformly on every compact set in $(\ell^1(J)\widehat{\otimes}_{\pi} s')$ \times C. On the other hand, since Ω_J is the domain of existence of f_J , it implies that $\ell^1(J)\widehat{\otimes}_{\pi} s' \rangle \times \mathbf{C} \subset \Omega_J$. This shows $\varphi R = -\infty$ on $\ell^1(J)\widehat{\otimes}_{\pi} s'$. Since J is an arbitrary countable set, $\varphi \equiv -\infty$. This is impossible. Hence B is not pluripolar in E'_b .

REFERENCES

- 1. S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57 (1981).
- 2. S. Dineen, R. Meise and D. Vogt, Characterization of nuclear Frechet spaces in which every bounded set is polar, Bull. Soc. France 112 (1984), 41-68.
- 3. S. Dineen, R. Meise and D. Vogt, Polar subsets of locally convex spaces, Aspects of Math. and its Appl., Elsevier, 1986, 295-319.
- 4. P. Galindo, D. Garcia and M. Maestre, Holomorphic mappings of bounded type on (DF)-spaces, Progress in Functional Analysis, North-Holland Math. Stud. 170 (1992), 135-148.
- 5. N. M. Ha and L. M. Hai, Linear topological invariants of spaces of holomorphic functions in infinite dimension, Publ. Math. 39 (1995), 71-88.
- 6. N. V. Khue and P. Thien Danh, Structure of spaces of germs of holomorphic functions, Publ. Math. **41** (1997), 467-480.
- 7. R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. 75 (1983), 235-252.
- 8. R. Meise and D. Vogt, A characterization of the quasi-normable Frechet spaces, Math. Nachr. 122 (1985), 141-150.
- 9. M. Miyagi, A linear expression of polynomials on locally convex spaces and holomorphic functions on (DF) -spaces, Memoirs of Faculty of Sci. Kyushu Univ. ser A, Vol. 40 (1) (1986), 1-18.
- 10. V. P. Palamoda, Homological method in theory of locally convex spaces (in Russian), Uspekhi Math. Nauk 26 (1) (1971), 3-66.
- 11. R. Ryan, *Holomorphic mappings on* ℓ^1 , Trans. Amer. Math. Soc. **302** (1979), 797-811.
- 12. M. Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition, Ann. Inst. Fourier 26, No. 4 (1976), 207-237.
- 13. T. Terzioglu and D. Vogt, A Köthe space which has a continuous norm but whese bidual does not, Arch. Math. 54 (1990), 180-183.
- 14. D. Vogt, On two classes of F-spaces, Arch. Math. 45 (1985), 255-266.
- 15. D. Vogt, Subspaces and quotient spaces of (s), in Functional Analysis, Surveys and Recent Results, K.-D. Bierstedt, B. Fuchsteiner (Eds.), North-Holland Math. Studies 27 (1977), 167-187.
- 16. D. Vogt, Frechetraume, zwischen denen jede stetige lineare Abbildung beschrankt ist, J. Reine Angew. Math. 345 (1983), 182-200.
- 17. D. Vogt, Characterisierung der Unterräume eines nuklearen stabilen Potenzreiheraumes von endlichem Typ, Studia. Math. 71 (1982), 251-270.

Department of Mathematics PEDAGOGICAL INSTITUTE 1 Tu Liem, Hanoi, Vietnam

Department of Mathematics Hochiminh city University of education Hochiminh city, Vietnam