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THE PROPERTIES (Ω) AND (DN) OF SPACES
OF ENTIRE FUNCTIONS OF BOUNDED TYPE

LE MAU HAI, NGUYEN VAN KHUE, AND NGUYEN HA THANH

Abstract. The first goal of this paper is to establish properties (Ω) and
(DN) for spaces of entire functions of bounded type on (DF )-spaces. Next
we show the connection between the property (DN) fulfilled on H(E′b) and
the existence of a non-pluripolar compact set in E′b under the assumption
that E is a Frechet-Montel space.

1. Introduction

Let E be a Frechet space with a fundamental system of semi-norms{‖ · ‖k

}
defining the topology of E. For each subset B of E define

∥∥ ·
∥∥∗

B
: E′ −→ [0,+∞]

given by ∥∥u
∥∥∗

B
= sup{|u(x)| : x ∈ B}

where u ∈ E′, the topological dual space of E.
Instead of

∥∥ · ∥∥∗
Uq

we write
∥∥ · ∥∥∗

q
where

Uq =
{

x ∈ E : ‖x‖q ≤ 1
}

.

Using the above notations we consider the following property of E:

(DN) ∃p ∀q ∃k, C > 0, d > 0 :
∥∥x

∥∥1+d

q
≤ C‖x‖k

∥∥x
∥∥d

p
, x ∈ E,

(DN) ∃p ∀q, d > 0 ∃k,C > 0 :
∥∥x

∥∥1+d

q
≤ C‖x‖k

∥∥x
∥∥d

p
, x ∈ E,

(Ω) ∀p ∃q ∀k ∃d,C > 0 :
∥∥u

∥∥∗1+d

q
≤ C

∥∥u
∥∥∗

k

∥∥u
∥∥∗d

p
, ∀u ∈ E′.
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The above properties were introduced and investigated by Vogt (see [14],
[15], [16]). In the case E has property (DN) (resp. (DN)) the semi-norm
p in the above definition is a norm on E and is called to be a (DN)-norm
(resp. a (DN)-norm)

For a complex locally convex space E let H(E) denote the vector space
of all entire functions on E, i.e. of all continuous complex-valued functions
on E which are Gâteaux-holomorphic.

An entire function f : E → C is said to be of bounded type if f is
bounded on every bounded subset of E. By Hb(E) we denote the vector
space of all entire functions of bounded type on E. It is endowed with the
topology τb of uniform convergence on bounded subsets. It is known [9]
that if E is a bornological (DF )-space then (Hb(E), τb) is a Frechet space.

In [7] Meise and Vogt investigated the properties (DN) and (Ω) for
Hb(E′

b) in the case where E is a nuclear Frechet space having the property
(DN) (respectively (Ω)).

The first aim of this paper is to establish the property (Ω) for Hb(E′
b)

in the case E is a non-nuclear Frechet space. We prove the following

Theorem A. Let E be a Frechet space having the property (Ω). Then
Hb(E′

b) also has the property (Ω) if one of the following holds
(i) E is Hilbertisable,
(ii) E is a Montel space with an absolute basis.
Next we establish the property (DN) by the following theorem.

Theorem B. Let E be a Frechet space such that E has property (DN)
and E′

b has an absolute basis. Then Hb(B⊗̂πE′
b) has property (DN) for

every Banach spaceB.

Another characterization of a nuclear Frechet space E having property
(DN) has been established by Dineen-Meise-Vogt. In [3] they have proved
that a nuclear Frechet space E has property (DN) if and only if there
exists a non-pluripolar bounded set B in E′

b. Here a subset B of a locally
convex space E is said to be pluripolar if there exists a plurisubharmonic
function ϕ on E, ϕ 6≡ −∞ such that

B ⊂ {
x ∈ E : ϕ(x) = −∞}

.

The second section of the paper is devoted to the relation between
property (DN) of Hb(E′

b) and the existence of a non-pluripolar compact
subset in E′

b in the case E is not assumed to be nuclear.
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2. The properties (Ω) and (DN)

To prove Theorem A we need some auxiliary lemmas.

Lemma 2.1. Let E be a Hilbert-Frechet space having property (Ω). Then
there exists an index set I such that E′

b is a subspace of `2(I)⊗̂πs′, where
s is the space of rapidly decreasing sequences.

Proof. By the hypothesis and [8] E is quasi-normable. Let
{‖ · ‖k

}
be

a system of Hilbert semi-norms defining the topology of E and satisfying
the condition: ∀k ≥ 1 ∀ε > 0 ∃ a bounded set Mk ⊂ E such that

Uk+1 ⊂ Mk + εUk.

(i) Let us consider the exact sequence of Palamodov [10]

(1) 0 −→ E
e−→

∏

k≥1

Ek
q−→

∏

k≥1

Ek −→ 0

where

q(xk) =
(
πk+1,kxk+1 − xk),

e(x) = (ωkx),
πk+1,k : Ek+1 −→ Ek,

ωk : E −→ Ek

are the canonical maps and Ek are Hilbert spaces associated to ‖·‖k. Now
we prove that every bounded set in

∏
k≥1

Ek is an image of a bounded set

in
∏

k≥1

Ek under q. Indeed, by virtue of [10] it is enough to check that for

any index set I the space `∞(I, E) is dense in `∞(I, Ek+1) with respect
to the norm of `∞(I, Ek).

Given σ ∈ `∞(I, Ek+1) and ε > 0. Choose a bounded set Mk in E such
that

Uk+1 ⊂ Mk+1 +
ε

‖σ‖k+1
Uk.

Since
{ σ(t)
‖σ‖k+1

: t ∈ I
}
⊂ Uk+1, it implies that there exists β ∈ `∞(I, E)

such that ∥∥∥ σ(t)
‖σ‖k+1

− β(t)
∥∥∥

k
<

ε

‖σ‖k+1
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for t ∈ I. Put γ(t) = ‖σ‖k+1β(t) ∈ `∞(I, E). Then we have ‖σ− γ‖k < ε.
(ii) Adapting [14] we put

F =
{

x = (xk) ∈
∏

k≥1

Ek : ‖x‖2 =
∞∑

k=1

∥∥xk

∥∥2

k
< +∞

}
.

For each k let Fk be the topological complement of Ek in F , i.e. F =
Ek⊕Fk. Taking the direct sum of the resolution (1) above with the exact
sequence

0 −→ 0 −→
∏

k≥1

Fk
id−→

∏

k≥1

Fk −→ 0

we get an exact sequence

0 −→ E −→ FN q̃−→ FN −→ 0,

in which every bounded set in FN is an image of a bounded set in FN

under the map q̃. Using the same argument as in [14] we infer that E is
isomorphic to a quotient space of `2(I)⊗̂πs for some index I and s such
that every bounded set in E is an image of a bounded set in `2(I)⊗̂πs. It
follows that E′

b is isomorphic to a subspace of
[
`2(I)⊗̂πs

]′
b

= `2(I)⊗̂πs′.
The lemma is proved.

Lemma 2.2. Let B be a Banach space. Then Hb(B⊗̂πs′) has property
(Ω).

Proof. Let
{
ej

}
j≥1

be the canonical basis of s and
{
e∗j

}
j≥1

the basis of
s′ given by

e∗k
({

ξj

}∞
j=1

)
= ξk

for every ξ =
{
ξj

}∞
j=1

∈ s.
Since

∥∥ej

∥∥
p

= jp, it is easy to check that the topology of Hb

(
B⊗̂πs′

)

defined by the system of semi-norms
{|‖ · ‖|p

}
p≥1

given by

|‖f‖|p = sup
{

pn
∑

j1,...,jn≥1

∣∣P̂nf
(
u1 ⊗ e∗j1 , . . . , un ⊗ e∗jn

)∣∣(j1 . . . jn)p :

u1, . . . , un ∈ W, n ≥ 0
}
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where W is the unit ball of B,

f(w) =
∞∑

n=0

Pnf(w)

with

w =
∞∑

k=1

uk ⊗ vk ∈ B⊗̂πs′

is the Taylor expansion of f at 0 ∈ B⊗̂πs′,

Pnf(w) =
1

2πi

∫

|t|=ρ

f(tw)
tn+1

dt

and P̂nf is the continuous symmetric n-linear map associated to Pnf .
Put

Vp =
{

f ∈ Hb

(
B⊗̂πs′

)
: |‖f‖|p ≤ 1

}
.

By [15] in order to prove Hb

(
B⊗̂πs′

)
has property (Ω) it suffices to show

(∗) ∀p ∃q ≥ p ∀k ∃d > 0 : Vq ⊂ rdVk +
1
r
Vp for all r > 0.

Now let p > 1, choose q > ep and take k > 0. Obviously (*) holds for
0 < r ≤ 1 and d > 0. Let f ∈ Vq and r > 1. We have

∣∣∣
∥∥∥

∑

n≥N

Pnf
∥∥∥
∣∣∣
p

≤ sup
{

pn
∑

j1,...,jn≥1

∣∣P̂nf
(
u1 ⊗ e∗j1 , . . . , un ⊗ e∗jn

)∣∣(j1 . . . jn)p :

u1, . . . , un ∈ W, n ≥ N
}

≤ sup
{(p

q

)n

qn
∑

j1,...,jn≥1

∣∣P̂nf
(
u1 ⊗ e∗j1 , . . . , un ⊗ e∗jn

)∣∣(j1 . . . jn)q :

u1, . . . , un ∈ W, n ≥ N
}

≤
(1

e

)N

≤ 1
r
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if N = [logr] + 1.
For each positive integer s > 0

Ps

( ∑

k≥1

uk ⊗ vk

)
=

∑

0≤n≤N−1

∑

k1,...,kn≥1

∑

j1...jn≤s

P̂nf
(
uk1 ⊗ e∗j1 , . . . , ukn

⊗ e∗jn

)
vk1(ej1) . . . vkn

(ejn
)

and

Qs

( ∑

k≥1

uk ⊗ vk) =

∑

0≤n≤N−1

∑

k1,...,kn≥1

∑

j1...jn>s

P̂nf
(
uk1 ⊗ e∗j1 , . . . , ukn ⊗ e∗jn

)
vk1(ej1) . . . vkn(ejn)

It is easy to see that Ps and Qs are defined correctly because if
∑
k≥1

uk⊗vk

=
∑
k≥1

xk ⊗ yk then

∞∑

k=1

vk(ej)uk =
∞∑

k=1

yk(ej)xk for all j ≥ 1.

We have

∣∣∥∥Qs

∥∥∣∣
p

= sup
{(p

q

)n ∑

j1...jn>s

qn
∣∣P̂nf

(
u1 ⊗ e∗j1 , . . . , un ⊗ e∗jn

)∣∣×

(j1 . . . jn)q(j1 . . . jn)p−q : 0 ≤ n ≤ N, u1 . . . un ∈ W
}

≤ sp−q <
1
r

if r = s. At the same time,

∣∣∥∥Ps

∥∥∣∣
k

=

sup
{(k

q

)n ∑

j1...jn≤s

qn
∣∣P̂nf

(
u1 ⊗ e∗j1 , . . . , un ⊗ e∗jn

)∣∣(j1 . . . jn)q · (j1 . . . jn)k−q :

0 ≤ n ≤ N − 1, u1, . . . , un ∈ W
}
≤

(k

q

)N−1

sk−q ≤ rd



THE PROPERTIES (Ω) AND (DN) OF SPACES 253

if (N − 1)k + klog s ≤ d log r or k log r + k log r ≤ d log r or d ≥ 2k. Hence

f = Ps + Qs +
∑

n>N

Pnf ∈ rdVk +
2
r
Vp.

The lemma is proved.

Lemma 2.3. Let E be a Frechet-Montel space with an absolute basis.
Then for every continuous semi-norm ρ on E′

b there exists a continuous
semi-norm ρ1 ≥ ρ on E′

b such that the canonical map

ωρ1,ρ :
(
E′

b

)
ρ1
−→ (

E′
b

)
ρ

can be factorized through the space `∞.

Proof. Since E has an absolute basis, it follows that E is the Köthe space
Λ(A) for some matrix A =

(
aj,k

)
j,k≥1

,

Λ(A) =
{

x = (xj) ∈ ω :
∑

j≥1

|xj |aj,k < +∞ ∀ k ≥ 1
}

.

Given ρ a continuous semi-norm on E′
b = Λ′(A). By [13] we can assume

that ρ is of the form

ρ(u) = sup
{∣∣∣

∑

j≥1

xjuj

∣∣∣ : (xj) ∈ B
}

for u =
(
uj

)
j≥1

∈ Λ′(A), where B is a bounded set in Λ(A) of the form

B =
{

(xj) ∈ Λ(A) :
∑

j≥1

|xj |λj ≤ 1
}

for some sequence of positive numbers
(
λj

)
j≥1

.
Since E′

b is Schwartz we can find a continuous semi-norm ρ1 ≥ ρ on E′
b

such that the canonical map πρ1ρ : Λ′(A)ρ1 −→ Λ′(A)ρ is compact. Again
we can assume that ρ1 is defined by a bounded subset B1 of Λ(A) of the
form as B:

B1 =
{

(xj) ∈ Λ(A) :
∑

j≥1

|xj |λ1
j ≤ 1

}
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and B ⊂ B1.

The compactness of πρ1ρ yields lim
j→∞

λ1
j

λj
= 0. Define the continuous

linear maps

T : λ′(A)ρ1 −→ `∞,

S : `∞ −→ (
λ(A)[B]

)′

by
T

(
(uj)

)
=

(uj

λ1
j

)
for (uj) ∈ Λ′(A)ρ1

and
S

(
(vj)

)
= (λ1

jvj) for (vj) ∈ `∞.

From the equality lim
j→∞

λ1
j

λj
= 0 we infer that ImS ⊂ Λ′(A)ρ. Obviously

π = S0T .

Proof of Theorem A.
(i) By Lemma 2.1 E′

b is a subspace of `2(I)⊗̂πs′. Since s′ is nu-
clear, it follows that `2(I)⊗̂πs′ has a fundamental system of Hilbert semi-
norms. Combining this together with the fact that every entire function of
bounded type on a (DF )-space can be factorized through a Banach space
[4] we infer that the restriction map

R : Hb

(
`2(I)⊗̂πs′

) −→ Hb(E′
b)

is surjective. From the Lemma 2.2 we deduce that Hb(E′
b) has property

(Ω).
(ii) Since E has property (Ω), by [14] E is a quotient space of B⊗̂πs,

where B is a Banach space. Let Q : B⊗̂πs −→ E be the projection.
By the Monteless of E every bounded set of E is an image of a bounded
set of B⊗̂πs under the map Q. Hence E′

b is a subspace of
(
B⊗̂πs

)′
b

=
B′⊗̂πs′. As in (i) every entire function of bounded type on E′

b can be
factorized through

(
E′

b

)
ρ

for some continuous semi-norm ρ on E′
b and by

using Lemma 2.3 it implies that Hb(E′
b) is a quotient space of Hb(B′⊗̂πs′).

By Lemma 2.2 this yields that Hb(E′
b) has property (Ω).
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Proof of Theorem B.
Assume that E is a Frechet space having property (DN) and E′

b has
an absolute basis

{
e∗j

}∞
j=1

and B a Banach space. Choose p ≥ 1 such that

(2) ∀q ∃k, C, d > 0 ∀r > 0 : U0
q ⊆ CrdU0

k +
1
r
U0

p .

(i) From (2) we have

‖z‖q = sup
{
|z(u)| : u ∈ U0

q

}

≤ sup
{∣∣z(Crdv +

1
r
w

)∣∣ : v ∈ U0
k , w ∈ U0

p

}

≤ Crd sup
{
|z(v)| : v ∈ U0

k

}
+

1
r

sup
{
|z(w)| : w ∈ U0

p

}

≤ Crd‖z‖k +
1
r
‖z‖p for all z ∈ (

E′′, β(E′′, E′)
)
, ∀r > 0,

and by [17] we infer that
(
E′′, β(E′′, E′)

)
has property (DN).

(ii) Choose an index set I such that B is quotient space of `1(I). Since

B⊗̂πE′
b =

{(
xj

)
j≥1

:

xj ∈ B,
∑

j≥1

‖xj‖ρ(e∗j ) < +∞ for all continuous semi-norms ρ on E′
b

}

it follows that Hb(B⊗̂πE′
b) is a subspace of Hb

(
`1(I)⊗̂πE′

b

)
. Thus it re-

mains to shows that Hb

(
`1(I)⊗̂πE′

b) has property (DN).
(iii) Since `1(I)⊗̂πE′

b
∼= `1(I, E′

b) it follows that

`1(I)⊗̂πE′
b =

{
z = (tij) : (i, j) ∈ I ×N, tij ∈ C,

∑
j≥1
i∈I

|tij |ρ(e∗j ) < +∞ for all continuous semi-norms ρ on E′
b

}

For each k ≥ 1, put

F (k) =
{

z =
(
tij

)
i∈I,j≥1

:
∣∣∥∥z

∥∥∣∣
k

=
∑
j≥1
i∈I

|tij |
∥∥e∗j

∥∥∗
k

< +∞
}
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where ∥∥e∗j
∥∥∗

k
= sup

{
|e∗j (t)| : ‖t‖k ≤ 1, t ∈ E

}
.

Since
{
e∗j

}
j≥1

is an absolute basis of E′
b it implies that for every bounded

set A in `1(I)⊗̂πE′
b there exist k ≥ 1 such that A is contained and bounded

in F (k). Otherwise, for every k there exists zk =
(
tkij

)
j≥1,i∈I

∈ A such
that ∣∣∥∥zk

∥∥∣∣
k

=
∑
j≥1
i∈I

|tkij
∥∥e∗j

∥∥∗
k

= +∞.

Hence, for each k we can find uj
k ∈ Uk, Jk ⊂ N, Ik ⊂ I are finite such that

∑

j∈Jk,i∈Ik

|tkij | |e∗j (uj
k)| > k.

Put M = {uj
k : k ≥ 1, j ∈ Jk} and consider the semi-norm ρM on E′

b

induced by M . Since A ⊂ `1(I)⊗̂πE′
b is bounded, it implies that for every

z =
(
tij

)
j≥1,i∈I

⊂ A we have
∑

j≥1,i∈I

|tij |ρM (e∗j ) ≤ C.

However, this is impossible by choosing {zk} ⊂ A. Hence Hb(`1(I)⊗̂πE′
b)

is a subspace of lim
k

proj Hb(F (k)).

(iv) Put

M =
{

σ : I×N −→ N : σ(i, j) 6= 0 only for finitely many (i, j) ∈ I×N
}

.

For σ ∈ M and z = (tij), tij ∈ C, i ∈ I, j ∈ N put

σσ =
∏

i,j

σ
σ(i,j)
(i,j) , σ! =

∏

i,j

σ(i, j)!,

|σ| =
∑

i,j

σ(i, j), zσ =
∏

i,j

t
σ(i,j)
i,j ,

where the usual convention 0! = 1 and 00 is defined to be 1. By a modifi-
cation of Ryan [11] it follows that the topology of lim

k
proj Hb(F (k)) can

be defined by the system of semi-norms
{
|‖ · ‖|(r,k)

}
r>0,k≥1

given by

(3)
∣∣∥∥f

∥∥∣∣
(r,k)

= sup
{ |aσ(f)|σσr|σ|bσ

.,k

|σ||σ| : σ ∈ M
}
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where

aσ(f) =
( 1

2πi

)n
∫

|λij |=1

f
( ∑

σ(i,j)6=0

λijdi ⊗ e∗j
)

∏
i,j

λ
σ(i,j)+1
i,j

dλ,

bi,j,k =
1∥∥e∗j
∥∥∗

k

, n = #
{
(i, j), σ(i, j) 6= 0

}
,

dλ =
∏

i,j

dλi,j ,
{
di

}
i∈I

is the canonical basis of `1(I).

(v) Since
(
E′′, β(E′′, E′)

)
has property (DN) we can choose p ≥ 1 such

that

(4) ∀q ∃k, C, d > 0 :
∥∥ ·

∥∥1+d

q
≤ C

∥∥ ·
∥∥

k

∥∥ ·
∥∥d

p
on E′′.

Let
{
ej

}
j≥1

be the coefficient functional sequence associated to a basis
{e∗j}. Since

{
e∗j

}
j≥1

is an absolute basis, it follows that
{
ej

}
j≥1

⊂ E′′

and ∥∥ej

∥∥
k

=
1∥∥e∗j
∥∥∗

k

= bi,j,k.

Now applying (4) for
{
ej

}
j≥1

we get

(5) b1+d
i,j,q ≤ Cbi,j,k · bd

i,j,p for every i, j.

From (3), (5) we have

∣∣∥∥f
∥∥∣∣1+d

(r,q)
= sup

{ |aσ(f)|σσr|σ|bσ
.,q

|σ||σ| : σ ∈ M
}1+d

≤ sup
{ |aσ(f)|
|σ||σ| σσr|σ|(1+d)C |σ|bσ

.,k : σ ∈ M
}

sup
{ |aσ(f)|
|σ||σ| σσbσ

.,p : σ ∈ M
}d

=
∣∣∥∥f

∥∥∣∣
(Cr1+d,k)

∣∣∥∥f
∥∥∣∣d

(1,p)

for f ∈ lim proj Hb(F (k)). Consequently, lim proj Hb(F (k)) has property
(DN). Theorem B is proved.

3. The property (DN) and pluripolar sets

In this section we establish the relation between the property (DN) on
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a Frechet space and the existence of pluripolar sets on its strongly dual
space E′

b. This result has been shown earlier by Dineen-Meise-Vogt [3] in
the case E is nuclear. Here we have

Theorem 3.1. Let E be a Frechet-Montel space such that E′
b has an

absolute basis. Then the following are equivalent
(i) E has property (DN),
(ii) H(E′

b) has property (DN),
(iii) E′

b contains a non-pluripolar compact set.

Proof. (i) ⇔ (ii) follows from the fact that E is a subspace of H(E′
b) and

by the Theorem B. (iii) ⇒ (i) follows from [3], where as (ii) ⇒ (iii) is an
immediate consequence of the following result.

Proposition 3.2. Let E be a Frechet-Montel space having the approxi-
mation property. If H(E′

b) has property (DN), then E′
b contains a non-

pluripolar compact set.

Proof. Since H(E′
b) has property (DN), there exists a compact set B in

E′
b satisfying property (DN) on H(E′

b) such that

∀q ∃k, C, d > 0 :
∥∥ · ∥∥1+d

q
≤ C

∥∥ · ∥∥
k

∥∥ · ∥∥d

B
,

where
{‖·‖q

}
q≥1

is the fundamental system of semi-norms on H(E′
b) given

by

‖σ‖q = sup
{
|σ(z)| : z ∈ U0

q

}
, σ ∈ H(E′

b),

and
{
Uq

}
q≥1

is a neighbourhood basis of 0 ∈ E, U0
q is a polar of Uq.

We shall prove that B is not pluripolar. If B is pluripolar, we can find
a plurisubharmonic function ϕ on E′

b such that

ϕ 6≡ −∞ and ϕ
∣∣
B

= −∞.

Consider the Hartogs domain Ωϕ ⊂ E′
b ×C defined by

Ωϕ =
{
(z, λ) ∈ E′

b ×C : |λ| < e−ϕ(z)
}

.

Note that Ωϕ is pseudoconvex in E′
b ×C. Since E′

b and hence E′
b ×C

has the approximation property, there exists f ∈ H(Ωϕ) such that Ωϕ is
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the domain of existence of f [12]. Write the Hartogs expansion of f at
(0, 0) ∈ Ωϕ as

f(z, λ) =
∞∑

n=0

hn(z)λn for (z, λ) ∈ Ωϕ,

where

hn(z) =
1

2πi

∫

|λ|= 1
2 e−ϕ(z)

f(z, λ)
λn+1

dλ, n ≥ 0.

Since ϕ is upper semi-continuous, hn is holomorphic on E′
b for each n ≥ 0.

On the other hand, since ϕ
∣∣
B

= −∞ it follows that the series
∞∑

n=0
hn(z)λn

converges to f uniformly on K×r∆ for all r > 0, where ∆ =
{
z : |z| ≤ 1

}
and K is an arbitrary compact set in B. Hence

lim
n→∞

sup
1
n

log
∥∥hn

∥∥
B

= −∞.

Let q ≥ 1. Choose k, C, d > 0 such that

∥∥hn

∥∥1+d

q
≤ C

∥∥hn

∥∥
k

∥∥hn

∥∥d

B
, ∀n ≥ 1.

These inequalities imply that

lim
n

sup
1 + d

n
log

∥∥hn

∥∥
q
≤ logC + lim

n
sup

1
n

log
∥∥hn

∥∥
k

+ lim
n

sup
d

n
log

∥∥hn

∥∥
B

= −∞.

Hence, the series
∑
n≥0

hn(z)λn converges uniformly on every compact set in

E′
b×C. Since Ωϕ is the domain of existence of f , we infer that E′

b×C ⊂ Ωϕ.
This is impossible, because ϕ 6≡ −∞.

Here arises the question whether the implication (i) ⇒ (iii) of Theorem
3.1 holds if we do not assume that E′

b has an absolute basis. Concerning
this question we have the following

Proposition 3.3. Let E be a Frechet space having property (DN). Then
E′

b contains a non-pluripolar bounded set.
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Proof. By Vogt [14] E is isomorphic to a subspace of B⊗̂πs, where B

is a Banach space. Let R :
(
B⊗̂πs

)′ ∼= B′⊗̂πs′ → E′
b be the restriction

map. Since every Banach space is a quotient space of `1(I) for some
index set I, we may assume without loss of generality that B′ ∼= `1(I).
On the other hand, if B⊗̂πs has property (DN), so does Hb

(
B′⊗̂s′

)
=

Hb

(
`1(I)⊗̂πs′

)
and from the definition of property (DN) it is easy to check

that s has property (DN). Hence we may assume that A = conv(U ⊗
U0

p ) ⊂ `1(I)⊗̂πs′ such that the semi-norm on Hb(`1(I)⊗̂πs′) induced by
A is the (DN)-norm for Hb(`1(I)⊗̂πs′), where U is the unit ball of `1(I)
and Up is a neighbourhood of 0 ∈ s induces the (DN)-norm for s.

Put B = R(A). If B is pluripolar in E′
b, there exists a plurisubharmonic

function ϕ on E′
b such that ϕ 6≡ −∞ and ϕ

∣∣
B

= −∞. Put

Ω =
{

(ω, λ) ∈ (
`1(I)⊗̂πs

)×C : |λ| < e−ϕR(ω)
}

.

It follows that Ω is pseudoconvex in
(
`1(I)⊗̂πs

)×C and A×C ⊂ Ω.
For each countable subset J of I let ΩJ = Ω ∩ (

`1(J)⊗̂πs′
)×C. Then

ΩJ is the domain of existence of a holomorphic function fJ . Write

fJ(ω, λ) =
∑

n≥0

hJ,n(ω)λn for (ω, λ) ∈ ΩJ ,

where

hJ,n(ω) =
1

2πi

∫

|t|= 1
2 e−ϕR(ω)

f(w, t)
tn+1

dt.

Since ϕ is upper-continuous, it follows that hJ,n are holomorphic on `1(J)⊗̂πs′.
Put AJ = A ∩ (`1(J)⊗̂πs′). Since AJ ×C ⊂ ΩJ , the series

∑
n≥0

hJ,n(ω)λn

converges uniformly to fJ on K ⊗ r∆ for r > 0, where ∆ = {z ∈ C : |z| ≤
1} and K is a compact set in AJ . Thus,

lim
n

sup
1
n

log
∥∥hJ,n

∥∥
AJ

= −∞.

Let q ≥ 1. Choose k, C > 0 such that

∥∥hJ,n

∥∥2

q
≤ C

∥∥hJ,n

∥∥
k

∥∥hJ,n

∥∥
AJ
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This inequality yields

lim
n

sup
2
n

log
∥∥hJ,n

∥∥
q
≤ logC + lim

n
sup log

∥∥hJ,n

∥∥
k

+ lim
n

sup log
∥∥hJ,n

∥∥
AJ

= −∞

where ∥∥hJ,n

∥∥
q

= sup
{
|hJ,n(ω)| : ω ∈ conv

(
UJ ⊗ U0

q

)}

UJ = U ∩ `1(J) and similarly for
∥∥hJ,n

∥∥
k
. Hence the series

∑
n≥0

hJ,n(ω)λn

converges uniformly on every compact set in
(
`1(J)⊗̂πs′

) × C. On the
other hand, since ΩJ is the domain of existence of fJ , it implies that(
`1(J)⊗̂πs′

) ×C ⊂ ΩJ . This shows ϕR = −∞ on `1(J)⊗̂πs′. Since J is
an arbitrary countable set, ϕ ≡ −∞. This is impossible. Hence B is not
pluripolar in E′

b.
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heraumes von endlichem Typ, Studia. Math. 71 (1982), 251-270.

Department of Mathematics
Pedagogical Institute 1
Tu Liem, Hanoi, Vietnam

Department of Mathematics
Hochiminh city University of education
Hochiminh city, Vietnam


