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AN OPERATIONAL METHOD FOR SOLVING
FRACTIONAL DIFFERENTIAL EQUATIONS

WITH THE CAPUTO DERIVATIVES

YURII LUCHKO AND RUDOLF GORENFLO

Abstract. In the present paper, we first develop the operational cal-
culus of Mikusiński’s type for the Caputo fractional differential operator.
This calculus is used to obtain exact solutions of an initial value problem
for linear fractional differential equations with constant coefficients and
fractional derivatives in Caputo’s sense. The initial conditions are given
in terms of the field variable and its derivatives of integer order. The
obtained solutions are expressed through Mittag-Leffler type functions.
Special cases and integral representations of solutions are presented.

1. Introduction

Fractional differential equations have excited in recent years a consi-
derable interest both in mathematics and in applications. They were used
in modeling of many physical and chemical processes and in engineering
(see, for example, [1]–[5], [9], [10], [16], [17]). In its turn, mathematical
aspects of fractional differential equations and methods of their solution
were discussed by many authors: the iteration method in [24], the series
method in [1], the Fourier transform technique in [3], [12], special me-
thods for fractional differential equations of rational order or for equations
of special type in [2], [13], [15], [18], [19], [21], the Laplace transform
technique in [9], [10], [16], [17], [21], [22], the operational calculus method
in [11], [15]. Let us note that in mathematical treatises on fractional
differential equations the Riemann-Liouville approach to the notion of the
fractional derivative of order µ (µ ≥ 0) is normally used:

(1) (Dµf)(x) :=
(

d

dx

)m

(Jm−µf)(x), m− 1 < µ ≤ m, m ∈ N, x > 0,
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where

(2) (Jµf)(x) :=
1

Γ(µ)

∫ x

0

(x− t)µ−1f(t)dt, µ > 0, x > 0,

(J0f)(x) := f(x), x > 0

is the Riemann-Liouville fractional integral of order µ. In this interpreta-
tion, the fractional derivative is left-inverse (and not right-inverse) to the
corresponding fractional integral, which is the natural generalization of the
Cauchy formula for the n-fold primitive of a function f(t). As to the ini-
tial value problem for fractional differential equations with the fractional
derivatives in the Riemann-Liouville sense, there are some troubles with
the initial conditions, see [11], [15], [21], [22], [23]. Namely, these initial
conditions should be given as the (bounded) initial values of the fractional
integral Jm−µ and of its integer derivatives of order k = 1, 2, . . . , m − 1.
On the other hand, in modeling of real processes the initial conditions are
normally expressed in terms of a given number of bounded values assumed
by the field variable and its derivatives of integer order. In order to meet
this physical requirement, an alternative definition of fractional derivative
was introduced by Caputo [4] and adopted by Caputo and Mainardi [5] in
the framework of the theory of Linear Viscoelasticity:

(3) (Dµ
∗ f)(x) := (Jm−µf (m))(x) =

1
Γ(m− µ)

x∫

0

(x− t)m−µ−1f (m)(t)dt,

m− 1 < µ ≤ m, m ∈ N, x > 0.

In a series of papers (see [9], [16], [17] and the references there) the Ca-
puto fractional derivative was considered and some of the simplest linear
fractional differential equations with constant coefficients and fractional
derivatives in the Caputo sense were solved by using the Laplace trans-
form technique.

In the present paper we use the operational calculus method to solve
an initial value problem for a general linear fractional differential equa-
tion with constant coefficients and with the Caputo fractional derivatives.
We first develop a modification of the Mikusiński operational calculus for
the Caputo fractional derivative, a modification that is more suitable for
application to the solution of differential and integral equations of frac-
tional order. Firstly, we consider the space Cα of functions which can
have an integrable singularity in the neighborhood of zero, instead of the
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space C[0,∞) of functions continuous on the half-axis used in Mikusiński’s
operational calculus. Since the kernel of the Riemann-Liouville integral
operator Jµ belongs to the space Cα if µ−1 > α and α ≥ −1, this function
space seems to be more suitable for the development of the operational
calculus for the Caputo derivative. Secondly, the abovementioned prop-
erty allows us to consider the Riemann-Liouville integral operator Jµ as
the convolution product with the power function xµ−1/Γ(µ) in the space
Cα if µ − 1 > α, and this power function plays in our considerations
the same role, as the function {1} in Mikusiński’s operational calculus.
As an application of this calculus we obtain solutions of linear fractional
differential equations with constant coefficients and Caputo derivatives.

2. Some properties of the caputo fractional derivative

Since both the Riemann-Liouville and the Caputo derivatives ((1) and
(3), respectively) are defined through the Riemann-Liouville fractional
integral (2) and this operator plays a very important role in the develop-
ment of the corresponding operational calculus, there are some coinciding
elements in the operational calculi for both fractional derivatives. The
operational calculus for the Riemann-Liouville fractional derivative was
already developed in [8], [11], [15] and we shall cite some theorems from
there without proofs.

We begin by defining the function space Cα, α ∈ R, which was used
by Dimovski [6] in his development of the operational calculus for the
hyper-Bessel differential operator.

Definition 2.1. A real or complex-valued function f(x), x > 0, is said
to be in the space Cα, α ∈ R, if there exists a real number p, p > α, such
that

f(x) = xpf1(x)

with a function f1(x) in C[0,∞).
Clearly, Cα is a vector space and the set of spaces Cα is ordered by

inclusion according to

(4) Cα ⊂ Cβ ⇔ α ≥ β.

Theorem 2.1. The Riemann-Liouville fractional integral operator Jµ,
µ ≥ 0, is a linear map of the space Cα, α ≥ −1, into itself, that is,

Jµ : Cα → Cµ+α ⊂ Cα.
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Remark 2.1. In the case f ∈ Cα for a value α ≥ −1 and for µ ≥ 1 we have
Jµf ∈ C0 ⊂ C[0,∞).

It is important to note, that the operator Jµ, µ > 0, has the following
convolutional representation in the space Cα, α ≥ −1:

(5) (Jµf)(x) = (hµ ◦ f)(x), hµ(x) := xµ−1/Γ(µ), f ∈ Cα,

where

(g ◦ f)(x) =

x∫

0

g(x− t)f(t)dt, x > 0

is the Laplace convolution. For the Laplace convolution itself the inclusion

(6) g ◦ f ∈ Cα1+α2+1 ⊆ C−1, f ∈ Cα1 , g ∈ Cα2 , α1, α2 ≥ −1

holds true. The representation (5) and the commutativity of the Laplace
convolution (see [6], [20]) lead to the following property of the Riemann-
Liouville fractional integral:

(JδJηf)(x) = (JηJδf)(x), f ∈ Cα, α ≥ −1, δ ≥ 0, η ≥ 0.

Next, using the associativity of the Laplace convolution and the Euler
integral of the first kind for the evaluation of (hδ ◦ hη)(x), we obtain

(7) (JδJηf)(x) = (Jδ+ηf)(x), f ∈ Cα, α ≥ −1, δ ≥ 0, η ≥ 0,

that is also well known. In particular, it follows from (7) that

(8) (Jµ . . . Jµ︸ ︷︷ ︸
n

f)(x) = (Jnµf)(x), f ∈ Cα, α ≥ −1, µ ≥ 0, n ∈ N.

It is obvious, that the Caputo derivative (3) is not defined on the whole
space Cα. Let us introduce a subspace of Cα, which is suitable for dealing
with the Caputo derivative.

Definition 2.2. A function f(x), x > 0, is said to be in the space

Cm
α , m ∈ N0 = N ∪ {0}, iff f (m) ∈ Cα.

Remark 2.2. The space Cm
α doesn’t coincide with the space C

(m)
α = {f :

there exist p > α, f̃ ∈ Cm[0,∞) such that f(x) = xpf̃(x)}, considered in
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[14]. For example, if f(x) = cos(x)/
√

x, x > 0, then f ∈ C
(1)
−1 , f 6∈ C1

−1

and for the function f(x) ≡ 1, x > 0, we have f 6∈ C
(1)
0 , f ∈ C1

0 .

We state five of the properties of the space Cm
α , which will be used in

the further discussions.

1) Cm
α is a vector space.

2) C0
α ≡ Cα.

3) If f ∈ Cm
α for a value α ≥ −1 and an index m ≥ 1, then f (k)(0+) :=

lim
x→0+

f (k)(x) < +∞, 0 ≤ k ≤ m− 1, and the function

f̃(x) =
{

f(x), x > 0,

f(0+), x = 0

is in Cm−1[0,∞).

Proof. f ∈ Cm
α means f (m) := φ ∈ Cα. Let us fix x = X > 0. Since

f (m) = φ ∈ C[ξ, X], 0 < ξ < X, we arrive at

X∫

ξ

f (m)(t) dt = f (m−1)(X)− f (m−1)(ξ),

where the left- and right-hand sides as functions of ξ are continuous on
(0, X]. Furthermore, since

lim
ξ→0+

X∫

ξ

f (m)(t) dt =

X∫

0

φ(t) dt < +∞,

we get

f (m−1)(0+) := lim
ξ→0+

f (m−1)(ξ) = f (m−1)(X)−
X∫

0

φ(t) dt < +∞,

hence

f (m−1)(X) =

X∫

0

φ(t) dt + f (m−1)(0+).
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By liberating x = X and putting f (m−1)(0) := f (m−1)(0+) we recognize
f (m−1) as continuous on [0,∞) and obtain the representation

(9) f(x) = (Jmφ)(x) +
m−1∑

k=0

f (k)(0+)
xk

k!
, x ≥ 0,

φ(t) = f (m)(t), f (k)(0+) = lim
x→0+

f (k)(x) < +∞, 0 ≤ k ≤ m− 1.

4) If f ∈ Cm
α for a value α ≥ −1, then f ∈ Cm(0,∞) ∩ Cm−1[0,∞).

Indeed, since f (m) ∈ Cα, we have f (m) ∈ C(0,∞). The inclusion
f ∈ C(m−1)[0,∞) follows from property 3).

5) For real α ≥ −1 and index m ≥ 1 the following equivalence holds:

f ∈ Cm
α ⇔ f(x) = (Jmφ)(x) +

m−1∑

k=0

ck
xk

k!
, x ≥ 0, φ ∈ Cα.

The first statement (⇒) is already proved (see (9)), the second one (⇐)
is checked directly. Let us note that in this case we have f (k)(0) = ck,
k = 0, 1, . . . ,m− 1, f (m) = φ.

On the basis of the properties 1)-5) of the function space Cm
α we prove

now some theorems, important for the development of the corresponding
operational calculus.

Theorem 2.2. Let f ∈ Cm
−1, m ∈ N0. Then the Caputo fractional

derivative Dµ
∗ f , 0 ≤ µ ≤ m, is well defined and the inclusion

Dµ
∗ f ∈

{
C−1, m− 1 < µ ≤ m,

Ck−1[0,∞) ⊂ C−1, m− k − 1 < µ ≤ m− k, k = 1, . . . , m− 1

holds true.

Proof. In the case m − 1 < µ ≤ m the inclusion under consideration
follows from the definition of the Caputo derivative Dµ

∗ and Theorem 2.1.
The property 4) of the space Cm

α , m ≥ 1, and the corresponding mapping
properties of the Riemann-Liouville fractional integral (see [24]) give us the
inclusion Dµ

∗ f ∈ Ck−1[0,∞) for m− k− 1 < µ ≤ m− k, k = 1, . . . ,m− 1.
The inclusion Ck−1[0,∞) ⊂ C[0,∞) ⊂ C−1 follows from (4).
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Theorem 2.3. Let f ∈ Cm
−1, m ∈ N and m − 1 < µ ≤ m. Then the

Riemann-Liouville and the Caputo fractional derivatives are connected by
the relation:

(10) (Dµf)(x) = (Dµ
∗ f)(x) +

m−1∑

k=0

f (k)(0+)
Γ(1 + k − µ)

xk−µ, x > 0.

Proof. Making use of the representation (9), we get

(Dµf)(x) =
(

d

dx

)m

(Jm−µf)(x)

=
(

d

dx

)m
(

Jm−µ

[
(Jmf (m))(t) +

m−1∑

k=0

f (k)(0+)
tk

k!

])
(x)

= (Jm−µf (m))(x) +
(

d

dx

)m
(

Jm−µ

[
m−1∑

k=0

f (k)(0+)
tk

k!

])
(x)

= (Dµ
∗ f)(x) +

m−1∑

k=0

f (k)(0+)
Γ(1 + k − µ)

xk−µ, x > 0.

In finding the last expression we have made use of the rules for fractional
integration and differentiation of the power function pν(x) = xν , ν > −1,
namely,

(Jµpν)(x) =
Γ(ν + 1)

Γ(ν + 1 + µ)
xν+µ, µ ≥ 0, x > 0,(11)

(Dµpν)(x) =
Γ(ν + 1)

Γ(ν + 1− µ)
xν−µ, µ ≥ 0, x > 0.(12)

Corollary 2.1. It follows from the representation (10) that the Riemann-
Liouville fractional derivative (Dµf)(x) is not, in the general case, in the
space C−1, if f ∈ Cm

−1. There are only three exceptional cases:
1) If µ = m ∈ N, then

Dµf ≡ Dµ
∗ f ≡ f (m) ∈ C−1.

2) If f (k)(0+) = 0, k = 0, . . . , m− 1, then

Dµf ≡ Dµ
∗ f ∈ C−1.
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3) If 0 < µ < 1, then Dµf ∈ C−1 because of

(Dµf)(x) = (Dµ
∗ f)(x) +

f(0)
Γ(1− µ)

x−µ.

Theorem 2.4. Let m− 1 < µ ≤ m, m ∈ N, α ≥ −1 and f ∈ Cm
α . Then

(13) (JµDµ
∗ f)(x) = f(x)−

m−1∑

k=0

f (k)(0+)
xk

k!
, x ≥ 0.

Proof. Using the relations (3), (7), and (9) we get

(JµDµ
∗ f)(x) = (JµJm−µf (m))(x) = (Jmf (m))(x)

= f(x)−
m−1∑

k=0

f (k)(0+)
xk

k!
, x ≥ 0.

Theorem 2.5. Let f ∈ Cm
−1, m ∈ N0, f(0) = · · · = f (m−1)(0) = 0 and

g ∈ C1
−1. Then the Laplace convolution

h(x) =

x∫

0

f(t)g(x− t) dt

is in the space Cm+1
−1 and h(0) = · · · = h(m)(0) = 0.

Proof. Let m = 0. The property 4) of the space C1
−1 gives us the inclusion

g ∈ C[0,∞). In this case h(x) = xεh1(x) for an ε > 0, h1 ∈ C[0,∞), i.e.,
h ∈ C[0,∞) and h(0) = 0. We have also

h′(x) =

x∫

0

f(t)g′(x− t) dt + f(x)g(0), x > 0.

Since g′ ∈ C−1 and f ∈ C−1 it follows from the inclusion (6) that
x∫
0

f(t)g′(x − t) dt ∈ C−1 and, consequently, h′ ∈ C−1, which proves our

theorem in the case m = 0. For m = 1, it follows from the property 4) of
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the space C1
−1, that f ∈ C[0,∞). Using the condition f(0) = 0 and the

representation obtained above for h′ we arrive at h′(0) = 0 and

h′′(x) =

x∫

0

f ′(x− t)g′(t) dt + f ′(x)g(0), x > 0.

Since g′ ∈ C−1 and f ′ ∈ C−1, we get the inclusion h′′ ∈ C−1. Repeating
the same arguments m times, we arrive at h(0) = · · · = h(m)(0) = 0 and
the representation

h(m+1)(x) =

x∫

0

f (m)(x− t)g′(t) dt + f (m)(x)g(0), x > 0,

which gives us the inclusion h ∈ Cm+1
−1 .

3. Operational calculus for the caputo derivative

For the sake of simplicity we shall consider in our further discussions
the case of the space C−1, which turns out to be the most interesting one
for applications. As in the case of Mikusiński’s calculus, we have

Theorem 3.1. The space C−1 with the operations of the Laplace con-
volution ◦ and ordinary addition becomes a commutative ring (C−1, ◦, +)
without divisors of zero.

This ring can be extended to the quotient field M by following the lines
of Mikusiński [20]:

M := C−1 × (C−1 \ {0})/ ∼,

where the equivalence relation (∼) is defined, as usual, by

(f, g) ∼ (f1, g1) ⇔ (f ◦ g1)(x) = (g ◦ f1)(x).

Thus, we can consider the elements of the fieldM as convolution quotients
f/g and define the operations in M as follows:

f

g
+

f1

g1
:=

f ◦ g1 + g ◦ f1

g ◦ g1
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and
f

g
· f1

g1
:=

f ◦ f1

g ◦ g1
.

The proof of the fact that the set M is a commutative field with respect
to the operations “+” and “·” is based on Theorem 3.1.

It is easily seen that the ring C−1 can be embedded in the field M by
the map (µ > 0):

f 7→ hµ ◦ f

hµ
,

with, by (5), hµ(x) = xµ−1/Γ(µ).
Defining the operation of multiplication with a scalar λ from the field

R (or C) by the relation

λ
f

g
:=

λf

g
,

f

g
∈M,

and remembering the fact, that the set C−1 is a vector space, we check
that the set M is a vector space too. Since the constant function f(x) ≡
λ, x > 0, is in the space C−1, we should distinguish the operation of
multiplication with a scalar in the vector space M and the operation of
multiplication with a constant function in the field M. In this last case
we shall write

(14) {λ} · f

g
=

λhµ+1

hµ
· f

g
= {1} · λf

g
.

It is easy to check that the element I =
hµ

hµ
of the field M is the unity

of this field with respect to the operation of multiplication. Let us prove
that this element of the field M is not reduced to a function lying in the
ring C−1 and, consequently, it can be regarded as a generalized function.

Indeed, let the unity I =
hµ

hµ
be reduced to some function f ∈ C−1. Then

we have

(15)
hµ

hµ
∼ f ◦ hµ

hµ
⇔ hµ ◦ hµ = (f ◦ hµ) ◦ hµ.

Making use of the representations (5) and (8) we rewrite the last relation
in the form

(16)
x2µ−1

Γ(2µ)
= (J2µf)(x),
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where (J2µf)(x) is the Riemann-Liouville fractional integral (2). It is well
known (see [15] for the case of the space C−1), that the Riemann-Liouville
fractional derivative (1) is left-inverse to the Riemann-Liouville fractional
integral. Applying the operator D2µ to the equality (16) and using the
formula (12) for evaluation of the right-hand side, we obtain

(17) 0 ≡ f(x), x > 0.

Relations (16) and (17) lead to the contradictory formula

x2µ−1

Γ(2µ)
≡ 0, x > 0,

which shows, that the relation (15) is contradictory for any f ∈ C−1 and,
consequently, the unity element I of the field M is not reduced to function
in the ring C−1. Later we shall consider some other elements of the field
M possessing this property, in particular, the element which will play an
important role in the applications of operational calculus and is given by

Definition 3.1. The algebraic inverse of the Riemann-Liouville fractional
integral operator Jµ is said to be the element Sµ of the field M, which is
reciprocal to the element hµ in the field M, that is,

(18) Sµ =
I

hµ
≡ hµ

hµ ◦ hµ
≡ hµ

h2µ
,

where (and in what follows) I =
hµ

hµ
denotes the identity element of the

field M with respect to the operation of multiplication.

As we have already seen, the Riemann-Liouville fractional integral Jµ

can be represented as a multiplication (convolution) in the ring C−1 (with
the function hµ, see (5)). Since the ring C−1 is embedded into the field
M of convolution quotients, this fact can be rewritten as follows:

(19) (Jµf)(x) =
I

Sµ
· f.

As to the Caputo fractional derivative, there exists no convolution rep-
resentation in the ring C−1 for it, but it is reduced to the operator of
multiplication in the field M.
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Theorem 3.2. Let f ∈ Cm
−1, m−1 < µ ≤ m, m ∈ N. Then the following

relation holds true in the field M of convolution quotients:

(20) Dµ
∗ f = Sµ · f − Sµ · fµ, fµ(x) :=

m−1∑

k=0

f (k)(0+)
xk

k!
.

Proof. Theorem 2.4 gives us the representation

(JµDµ
∗ f)(x) = f(x)− fµ(x), fµ(x) =

m−1∑

k=0

f (k)(0+)
xk

k!
, x ≥ 0.

Upon multiplying both sides of this relation by Sµ, if we apply the relation
(19), we shall obtain the assertion (20).

We already know (see (8)), that for µ > 0, n ∈ N

hn
µ(x) := hµ ◦ . . . ◦ hµ︸ ︷︷ ︸

n

= hnµ(x).

Let us extend this relation to an arbitrary positive real power exponent:

(21) hλ
µ(x) := hλµ(x), λ > 0.

We have for any λ > 0 the inclusion hλ
µ ∈ C−1, and the following relations

can be easily checked (α > 0, β > 0):

(22) hα
µ ◦ hβ

µ = hαµ ◦ hβµ = h(α+β)µ = hα+β
µ ,

(23) hα
µ1

= hβ
µ2

⇔ µ1α = µ2β.

Then we define a power function of the element Sµ with an arbitrary
real power exponent λ:

(24) Sλ
µ =





h−λ
µ , λ < 0,

I, λ = 0,
I

hλ
µ
, λ > 0.
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Using this definition and the relations (22) and (23), we get (α, β ∈ R):

(25) Sα
µ · Sβ

µ = Sα+β
µ ,

(26) Sα
µ1

= Sβ
µ2

⇔ µ1α = µ2β.

For many applications it is important to know the functions of Sµ in M
which can be represented by means of the elements of the ring C−1. One
useful class of such functions is given by the following theorem.

Theorem 3.3. Let the power series

∞∑

i1,... ,in=0

ai1,... ,inxi1
1 × · · · × xin

n , x = (x1, . . . , xn) ∈ Rn, ai1,... ,in ∈ R,

be convergent at a point x0 = (x10, . . . , xn0) with all xk0 6= 0, k = 1, . . . , n,
and β > 0, αi > 0, i = 1, . . . , n.
Then the function of Sµ

S−β
µ

∞∑

i1,... ,in=0

ai1,... ,in(S−α1
µ )i1 × · · · × (S−αn

µ )in

=
∞∑

i1,... ,in=0

ai1,... ,inh(β+α1i1+···+αnin)µ(x),

where hµ(x) is given by (5), defines an element of the ring C−1.

For the proof of this theorem we refer to [11]. We give here some
operational relations, which will be used in the further discussions. For
more operational relations we refer to [8], [11], and [15].

(27)
I

Sµ − ρ
= xµ−1Eµ,µ(ρxµ),

where Eα,β(z) is the generalized Mittag-Leffler function defined by

Eα,β(z) :=
∞∑

k=0

zk

Γ(αk + β)
, α, β > 0, |z| < ∞.
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The relation (27) can formally be obtained as a geometric series:

I

Sµ − ρ
=

I

I

hµ
− ρ

=
hµ

I − ρhµ
=

∞∑

k=0

ρkhk+1
µ

=
∞∑

k=0

ρkx(k+1)µ−1

Γ(µk + µ)
= xµ−1Eµ,µ(ρxµ).

The m-fold convolution of the right-hand side of the relation (27) gives us
the operational relation:

(28)
I

(Sµ − ρ)m
= xµm−1Em

µ,mµ(ρxµ), m ∈ N,

where

Em
α,β(z) :=

∞∑

i=0

(m)iz
i

i!Γ(αi + β)
, α, β > 0, |z| < ∞, (m)i =

i−1∏

k=0

(m + k).

Let β > 0, αi > 0, i = 1, . . . , n. We then have the operational relation

(29)
S−β

µ

I −
n∑

i=1

λiS
−αi
µ

= xβµ−1E(α1µ,... ,αnµ),βµ(λ1x
α1µ, . . . , λnxαnµ)

with the multivariate Mittag-Leffler function

E(a1,... ,an),b(z1, . . . , zn) :=
∞∑

k=0

∑
l1+···+ln=k

l1≥0,... ,ln≥0

(k; l1, . . . , ln)

n∏
i=1

zli
i

Γ
(
b +

n∑
i=1

aili
)

and the multinomial coefficients

(k; l1, . . . , ln) :=
k!

l1!× · × ln!
·

For the general properties of the Mittag-Leffler functions we refer to [7].
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4. Fractional differential equations

We first apply the developed operational calculus to some simple frac-
tional differential equations, which have already been considered by using
the Laplace transform technique (see [9] and references there). We begin
with the initial value problem (µ > 0)

(30)

{
(Dµ

∗ y)(x)− λy(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, . . . ,m− 1, m− 1 < µ ≤ m, λ ∈ R.

The function g is assumed to lie in C−1 if µ ∈ N, in C1
−1 if µ 6∈ N, and

the unknown function y(x) is to be determined in the space Cm
−1.

Making use of the relation (20), the initial value problem (30) can be
reduced to the following algebraic equation in the convolution field M:

Sµ · y − λy = Sµ · yµ + g, yµ(x) =
m−1∑

k=0

ck
xk

k!
, m− 1 < µ ≤ m,

whose unique solution in the field M has the form

y = yg + yh =
I

Sµ − λ
· g +

Sµ

Sµ − λ
· yµ.

It turns out that the right-hand part of this relation can be interpreted
as a function lying in the space Cm

−1, i.e., as a classical solution of the
initial value problem (30). We shall prove this fact later for more general
equations, here we shall only demonstrate formulas for this solution.

It follows from the operational relation (27) and the embedding of the
ring C−1 into the field M, that the first term of this relation, yg (solution
of the inhomogeneous fractional differential equation (30) with zero initial
conditions), is represented in the form

(31) yg(x) =

x∫

0

tµ−1Eµ,µ(λtµ)g(x− t) dt.

As to the second term, yh, it is a solution of the homogeneous fractional
differential equation (30) (g(x) replaced by 0) with the given initial con-
ditions, and we have

(32) yh(x) =
m−1∑

k=0

ckuk(x), uk(x) =
Sµ

Sµ − λ
· {xk

k!
}.
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Making use of the relation

(33)
xk

k!
= hk+1(x) = hµ

(k+1)/µ(x) =
I

S
(k+1)/µ
µ

,

the formula (25), and the operational relation (29), we get the representa-
tion of the functions uk(x), k = 0, . . . ,m − 1, in terms of the generalized
Mittag-Leffler function:

uk(x) =
Sµ

Sµ − λ
· {xk

k!
} =

S
−(k+1)/µ
µ

I − λS−1
µ

= xkEµ,k+1(λxµ).

Furthermore, due to the representation (5) of the Riemann-Liouville frac-
tional integral, we have

uk(x) = (Jku0)(x), u0(x) = Eµ,1(λxµ) := Eµ(λxµ),

where Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
is the Mittag-Leffler function. Using the

last representation we arrive at the relations

u
(l)
k (0) = δkl, k, l = 0, . . . ,m− 1,

and therefore the m functions uk(x), k = 0, . . . ,m − 1, represent the
general solution of the homogeneous fractional differential equation (30).
Summarizing the obtained results, we get the solution of the initial value
problem (30) in the form

y(x) =

x∫

0

tµ−1Eµ,µ(λtµ)g(x− t) dt +
m−1∑

k=0

ckxkEµ,k+1(λxµ),

which can be rewritten in the case λ 6= 0 in terms of the Mittag-Leffler
function:

y(x) =
1
λ

x∫

0

d

dt
(Eµ(λtµ)) g(x− t) dt +

m−1∑

k=0

ck(JkEµ(λtµ))(x).

The next equation

(34)

{
y′(x)− λ1(Dµ

∗ y)(x)− λ2y(x) = g(x),

y(0) = c0 ∈ R, 0 < µ < 1, λ1, λ2 ∈ R
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with µ = 1/2 and λ1 < 0, λ2 < 0 corresponds to the Basset problem, a
classical problem in fluid dynamics (see [9], [17]). We treat the general
problem (34). The function g ∈ C−1 is given, and the unknown function
y(x) is to be determined in the space C1

−1.
With the help of the relation (20) the problem under consideration can

be reduced to the algebraic equation in the field M:

S1 · y − λ1Sµ · y − λ2y = g + S1 · y1 − λ1Sµ · yµ, y1(x) ≡ yµ(x) ≡ c0.

Applying the relation (26) we represent a unique solution of this equation
in the field M in the form

y = yg + yh =
I

S1 − λ1S
µ
1 − λ2

· g +
S1 − λ1S

µ
1

S1 − λ1S
µ
1 − λ2

· y1, y1(x) ≡ c0.

Using now the relations (25) and (29) we arrive at the representation

I

S1 − λ1S
µ
1 − λ2

=
S−1

1

I − λ1S
−(1−µ)
1 − λ2S

−1
1

= E(1−µ,1),1(λ1x
1−µ, λ2x)

with the multivariate Mittag-Leffler function. We also have, using the
same technique and (14), (33), the relation

yh(x) =
S1 − λ1S

µ
1

S1 − λ1S
µ
1 − λ2

· {c0} =
[
I +

λ2

S1 − λ1S
µ
1 − λ2

]
· c0I

S1

= c0

[
I

S1
+ λ2

S−2
1

I − λ1S
µ−1
1 − λ2S

−1
1

]

= c0

[
1 + λ2xE(1−µ,1),2(λ1x

1−µ, λ2x)
]
.

The unique solution of the initial value problem (34) has then the form

y(x) =

x∫

0

E(1−µ,1),1(λ1t
1−µ, λ2t)g(x− t) dt

+ c0

[
1 + λ2xE(1−µ,1),2(λ1x

1−µ, λ2x)
]
.

The inclusion y ∈ C1
−1 will be shown in the next theorem for a more

general situation.
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We consider now the general linear differential equation with constant
coefficients and the Caputo derivatives.

Theorem 4.1. Let µ > µ1 > · · · > µn ≥ 0, mi − 1 < µi ≤ mi, mi ∈
N0 = N ∪ {0}, λi ∈ R, i = 1, . . . , n. The initial value problem

(35)





(Dµ
∗ y)(x)−

n∑

i=1

λi(Dµi∗ y)(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, . . . ,m− 1, m− 1 < µ ≤ m,

where the function g is assumed to lie in C−1 if µ ∈ N, in C1
−1 if µ 6∈ N,

and the unknown function y(x) is to be determined in the space Cm
−1, has

a solution, unique in the space Cm
−1, of the form

(36) y(x) = yg(x) +
m−1∑

k=0

ckuk(x), x ≥ 0.

Here

(37) yg(x) =

x∫

0

tµ−1E(·),µ(t)g(x− t)dt

is a solution of the problem (35) with zero initial conditions, and the system
of functions

(38) uk(x) =
xk

k!
+

n∑

i=lk+1

λix
k+µ−µiE(·),k+1+µ−µi

(x), k = 0, . . . , m− 1,

fulfills the initial conditions u
(l)
k (0) = δkl, k, l = 0, . . . , m−1. The function

(39) E(·),β(x) = E(µ−µ1,...,µ−µn),β(λ1x
µ−µ1 , . . . , λnxµ−µn)

is a particular case of the multivariate Mittag-Leffler function (29) and the
natural numbers lk, k = 0, . . . , m− 1, are determined from the condition

(40)

{
mlk ≥ k + 1,

mlk+1 ≤ k.
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In the case mi ≤ k, i = 0, . . . , m − 1, we set lk := 0, and if mi ≥ k + 1,
i = 0, . . . , m− 1, then lk := n.

Proof. Since y ∈ Cm
−1, the initial value problem (35) can be reduced to the

following algebraic equation in the field M by using the formula (20):

(41) Sµ · y − Sµ · yµ −
n∑

i=1

λi(Sµi · y − Sµi · yµi) = g,

yµ(x) =
m−1∑

k=0

ck
xk

k!
, yµi(x) =

mi−1∑

k=0

ck
xk

k!
, i = 1, . . . , n.

Equation (41) has a unique solution in the field M, which in view of the
relation (26) is given by

(42) y = yg + yh =
I

Sµ −
n∑

i=1

λiS
µi/µ
µ

· g +
Sµ · yµ −

n∑
i=1

λiS
µi/µ
µ · yµi

Sµ −
n∑

i=1

λiS
µi/µ
µ

.

Using the operational relation (29), Theorems 3.1 and 3.3, we can interpret
the element yg of the field M as the function in the ring C−1:

yg(x) =

x∫

0

tµ−1E(·),µ(t)g(x− t)dt,

where the function E(·),µ(x) is given by (39). In the case µ 6∈ N the
function g(x) is in the space C1

−1 and Theorem 2.5 gives us the inclusion
yg ∈ C1

−1. Let us show that the function yg(x) is in the space Cm
−1.

Multiplying the relation

yg =
I

Sµ −
n∑

i=1

λiS
µi/µ
µ

· g

by (Sµ −
n∑

i=1

λiS
µi/µ
µ ) and then by hµ = S−1

µ , we readily get

(43) yg(x) = (Jµg)(x) +
n∑

i=1

λi(Jµ−µiyg)(x).
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It follows from this representation, that

(44) yg(x) = (Jµ−µ1ψ1)(x), ψ1 ∈
{

C−1, µ ∈ N,

C1
−1, µ 6∈ N.

Combining now the relations (44) and (43) and repeating the same argu-
ments p times (p = [µ/(µ− µ1)] + 1) we arrive at the representation

(45) yg(x) = (Jµψp)(x), ψp ∈
{

C−1, µ ∈ N,

C1
−1, µ 6∈ N.

In the case µ = m ∈ N it follows from (45) that y
(m)
g = ψp ∈ C−1

and yg(0) = · · · = y
(m−1)
g (0) = 0. If µ 6∈ N, m − 1 < µ < m then the

function hµ(x) =
xµ

Γ(µ)
∈ Cm−1

−1 and we have hµ(0) = · · · = h
(m−2)
µ (0) = 0.

Using now the representation (45) and Theorem 2.5 we get the inclusion
yg ∈ Cm

−1 and the relations yg(0) = · · · = y
(m−1)
g (0) = 0. The last

considerations prove the part of Theorem 4.1 concerning the solution of
the problem (35) with zero initial conditions.

Let us consider the element yh of the representation (42). Using the
expressions for the functions yµ(x), yµi(x), i = 1, . . . , n, from (41), we
have

yh =
m−1∑

k=0

ckuk(x), uk =
Sµ −

lk∑
i=1

λiS
µi/µ
µ

Sµ −
n∑

i=1

λiS
µi/µ
µ

·
{

xk

k!

}
,

where the natural numbers lk, k = 0, . . . ,m − 1, are defined by (40).

Applying the relation (33) for the function
xk

k!
, some elementary transfor-

mations and then the operational relation (29), we find from the previous
representation (k = 0, . . . , m− 1):

uk =
I

S
(k+1)/µ
µ

·
Sµ −

lk∑
i=1

λiS
µi/µ
µ

Sµ −
n∑

i=1

λiS
µi/µ
µ

=
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=
I

S
(k+1)/µ
µ

·


I +

n∑
i=lk+1

λiS
µi/µ
µ

Sµ −
n∑

i=1

λiS
µi/µ
µ




= S−(k+1)/µ
µ +

n∑

i=lk+1

λi
S
−(k+1+µ−µi)/µ
µ

I −
n∑

i=1

λiS
−(µ−µi)/µ
µ

=
xk

k!
+

n∑

i=lk+1

λix
k+µ−µiE(·),k+1+µ−µi

(x),

where the function E(·),β(x) is given by (39). According to the definition
of the numbers lk, we have mi ≤ k for i = lk + 1, . . . , n. It follows then,
that k + µ − µi ≥ µ, i = lk + 1, . . . , n. Using this inequality, we readily
get the inclusion uk ∈ Cm

−1, k = 0, . . . , m− 1 and the relations

u
(l)
k (0) = δkl, k, l = 0, . . . ,m− 1,

and therefore the m functions uk(x), k = 0, . . . , m − 1, represent the
general solution of the homogeneous fractional differential equation (35).

Remark 4.1. The results of Theorem 4.1 can be used in some cases for
the initial value problem (35) with the Riemann-Liouville fractional deriva-
tives instead of the Caputo fractional derivatives. In particular, as we have
seen in Corollary 2.1, (Dµy)(x) ≡ (Dµ

∗ y)(x) if µ = m ∈ N or y(k)(0) = 0,
k = 0, . . . , m − 1, m − 1 < µ ≤ m. In the case 0 < µ < 1 we can use the
relation

(Dµy)(x) = (Dµ
∗ y)(x) +

y(0)
Γ(1− µ)

x−µ

to reduce the initial value problem with the Riemann-Liouville fractional
derivatives to the initial value problem of the type (35).

Remark 4.2. The developed theory can be rewritten without any diffi-
culties for the case of the Caputo derivative of the complex order µ. In
particular, Theorem 4.1 gives us then the solution of the initial value prob-
lem (35) for µ ∈ C if <(µ) = m ∈ N, then µ = m), <(µ) > <(µ1) > · · · >
<(µn) ≥ 0 if <(µi) = mi ∈ N0, then µi = mi), mi − 1 < <(µi) ≤ mi,
mi ∈ N0 = N ∪ {0}, µi, λi ∈ C, i = 1, . . . , n, y(k)(0) = ck ∈ C,
k = 0, . . . , m− 1, m− 1 < <(µ) ≤ m.
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The solution (36)-(38) of the initial value problem (35) was obtained in
terms of the Mittag-Leffler type function E(·),β(x), which is given by its
series representation

(46) E(·),β(x) =
∞∑

k=0

∑
l1+···+ln=k

l1≥0,... ,ln≥0

(k; l1, . . . , ln)

n∏
i=1

(λix
µ−µi)li

Γ(β +
n∑

i=1

(µ− µi)li)
·

Let us find an integral representation of this function. We shall use the
Hankel integral representation of the reciprocal Gamma-function

1
Γ(z)

=
1

2πi

∫

Ha(0+)

eζζ−z dζ, z ∈ C,

where Ha(ε+) is the Hankel path, a loop which starts from −∞ along the
lower side of the negative real axis, encircles the circular disc |ζ| = ζ0 >
ε > 0 in the positive sense and ends at −∞ along the upper side of the
negative real axis. Then we substitute this representation into (46) and
get

E(·),β(x) =
∞∑

k=0

∑
l1+···+ln=k

l1≥0,... ,ln≥0

(k; l1, . . . , ln)
n∏

i=1

(λix
µ−µi)li

× 1
2πi

∫

Ha(0+)

eζζ−β−∑n
i=1(µ−µi)li dζ.

Changing the order of integration and summation, using the multinomial
formula with exponent −1 to get a closed form for a sum in integrand and
substituting ζ = sx, we finally get

E(·),β(x) = x1−β 1
2πi

∫

Ha(λ+)

esxsµ−β ds

sµ −
n∑

i=1

λisµi

,(47)

λ = max



1,

(
n∑

i=1

|λi|
)1/(µ−µ1)



 .
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Corollary 4.1. Applying the representation (47) to the formulas (37) and
(38), we rewrite the solution (36) of the initial value problem (35) in the
form

(48) y(x) =

x∫

0

uδ(t)g(x− t) +
m−1∑

k=0

ckuk(x), x ≥ 0,

where

(49) uδ(x) =
1

2πi

∫

Ha(λ+)

esx ds

sµ −
n∑

i=1

λisµi

,

uk(x) =
xk

k!
+

1
2πi

∫

Ha(λ+)

esx
n∑

i=lk+1

λis
µi

sµ −
n∑

i=1

λisµi

ds

sk+1

=
1

2πi

∫

Ha(λ+)

esx

[
sµ −

lk∑
i=1

λis
µi

]

sµ −
n∑

i=1

λisµi

ds

sk+1
, k = 0, . . . ,m− 1.(50)

In particular, if µn = 0, λn 6= 0, then l0 = n− 1 and we have

u0(x) =
1

2πi

∫

Ha(λ+)

esx

[
sµ −

n−1∑
i=1

λis
µi

]

sµ −
n−1∑
i=1

λisµi − λn

ds

s
·

In this situation we have the relation

uδ(x) =
1
λn

u′0(x).

If µn > 0, we get u0(x) ≡ 1.

Remark 4.3. The initial value problem (35) for the three cases: 1) n = 1,
µ1 = 0, λ1 = −1, 2) n = 2, µ = 1, λ2 = −1, µ2 = 0, and 3) n = 2,
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µ = 2, λ2 = −1, µ2 = 0 was considered in [9] by using the Laplace
transform method. In this research and survey paper the form (48) - (50)
of the solution was obtained and used, by evaluating the contribution of
poles of the integrand by the residue theorem and transforming the Hankel
path Ha(λ+) into the Ha(0+), to represent it as a sum of oscillatory and
monotone parts. In addition, asymptotic expansions, plots and interesting
particular cases are given there. General results concerning the methods
of evaluation of the poles of the integrand in the integral representations
of the type (49), (50), asymptotic expansions of such representations as
well as a lot of interesting particular cases can be found in the paper [12].

Finally, we consider some examples.

Example 1. Let the right-hand part of the fractional differential equation
(35) be a power function:

g(x) =
xα

Γ(α + 1)
, α > −1, if µ ∈ N, α ≥ 0, if µ 6∈ N.

Since
xα

Γ(α + 1)
= hα+1(x) = hµ

(α+1)/µ(x) = S−(α+1)/µ
µ ,

we get by using (42), (25), (29), and (47) the following representations of
the part yg(x) of the solution (36):

yg =
I

Sµ −
n∑

i=1

λiS
µi/µ
µ

· g =
I

Sµ −
n∑

i=1

λiS
µi/µ
µ

· I

S
(α+1)/µ
µ

=
S
−(µ+α+1)/µ
µ

I −
n∑

i=1

λiS
−(µ−µi)/µ
µ

= xµ+αE(·),µ+α+1(x)

=
1

2πi

∫

Ha(λ+)

esxs−α−1 ds

sµ −
n∑

i=1

λisµi

·

Example 2. We consider now the equation (35) with µi = (n − i)α,
i = 1, . . . , n, µ = nα, q− 1 < µ ≤ q, q ∈ N. Then the solution (36) can be
represented in terms of the generalized Mittag-Leffler function Em

α,β(x), see
(28). Indeed, using the relation (26) and representing the corresponding
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rational function as a sum of partial fractions, we get

yg =
I

Sµ −
n∑

i=1

λiS
µi/µ
µ

· g =
I

Sn
α −

n∑
i=1

λiS
n−i
α

· g

=




p∑

j=1

nj∑
m=1

cjm

(Sα − βj)m


 · g, n1 + · · ·+ np = n.

The operational relation (28) gives us the representation

yg(x) =

x∫

0

uδ(t)g(x− t) dt

with

uδ(x) =
p∑

j=1

nj∑
m=1

cjmxαm−1Em
α,mα(βjx

α).

We have also (k = 0, . . . , q − 1)

yh(x) =
q−1∑

k=0

ckuk(x),

uk =
xk

k!
+

{
xk

k!

}
·

n∑
i=lk+1

λiS
n−i
α

Sn
α −

n∑
i=1

λiS
n−i
α

=
xk

k!
+ (Jk+1vk)(x),

vk(x) =

n∑
i=lk+1

λiS
n−i
α

Sn
α −

n∑
i=1

λiS
n−i
α

=
pk∑

j=1

njk∑
m=1

cjmk

(Sα − βjk)m

=
pk∑

j=1

njk∑
m=1

cjmkxαm−1Em
α,mα(βjkxα),

pk∑

j=1

njk = n.

In the case α ∈ Q the generalized Mittag-Leffler function Em
α,mα(x) can

be represented in terms of special functions of the hypergeometric type
(see [9]).
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