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ON A REPRESENTATION OF CONVEX VECTOR
FUNCTIONS AND THE MAXIMAL CYCLIC
MONOTONICITY OF THEIR SUBDIFFERENTIAL

PHAN NHAT TINH

ABSTRACT. In this paper, we give a formula expressing a convex vector
function as the supremum of a certain collection of affine functions and
prove the maximal cyclic monotonicity of its subdifferential.

1. INTRODUCTION

The problem of characterizing the convexity of functions in terms of the
monotonicity of their subdifferential operators is a very natural problem
in nonsmooth analysis and has been studied intensively by many authors.
Some new results are presented in [1], [3], where lower semicontinuous
convex functions have been characterized via their Clarke subdifferential
[1] or upper and lower Dini derivatives [3]. To the set-valued case, some
efforts were also made to obtain necessary and sufficient conditions for a
set-valued map to be convex (see, for example, [7], [8]).

In this paper, we consider convex vector functions from a subset of
R™ to R™, where R™ is ordered by a convex, closed and pointed cone.
As in the scalar case, we shall represent convex vector functions as the
supremum of a certain collection of affine functions concerning their sub-
differentials. By this we prove that the subdifferential of a convex vector
function defined on a relatively open set is a maximal cyclically monotone
operator.

The paper is organized as follows. The next section contains some
preliminaries which are needed in the sequel. Section 3 is devoted to the
representation of convex vector functions. The last section is about the
maximal cyclic monotonicity of subdifferential.
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2. PRELIMINARIES

Let C' C R™ be a convex cone. We define a partial order =< on R™ as
follows:
rrcysxrx—yel, x,y€e R™.

Sometimes we write = instead of > if it is clear which cone is under
consideration.

Let S be a nonempty subset of R™. An element b € R™ is said to be an
upper bound of S with respect to C' if b = x for every x € S. An element
a € R™ is said to be a supremum of S with respect to C' if a is an upper
bound of § and a < b for every upper bound b of S.

The cone C' is called pointed if C' N (—C) = {0}. It is clear that if C is
pointed and S has a supremum then that element is unique. In this case,
we denote by SupS the supremum of S.

Denote by C' the positive polar cone of C, i.e.

C':={¢e L(R",R)| &£(c) > 0,Vc e CY,

where L(R™, R) denotes the space of linear functionals on R™.

From now on, the cone C is assumed convex, closed and pointed. We
note that by [2, Chapter 1, Proposition 1.10], intC” # (). The following
result will be needed in the sequel.

Lemma 2.1. Let S be a nonempty subset of R™ and let a € R™. If
&(a) =sup&(S), for every £ € intC’, then

a =supS.

Proof. Let x € S be arbitrary. For every £ € intC’, one has

(1) £(a) > &(x).

Obviously, (1) also holds for every £ € C’. Since C is closed and convex,
we get a > x. Hence, a is an upper bound of S. Now let b be any upper
bound of S. It is easy to see that &(b) > sup&(S) = £(a), for every
¢ € intC’. Hence, b = a. Thus, a = sup S. The proof is complete. [J

Now, let f be a vector function from a nonempty subset D C R™ to
R™. We say that f is convex (or more precisely, C-convex) if for every
x,y € D, A € [0,1], one has

M)+ 1 =Xf(y) = fOz+ (1= A)y).
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The subdifferential of f at x € D is defined as the set
Of(x) :={A e L(R",R™)| f(y) — f(z) = Ay — z),Vy € D},

where L(R™, R™) denotes the space of linear mappings from R"™ to R™.
The graph of the subdifferential (as a set-valued mapping) is denoted by
graph Of.

Finally, we recall the following result.

Lemma 2.2 ([4], Theorem 4.6). Let f be a convex function from a
nonempty subset D C R™ to R™ and let x € D, £ € C'. If one of the
following conditions holds

(i) intD # 0, z € intD

(i) intD =0, z € riD, £ # 0,
then 9(& o f)(x) = £0f ().

3. A REPRESENTATION OF CONVEX VECTOR FUNCTIONS

From now on, we denote by < .,. > the duality pairing between
L(R™, R™) and R™. As in the scalar case, we shall show that a convex
vector function can be represented as the supremum of a certain collection
of affine functions.

Let g : R" — R U {400} be an extended-real-valued function. We
say that g is proper if Domg is nonempty. Sometimes, we shall identify
a proper function g : R” — R U {400} with the function g : Domg — R
defined by
g(x) = g(z), (Vz € Domyg).

Lemma 3.1. Let g : R — RU {+oc0} be proper and convezx. Then
dg(x) = O(clg)(z), (Vx € ri(Domyg)),
where cl g denotes the closure of g.

Proof. The inclusion 0(clg)(x) C dg(x) is immediate from the defini-
tion of subdifferential and from the fact that clg < ¢g. For the converse
inclusion, let z* € dg(z), y € Dom(clg) be arbitrary. For every A € (0,1),
one has

gAY+ (1 =Nz) —g(z) = A <2™y—x>.

Taking A — 1, we obtain

(clg)(y) — (clg)(z) =< z™y —z >.



186 PHAN NHAT TINH

Thus, z* € d(clg)(x). The proof is complete. []

Lemma 3.2. Let g : R" — RU{+o0} be a proper, conver function with
the relatively open domain and let x € Dom g, (xo, zf) € graphdg. Then

k—1

g9(x) = g(xo) + sup { Z < T Tig1 — T >
=0

+ < xp,x— x> | (x5,2]) € graphdg, i =1,...,k, k> 1}.

Proof. Consider the function clg. From the Rockafellar formula [6,
Part 5, Theorem 24.8] one has
k—1
clg(z) = clg(zo) + sup { Z <TF, Tip1 — T >
i=0

(2) + < zp,x — x> |(x5,2]) € graphd(clg), i=1,...,k, k> 1}.

Since Dom g is relatively open and z,z¢ € Dom g then by (2), one has

k-1
9(x) — g(xo) = sup { Z < TF, Tip1 — Ti >
i=0

+ <azp,x—xK > |(x5,2]) € graphd(clg), i=1,....k, k> 1}.

Taking into account the definition of subdifferential, one has

k—1
g(x) — g(x0) > sup { Z <X, Tip1 — T >
i=0

+ < zp,x — x> |(x5,2]) € graphdg, i =1,...,k, k> 1}.

To complete the proof, we shall show that for every ¢ > 0, (z;,2}) €
graphd(clg), (i = 1,...,k), k > 1, there exist (y;,y) € graphdg, i =
1,...,k, such that

k—1
<x37y1—$0>+2<yfay¢+1—yi>+<Z/Z»$—yk>

)
[y

-
=

(3) > <.T;-k,£lli_|_1—$i>—|—<£C]:,£C—.Tk>—€.

@
I
=
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Indeed, let € > 0, (z;,x}) € graphd(clg), i = 1,2,...,k be given. First,
we shall change the pair (4, 2}) by a pair (yx,y;) € graph dg such that

k—2
Z <T],Tip1 — T >+ < Ty, Yk — Th—1 >+ < Yp, T — Yp >
i=0
(4)
k—1 -
22<x;‘,x¢+1—xi>+<x}z,x—xk>—E-
1=

The existence of a such a pair (yx,y;) is shown as follows. Since the
function < x}_,,y — xx—1 > is continuous at zj then there exists 6 > 0
such that ||y — k|| < d implies

5
(5) <Th_1,Y —Th1 > > < Tp_q, Tk — Th—1 > T

Let y belong to the interval (z,xy). Represent y as y = (1 — A)x + Axy, for
some A € (0,1). Fix z* € dg(x). By the monotonicity of subdifferential
and by Lemma 3.1, for every y* € dg(y), one has

<y —xp,y—xp > >0,

<y'—z*y—xz>>0,

or
<y —ar,(1=AN)(x—xx) > >0,

<y —a", NMzk —x) > >0.
Hence
<zt x—xzp>><yr—xp>><T5,T— T > .
Thus, < y*,y—xr >= (1-)) < y*,z—x >— 0wheny — x, y € (z,xx).
Choose yi, € (x,x1),y; € 0g(yx) such that
. 5
lyk — @il <0,] < yr,yp — k> | <ok

Since < Yy — x5, yx — Tk > > 0 and yi, € (z,z1), < y; — x5,z —x > > 0.
Hence

* * * €
(6) <yk,x—yk>—<xk,x—xk>2—<yk,yk—xk>>—ﬁ~

It is clear that (5) and (6) imply (4).
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Continuing this process for the pairs (zp_1,25_1),..., (z1,27), after k
steps we find out (y;,y’) € graphdg,i = 1,2,...,k, satisfying (3). The
Lemma is proved. [

Theorem 3.3. Let f be a convex vector function from a monempty rel-
atively open subset D C R™ to R™ and let x € D, (xg, Ag) € graphdf.
Then

k—1

f(z) :f($0)+sup{z < Ajwip1 — x>
i=0
+ < Ag,x — x> | (24,A;) € graph0f, i =1,... k, k> 1}.

Proof. Let £ € int C’ be arbitrary. By Lemma 2.1 of [4], £ o f is convex
and by Lemma 2.2 above, { 0 Ay € 9( o f)(zp). Then by Lemma 3.2, one
has

(o f)(x) = (£ f)(zo)
k—1

—|—sup{ < &0 Ap, 1 — X0 >+Z<xf,xi+1—xi >
i=1

+<zp,x—xK > | (z,2]) €graphd(€o f), i=1,...,k, k> 1}.

By Lemma 2.2,
k—1
{ < &oAp,x1 —x0 > +Z <l’;‘,3§'¢+1 —x; >
i=1

+ <zp,x—xK > |[(x5,2]) € graphd(€o f), i=1,...,k, k> 1}
k—1
:f{z < Ap Tipr — x>
i=0

+ < Ag,x — x> (24, A;) € graphOf,i=1,... k k> 1}.

Hence,
k—1
E[f () = f(wo)] = SUPf{ Y <A wipn — x>
i=0

+ < Ap,xz — x> |(z4,A;) € graphOf, i=1,....k, k> 1}.
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Then by Lemma 2.1,

k—1

f(x) = f(zo) :Sup{ Y < Aiwign—mi>

—_—0

+ < Ap,x — x> (4, A;) € graphf, i=1,....k, k> 1}.
The Theorem is proved. [

4. THE MAXIMAL CYCLIC MONOTONICITY OF SUBDIFFERENTIAL

Let F' be a set-valued map from a nonempty subset D C R™ to L(R"™, R™).
F is said to be cyclically monotone if one has

<Ag,x1—x10 >+ <A1, 19 —T1 >4+ < A, x0 — a1 > X0,

for any set of pairs (z;, A;) € graphF, i = 0,1,...,k (k arbitrary). F' is
said to be maximal cyclically monotone if F' is cyclically monotone and
its graph is not properly contained in the graph of any other cyclically
monotone map.

Theorem 4.1. Let f be a convex vector function from a nonempty rela-
tively open subset D C R™ to R™. Then Of is maximal cyclically montone.

Proof. For any set of pairs (z;, A;) € graphdf,i =0,1,...,k (k arbitrary),
from the definition of subdifferential, one has

(7) f(@ig1) = f(xs) =< Ay, w1 — 2y >, 1=0,1,... k=1

(8) f(xo) — flar) =< A, 20 — 21 > .

By adding up inequalities (7), (8), we get
<A0,.’E—1—$0>—|—<A1,$2—$1 >—|—"'—|—<Ak,.’130—£l,’k >=0.

Hence, 0f is cyclically monotone.

To complete the proof, let x € D, A € L(R",R™) and A ¢ 0f(x). We
shall show that there exist £ > 0 and (z;, A;) € graphdf, i =0,1,...,k
such that

<Axg—x>+ < Ag,x1 — 30 >
+ <A,z —x1 >+ -+ < Ap,x—x >A0.
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Suppose to the contrary that for every k > 0, (x;, A;) € graphdf, i =
0,1,---,k, one has

<Axg—x>+ < Ag,x1 — T >
+ <Ay, x9—11 >4+ < A,z —x1 >=<0.

Then
k—1

(9) Z<Ai,xi+1—xi>+<Ak,x—xk>j<A,x—:1:0>.
i=0

Fix (xg, Ag) € graph df. Then (9) implies that < A,z — z¢ > is an upper
bound of the set

k—1
{Z <A xig1 — T >
i=0
+ < Ap,x — x> | (24, A;) € graphOf, i =1,...,k, k> 1}.
By Theorem 3.3, this implies
(10) <Ax—x0> > f(z)— f(xo).

By Theorem 4.14 of [4], Domdf = D. From this and from the fact that
(10) holds for every (xg, Ag) € graphdf, we have A € 0f(x). We arrive
at a contradiction. The proof is complete. [J
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