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COEFFICIENT MULTIPLIERS FOR
SOME CLASSES OF DIRICHLET SERIES

IN SEVERAL COMPLEX VARIABLES

LE HAI KHOI

Abstract. This paper deals with coefficient multipliers for some classes
of Dirichlet series with complex frequencies, including those that define
entire functions in Cn.

1. Introduction

A holomorphic function, including entire one, can be identified with the
sequence of its Taylor coefficients. One way for getting information about
the Taylor coefficients of such functions is to describe the multipliers of the
space of sequences of Taylor coefficients into various other sequence spaces.
In this direction there have been many articles that deal with multipliers of
spaces of Bloch functions, Lipschitz functions, of Hardy spaces, Bergman
spaces, etc. (see, e.g., [1, 2, 7, 14, 15, 16]).

We recall that for two sequence spaces A and B the symbol (A,B)
denotes the sequence space of multipliers from A to B,

(A, B) =
{
u =

(
uk

)
;
(
ukak

) ∈ B, ∀(ak

) ∈ A
}

.

By definition, a sequence space A is said to be normal [6] (or solid
[1]) if whenever A contains

(
ak

)
it also contains

(
bk

)
with |bk| ≤ |ak| for

k = 1, 2, . . . Equivalently, A is normal if `∞ ⊂ (A,A). Furthermore, for a
sequence space A there always exists a largest normal subspace, denoted
by s(A), that is contained within it, and a smallest normal superspace,
denoted by S(A), that contains it. More precisely, s(A) =

(
`∞, A

)
and

S(A) is the intersection of all the normal spaces that contain A [1].
Various concepts of duality for sequence spaces are given in [3, 4, 6].

Let D be a fixed sequence space. Then the D-dual of a sequence space A,
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denoted by AD, is defined to be (A,D), the multipliers from A to D. The
Köthe dual is obtained when D = `1, and will be denoted by Aα (it is
also denoted by AK). The Abel dual is obtained when D is the space of
Abel-summable sequences, that is, the space of sequences

(
dk

)
for which

lim
r→1

∞∑

k=1

dkrk

exists. We denote the Abel dual of A by Aγ (it is also denoted by Aa).
Note that when dk ≥ 0, then the existence of this limit is equivalent to∑

dk < +∞. It is clear that Aα ⊂ Aγ . The inverse inclusion is true if
the space A is normal [1]. The spaces Aα and Aγ were studied in several
papers (see, e.g., [1, 2, 7]).

What about Dirichlet series with complex frequencies? This question
stems from the fact that each entire function in Cn as well as each holo-
morphic function in a convex domain of Cn can always be represented in
the form of Dirichlet series with complex frequencies (see, e.g., [5, 8] and
the references therein). This fact has many important applications in the
theory of functional equations.

In the present paper we study coefficient multipliers for some classes
of Dirichlet series with complex frequencies, including those that define
entire functions in Cn. Section 2 deals with preliminaries on sequence
spaces closely related to Dirichlet series with a given sequence

(
λk

)
of

complex frequencies. Namely, we are concerned with the space E0 that
generates entire Dirichlet series in Cn and the space E1 that seems to
be the maximal among those we are interested in. We establish some
dualities of the spaces E0 and E1. It turns out that the spaces E0 and
E1, under rather general conditions on the sequence of frequencies, are the
Köthe duals of each other. These results are obtained in the spirit of [9]
for the case of holomorphic Dirichlet series. In Section 3 we consider the
generalized Köthe duals of the spaces Ej (j = 0, 1), i.e., the multipliers
between spaces Ej and `p (0 < p ≤ ∞). Finally, in Section 4 we study
conditions for a given sequence to be a multiplier for spaces E0 and E1 as
well as between them.

Note that Dirichlet series with real frequencies on the complex plane
have been treated in our recent works [12, 13].

2. Preliminaries on sequence spaces E0 and E1

We use the following basic notations: O(Cn) denotes the space of entire
functions in Cn, with the compact-open topology, i. e., the topology of
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uniform convergence on compact subsets of Cn. If z, ζ ∈ Cn then |z| =
(z1z̄1 + · · ·+ znz̄n)1/2; 〈z, ζ〉 = z1ζ1 + · · ·+ znζn.

Let
{
λk

}
, λk = (λk

1 , . . . , λk
n), k = 1, 2, . . . , be a sequence of com-

plex vectors in Cn. Consider a multiple Dirichlet series with complex
frequencies

(2.1)
∞∑

k=1

cke〈λ
k,z〉, z ∈ Cn.

We make a characterization of the coefficients of the series (2.1) for
when it converges absolutely in whole Cn (which is important and neces-
sary for further study).

Theorem 2.1. If the Dirichlet series (2.1) converges absolutely for all
z ∈ Cn and |λk| → ∞ as k →∞, then

(2.2) lim sup
k→∞

log |ck|
|λk| = −∞.

Conversely, if the coefficients of (2.1) satisfy condition (2.2) and if

(2.3) lim sup
k→∞

log k

|λk| < +∞,

then the series (2.1) converges absolutely for all z ∈ Cn.
The following elementary result is used often in the sequel.

Lemma 2.2. Condition (2.3) is equivalent to

(2.4) ∃ ρ > 0 :
∞∑

k=1

e−ρ|λk| < +∞.

Proof of Theorem 2.1. Necessity. Let the Dirichlet series (2.1) converges
absolutely for all z ∈ Cn and |λk| → ∞ as k → ∞. Assume that (2.2) is
false, i.e.,

lim sup
k→∞

log |ck|
|λk| > −∞.

Then we can find a number M > 0 and an increasing sequence of positive
integers

(
kj

)
such that

log |ckj |
|λkj | > −M, ∀ j ≥ 1,
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or equivalently,

(2.5) |ckj
| > e−M |λkj |.

On the other hand, there exists a subsequence of
(
kj

)
, which we can,

for the sake of simplicity and without loss of generality, denote by the
notation

(
kj

)
itself, such that

arg λkj
s → ϕs as j →∞, (s = 1, 2, . . . , n).

Taking into account the fact that
(
arg λ

kj
s − ϕs

) → 0 as j → ∞, for
a vector z0 = (re−iϕ1 , . . . , re−iϕn) ∈ Cn, r > 2M , there is N such that
∀ j ≥ N ,

(2.6)
∣∣∣e〈λkj ,z0〉

∣∣∣ = eRe〈λkj ,z0〉 = e
r

n∑
s=1

|λkj
s | cos(arg λ

kj
s −ϕs) ≥ e

1
2 r

n∑
s=1

|λkj
s |

.

Therefore, since |z| ≤
n∑

s=1
|zs| ∀ z ∈ Cn, from (2.5)-(2.6) it follows that

∣∣∣ckj e
〈λkj ,z0〉

∣∣∣ ≥ e
−M |λkj |+ 1

2 r
∞∑

s=1
|λkj

s |

≥ e
−M

n∑
s=1

|λkj
s |+

n∑
s=1

r|λkj
s |/2

= e
(r/2−M)

n∑
s=1

|λkj
s | ≥ 1,

which shows that the series (2.1) does not converges absolutely at the
point z0, a contradiction.
Sufficiency. Suppose that condition (2.2) holds. Then for ε > 0 there
exists N such that ∀ k ≥ N ,

|ck| ≤ ε|λ
k|.

Take an arbitrary vector z ∈ Cn and let |z| = R. We have

∞∑

k=1

∣∣∣cke〈λ
k,z〉

∣∣∣ ≤
∞∑

k=1

|ck|e<〈λ
k,z〉 ≤

∞∑

k=1

|ck|eR|λk| ≤
∞∑

k=1

(εeR)|λ
k|.
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By Lemma 2.2, choosing ε ∈ (0, e−R−ρ), where ρ is taken as in (2.4),
completes the proof of the theorem.

Remark 2.3. From the proof of the sufficiency part of Theorem 2.1 it
follows that if conditions (2.2)-(2.3) hold, then the series (2.1) converges
absolutely for the topology of the space O(Cn). Theorem 2.1 also shows
that with the sequence of coefficients satisfying condition (2.2) and the se-
quence of frequencies satisfying condition (2.3), the series (2.1) represents
an entire function in Cn.

In connection with Theorem 2.1, given a sequence Λ :=
(
λk

)∞
k=1

of
complex vectors in Cn, we can associate to it the following two sequence
spaces

E1 =
{

c =
(
ck

)
; ∃M ∀k |ck| ≤ eM |λk|

}
,

E0 =
{

c =
(
ck

)
; |ck|1/|λk| → 0, k →∞

}
.

We can define these spaces in a uniform way by requiring

lim sup
k→∞

log |ck|
|λk|

{
< +∞,

= −∞.

The space E0 is a proper subspace of E1, for the element
(
ck

)
with

ck = eM |λk|, M ∈ R, belongs to E1 but does not belong to E0. These
spaces were introduced in [10, 11]. We refer the readers to these papers
for various properties of E0 and E1.

It should also be noted that in [10, 11] the spaces E0 and E1 were
studied under the condition which is much stronger than condition (2.4),
namely

(2.7) lim
k→∞

log k

|λk| = 0.

The class of entire function of the form (2.1), where
(
λk

)
satisfies con-

dition (2.3) and
(
ck

)
satisfies condition (2.2), is denoted by E(Λ,Cn).

Note that E(Λ,Cn) ⊂ O(Cn) and the equality holds if and only if(
e〈λ

k,z〉
)∞

k=1
forms an absolutely representing system in the space O(Cn)

(see, e.g., [5, 8]).
In the rest of this section we study some properties such as normality,

perfectness of the spaces Ej (j = 0, 1) as well as a description of the Köthe
dual of these spaces. Here we follow the terminology of [6].
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First note that whenever Ej contains
(
ck

)
it also contains

(
dk

)
with

|dk| ≤ |ck| for k = 1, 2, . . . . So this space is normal.
Denote by Eα

j the Köthe dual of the space Ej , i.e.,

Eα
j =

{
(
uk

)
;
∞∑

k=1

ckuk converges absolutely for all
(
ck

) ∈ Ej

}
.

Also we consider the following set

Eβ
j =

{
(
uk

)
;
∞∑

k=1

ckuk converges for all
(
ck

) ∈ Ej

}
.

We make a characterization of the Köthe dual for the spaces Ej (j =
0, 1).

Proposition 2.4. (i) If
(
dk

) ∈ Eβ
0 , then

(2.8) lim sup
k→∞

|dk|1/|λk| < +∞, i.e.,
(
dk

) ∈ E1.

Conversely, if the sequence
(
dk

)
satisfies condition (2.8) and, in addition,

the sequence
(
λk

)
satisfies condition (2.3), then

(
dk

) ∈ Eα
0 . In other

words, we have
Eβ

0 ⊂ E1 ⊂ Eα
0 .

(ii) If
(
dk

) ∈ Eβ
1 , then

(2.9) lim
k→∞

|dk|1/|λk| = 0, i.e.,
(
dk

) ∈ E0.

Conversely, if the sequence
(
dk

)
satisfies condition (2.9) and, in addition,

the sequence
(
λk

)
satisfies condition (2.3), then

(
dk

) ∈ Eα
1 . In other

words, we have
Eβ

1 ⊂ E0 ⊂ Eα
1 .

Proof. We shall prove (i). For (ii) it is analogous.
Necessity. Let

(
dk

) ∈ Eβ
0 . Suppose that (2.8) is not true, i.e.,

lim sup
k→∞

|dk|1/|λk| = +∞.
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Then there exists an increasing sequence
(
kj

)∞
j=1

of positive integers such
that

lim
j→∞

|dkj
|1/|λkj | = +∞.

Define a sequence
(
ck

)
as follows

ck =
{

1/|dk|, if k = kj , j = 1, 2, . . . ,

0, otherwise.

Then we have

lim
k→∞

|ck|1/|λk| = lim
j→∞

1
/|dkj |1/|λkj | = 0,

which means that
(
ck

)
is in E0. However, the series

∞∑
k=1

ckdk does not

converge, a contradiction.
Sufficiency. Assume that (2.8) holds. Then there exists a constant C such
that

|dk| ≤ C |λ
k|, ∀ k ≥ 1.

Take an arbitrary element c =
(
ck

) ∈ E0. For ε ∈ (0, e−ρ/C), where ρ is
from (2.4), there exists N such that ∀ k > N

|ck| < ε|λ
k|.

Hence ∞∑

k=1

|ckdk| ≤
∞∑

k=1

(
εC

)|λk| ≤
∞∑

k=1

e−ρ|λk| < +∞,

due to (2.4). This completes the proof.

Corollary 2.5. If (2.3) holds, then
(
dk

) ∈ Eβ
j if and only if

(
dk

) ∈ Eα
j ,

i.e., Eα
j = Eβ

j (j = 0, 1). In this case, these sequence spaces can be defined
as follows

Eβ
0 = Eα

0 = E1,

Eβ
1 = Eα

1 = E0,

and therefore, the spaces E0 and E1 are the Köthe duals each for other.
It is clear that Ej ⊂ Eαα

j (j = 0, 1). A question arises when does the
inverse inclusion hold? We can prove the following result.
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Proposition 2.6. Suppose that condition (2.3) holds. Then the sequence
space Ej is perfect, i.e., Eαα

j = Ej (j = 0, 1).

Proof. We prove this statement for E0. For E1 it is analogous.
Assume that

(
ck

)
/∈ E0. Then

lim sup
k→∞

|ck|1/|λk| > 0.

Note that the value of the left-hand side can be finite as well as +∞. In
any case, there exist M > 0 and an increasing sequence

(
kj

)∞
j=1

of positive
integers such that

|ckj |1/|λkj | > M, ∀ j ≥ 1,

which is equivalent to

1
/|ckj |1/|λkj | < 1/M.

Define a sequence
(
dk

)
as follows

dk =
{

1/|ck|, if k = kj , j = 1, 2, . . . ,

0, otherwise.

Then we have

lim sup
k→∞

|dk|1/|λk| ≤ lim sup
j→∞

|dkj |1/|λkj | ≤ 1
M

< ∞,

which means, by Proposition 2.4, that
(
dk

) ∈ Eα
0 . However, the series

∞∑
k=1

ckdk does not converge. Hence,
(
ck

)
/∈ Eαα

0 . This completes the

proof.

Remark 2.7. A part of these results (which concerns the space E0) was
announced in [10] under the condition (2.7), i.e.,

lim
k→∞

log k

|λk| = 0.

Everywhere in what follows condition (2.3) for the sequence of frequen-
cies

(
λn

)
is assumed to hold, i.e.,

lim sup
k→∞

log k

λk
< +∞,
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which, by Lemma 2.2, is equivalent to

∃ ρ > 0 :
∞∑

k=1

e−ρ|λk| < +∞.

3. Generalized Köthe duals for E0 and E1

In this section we study the generalized Köthe duals of the spaces E0

and E1. As for the space E1 all proofs are similar to the case of E0, hence
we consider E0 only.

As noted above, the Köthe dual of a sequence space is the sequence
space of multipliers from this space to the space `1. A question arises
what are about multipliers from E0 to `p (0 < p ≤ ∞) and vice-versa?

First we note that
(
uk

)
is in E0 if and only if

(
u

1/p
k

)
is in E0 (with any

appropriate choice of the power), so the study for all 0 < p < ∞ reduces
to the case p = 1, which is the case of the Köthe duality already studied
above. The same remark applies to the space Eα

0 . Furthermore, `p ⊂ `∞

for any 0 < p < ∞. These facts allow us to obtain the following results.

Proposition 3.1. A sequence
(
uk

)
is the multiplier from E0 to `p (0 <

p ≤ ∞) if and only if
(
uk

)
satisfies condition (2.8). In other words,

(
E0, l

p
)

= Eα
0 = E1, ∀ 0 < p ≤ ∞.

Proof. We already have the inclusion Eα
0 =

(
E0, `

1
) ⊂ (

E0, `
∞)

. The
inclusion

(
E0, `

∞) ⊂ Eα
0 remains to be proved.

Let
(
uk

) ∈ (
E0, `

∞)
. Assume that

(
uk

)
/∈ Eα

0 , i.e.,

lim sup
k→∞

|uk|1/|λk| = ∞.

Then there exists an increasing sequence
(
kj

)
of positive numbers such

that
lim

j→∞
|ukj |1/|λkj | = ∞.

We define a sequence
(
ck

)
as follows:

ck =
{

λkj /
∣∣ukj

∣∣, if k = kj , j = 1, 2, . . . ,

0, otherwise.
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In this case

lim sup
k→∞

|ck|1/|λk| ≤ lim sup
j→∞

|ckj
|1/|λkj |

= lim sup
j→∞

( 1

|ukj
|1/|λkj | · |λkj |1/|λkj

|
)

= 0,

which means that
(
ck

) ∈ E0. However, it is clear that
(
ckuk

)
/∈ `∞, and

therefore,
(
uk

)
/∈ (

E0, `
p
)
, a contradiction.

Remark 3.2. The statement of Proposition 3.1 is valid when E0 and E1

are interchanged, i.e.,
(
E1, `

p
)

= Eα
1 = E0, ∀ 0 < p ≤ ∞.

The proof is analogous.

Proposition 3.3. A sequence
(
uk

)
is the multiplier from `p (0 < p ≤ ∞)

to E0 if and only if
(
uk

)
satisfies condition (2.9). In other words,

(
`p, E0

)
= E0, ∀ 0 < p ≤ ∞.

Proof. Due to the inclusion
(
`∞, E0

) ⊂ (
`1, E0

)
it suffices to prove that

E0 ⊂
(
`∞, E0

)
and

(
`1, E0

) ⊂ E0.
The first part follows already from the fact that E0 is a normal space.
Next let

(
uk

) ∈ (
l1, E0

)
. Assume that

(
uk

)
/∈ E0, i.e.,

lim sup
k→∞

|uk|1/|λk| > 0.

The value of the left-hand side can be finite as well as +∞. In any case,
there exist Q > 0 and an increasing sequence

(
kj

)
of positive numbers

such that
|ukj |1/|λkj | ≥ Q, ∀j ≥ 1,

which is equivalent to
1

|ukj |
≤

( 1
Q

)|λkj |
.

We define a sequence
(
ξk

)
as follows:

ξk =

{
ν|λ

kj |/
∣∣ukj

∣∣, if k = kj , j = 1, 2, . . . ,

0, otherwise,
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where ν ∈ (0, Qe−ρ) and ρ is taken from Lemma 2.2. Then we have

∞∑

k=1

|ξk| =
∞∑

j=1

|ξkj
| =

∞∑

j=1

ν|λ
kj |

|ukj |
≤

∞∑

j=1

( ν

Q

)|λkj |
≤

∞∑

j=1

e−ρ|λkj | < ∞,

due to Lemma 2.2, which shows that
(
ξk

) ∈ l1. However,

lim sup
k→∞

|ξkuk|1/|λk| = lim sup
j→∞

|ξkj ukj |1/|λkj | = ν > 0,

which means that
(
ξkuk

)
/∈ E0, a contradiction. Thus,

(
l1, E0

) ⊂ E0.
This completes the proof of the proposition.

Remark 3.4. The statement of Proposition 3.3 is valid when E0 and E1

are interchanged, i.e.,

(
`p, E1

)
= E1, ∀ 0 < p ≤ ∞.

The proof is analogous.

4. Coefficient multipliers between E0 and E1

In this section we study conditions for a given sequence to be a coeffi-
cient multiplier for E0, E1 as well as between these spaces.

Proposition 4.1. A sequence
(
uk

)
is the multiplier for the space E0 if

and only if
(
uk

)
satisfies condition (2.8). In other words,

(
E0, E0

)
= E1.

Proof. Let
(
uk

) ∈ (
E0, E0

)
. Assume that

(
uk

)
/∈ E1, i.e.,

lim sup
k→∞

log |uk|
|λk| = +∞,

which means that there exists an increasing sequence of positive integers(
kj

)
such that

(4.1) lim
j→∞

log |ukj |
|λkj | = +∞.
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Then a sequence
(
ck

)
with

ck =
{

1/
∣∣ukj

∣∣, if k = kj , j = 1, 2, . . . ,

0, otherwise,

is in E0, while
(
ckuk

)
does not belongs to E0, a contradiction. Thus(

E0, E0

) ⊂ E1. Since the inverse inclusion is obvious, this completes the
proof of the proposition.

Proposition 4.2. A sequence
(
uk

)
is the multiplier for the space E1 if

and only if
(
uk

)
satisfies condition (2.8). In other words,

(
E1, E1

)
= E1.

Proof. It is trivial that E1 ⊂
(
E1, E1

)
. Now let

(
uk

) ∈ (
E1, E1

)
. Taking(

ck

) ∈ E1, where ck = 1, ∀k ≥ 1, we get that
(
uk

)
=

(
ckuk

) ∈ E1.

Proposition 4.3. A sequence
(
uk

)
is the multiplier from the space E0 to

the space E1 if and only if
(
uk

)
satisfies condition (2.8). In other words,

(
E0, E1

)
= E1.

Proof. Since E0 ⊂ E1 we have
(
E0, E0

) ⊂ (
E0, E1

)
and therefore, by

Proposition 4.1, E1 = (E0, E0) ⊂
(
E0, E1

)
. We now prove that

(
E0, E1

) ⊂
E1.

Let
(
uk

) ∈ (
E0, E1

)
. Assume that

(
uk

)
/∈ E1. By (4.1) we have

lim
j→∞

log |ukj |
|λkj | = +∞.

For a sequence

ck =

{
1/

√∣∣ukj

∣∣, if k = kj , j = 1, 2, . . . ,

0, otherwise,

we see that
(
ck

) ∈ E0. However,

lim sup
k→∞

log |ckuk|
|λk| = lim sup

j→∞

log |ckj ukj |
|λkj | =

1
2

lim
j→∞

log |ukj |
|λkj | = +∞,

which shows that
(
ckuk

)
/∈ E1, a contradiction.
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Proposition 4.4. A sequence
(
uk

)
is the multiplier from the space E1 to

the space E0 if and only if
(
uk

)
satisfies condition (2.9). In other words,

(
E1, E0

)
= E0.

Proof. It is obvious that E0 ⊂
(
E1, E0

)
. For the inverse inclusion take(

uk

) ∈ (E1, E0). Then for a sequence
(
ck

)
with ck = 1, ∀ k ≥ 1, which is

in E1 we obtain that
(
uk

)
=

(
ckuk

) ∈ E0. The proposition is proved.
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