
ACTA MATHEMATICA VIETNAMICA
Volume 24, Number 2, 1999, pp. 147–156

147

A CLASSIFICATION OF A CLASS
OF MARTINGALE-LIKE SEQUENCES

DINH QUANG LUU

Abstract. A sequence (Xn) is said to be a game fairer with time if for

every ε > 0 we have lim
n

sup
m≥n

P
(
||En(Xm)−Xn||>ε

)
=0. It is known that

every L1-bounded Banach space-valued game fairer with time has a unique
Riesz-Talagrand decomposition: Xn=Mn+Pn, where (Mn) is a uniformly
integrable martingale and (Pn) converges to zero in probability. The aim
of this note is to give a classification of a class of martingale-like sequences
considerably more general than games fairer with time for which the above
Riesz-Talagrand decomposition still holds.

1. Notations and definitions

Throuthout this note let (Ω,A, P ) be a complete probability space and
(An) an increasing sequence of complete sub-σ-fields of A and T the set
of all bounded stopping times w.r.t. (An). Given a separable Banach
space E we denote by L1(E) the Banach space of all (equivalence classes
of) A-measurable and Bochner integrable functions X : Ω → E with the
L1-norm: E(||X||) =

∫
Ω

||X||dP < ∞. Unless otherwise stated we shall

consider only sequences (Xn) in L1(E) which are assumed to be adapted
to (An), i.e. each Xn is An-measurable. Let (Xn) be such a sequence and
τ ∈ T . We define the function Xτ and subset Aτ of A by

Xτ (ω) = Xτ(ω)(ω) and Aτ =
{
A ∈ A, A ∩ {τ = n} ∈ An

}
.

Then it is known (cf. [8]) that every Aτ is a complete sub-σ-field of A and
each Xτ is Aτ -measurable. For other related notions of martingale-like
sequences, the reader is referred to the recent monograph of Edgar and
Sucheston [2]. Here we recall only the following.
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Definition 1.1. A sequence (Xn) is said to be
(a) a martingale if Xn(m) = Xn for all m ≥ n, where given σ, τ ∈ T with

σ ≤ τ , Xσ(τ) denotes the Aσ-conditional expectation of Xτ .
(b) a pramart if for every ε > 0 there exists p such that for all σ, τ ∈ T

with p ≤ σ ≤ τ we have

P
(||Xσ(τ)−Xσ|| > ε

)
< ε.

(c) a martingale in the limit if

lim
n

sup
m≥n

||Xn(m)−Xn|| = 0, a.s.

(d) a mil if for every ε > 0 there exists p such that for all n ≥ p we have

P

(
sup

p≤q≤n
||Xq(n)−Xq|| > ε

)
< ε.

(e) a game which becomes fairer with time if for every ε > 0 there exists
p such that for all n ≥ p we have

sup
p≤q≤n

P
(||Xq(n)−Xq|| > ε

)
< ε.

Martingales in the limit were first introduced by Mucci (1976), pra-
marts by Millet and Sucheston (1980) and mils by Talagrand (1985). But
games which become fairer with time were earlier introduced and consid-
ered by Blake (1970). Clearly, by definition every above-mentioned class of
martingale-like sequences is contained in the next one. Moreover, it is also
known that any converse inclusion fails even in the real-valued case. The
first result on games fairer with time is due to Blake [1] who proved that
every real-valued game fairer with time, uniformly a.s. bounded by an
integrable function converges in L1. Three years later, this result was (in-
dependently) extended by Subramanian [9] and Mucci [6] to the uniformly
integrable case. Recently, applying the structure results of Talagrand [10]
we have proved in [3] that every L1-bounded E-valued game fairer with
time (Xn) has a unique Riesz-Talagrand decomposition: Xn = Mn + Pn,
where (Mn) is a uniformly integrable martingale and the potential (Pn)
goes to zero in probability. As a continuation of [3,4] we shall consider in
this note a classification of the following class of martingale-like sequences.
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Definition 1.2. A sequence (Xn) is called a quasi-game fairer with time,
briefly a quasi-game (cf. [4]) if for every ε > 0 there exists p such that for
every m ≥ p there is pm ≥ m such that for all n ≥ pm we have

(2.1) sup
p≤q≤m

P
(||Xq(n)−Xq|| > ε

)
< ε.

It is clear that by definition, every game fairer with time is a quasi-
game. We shall see in the next section that the class of quasi-games
considerably generalises that of games fairer with time. Moreover, one
can classify it into an increasing generalized family of subclasses for which
the above Riesz-Talagrand decomposition still holds.

2. Main results.

The first result we begin with is the following characterization of quasi-
games, where F denotes the set of all functions f from N to N .

Lemma 2.1. A sequence (Xn) is a quasi-game if and only if there exists
an f ∈ F such that (Xn) is a game of size f , i.e. for every ε > 0 there
exists p such that for every m ≥ p and n ≥ m + f(m) we have

(2.2) sup
p≤q≤m

P
(||Xq(n)−Xq|| > ε

)
< ε.

Proof. Suppose first that a sequence (Xn) is a game of size f for some f ∈
F . Then by taking each pm = m+f(m), it follows that the sequence (pm)
does not depend on the choice of ε and (2.2) implies (2.1) automatically.
This proves the sufficiency of the statement. The interest of the result
consists in showing the necessity of the condition. For this purpose, let
(Xn) be a quasi-game. Then by the same definition, one can construct a
strictly increasing sequence

(
p(n)

)
such that for every k there exists an

increasing sequence
(
pn(k)

)
such that for every m ≥ p(k) and n ≥ pm(k)

we have

(2.3) sup
p(k)≤q≤m

P
(||Xq(n)−Xq|| > 1/k

)
< 1/k.

Now define the function f ∈ F as follows. For m < p(1) set f(m) = 1 and
for every m ≥ p(1), i.e., p(q) ≤ m < p(q + 1) for some q ≥ 1, set

f(m) = max {pm(s), s ≤ q} −m.
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We claim that the sequence (Xn) must be a game of size f . Indeed,
let ε > 0 be given. Then 1/k < ε for some k. Thus if m ≥ p(k) and
n ≥ m + f(m) we have

p(k + j − 1) ≤ m < p(k + j)

for some j ≥ 1, hence it is evident that

n ≥ m + f(m) = max {pm(s), s ≤ k + j − 1} ≥ p(k).

This with (2.3) implies that

sup
p(k)≤q≤m

P
(||Xq(n)−Xq|| > ε

)
< ε.

So we obtain (2.1) by taking p = p(k) and pm = pm(k). The proof is then
completed.

Now let define the following partial order (<∗) on F as follows: f <∗ g
iff card {g ≤ f} is finite. Then we get the following classification.

Theorem 2.2. When f runs over (F,<∗), the set of all quasi-games
is classified into an inreasing family of games of size f . Moreover, if
(Ω,A, P ) is a nonatomic probability space then there exists a stochastic
basis (An) such that for any f , g ∈ F with f <∗ g, the class of real-valued
games of size f is strictly contained in that of games of size g.

Proof. The first statement follows from Lemma 2.1. Without any loss of
generality we prove (for simplicity) the second statement only for the case
where (Ω,A, P ) is the Lebesque probability space on [0, 1) and f , g ∈ F
with f(m) < g(m), m ∈ N . To do this, for every n ∈ N let an =

∏
j≤n

2j ,

Qn the partition of [0, 1) in an intervals of equal length, An the σ-field
generated by Qn and

a(g) = min{m + g(m), m ∈ N}.
Further, let define the sequence (Xn) of real-valued functions as follows.
For n < a(g) set Xn = 0, for n ≥ a(g) set

bn = max{m,m + g(m) ≤ n}, cn = max{m ∈ N, m + f(m) ≤ n}
and put

Xn = an/abn+1 or Xn = −an/abn+1

on the first interval of Qn which is contained in the (2p− 1)-th or (2p)-th
interval in Qbn+1, resp., for all 1 ≤ p ≤ abn+1/2. It is easily checked
that defined in such a way, the sequence (Xn) has the following typical
properties:
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(a) For every m ≥ a(g), n ≥ m + g(m) and q = bn + 1 we have

Xq(n) = 1 or = −1

on the (2p− 1)-th or (2p)-th interval of Qbn+1, resp., for all 1 ≤ p ≤
abn+1/2. Hence Xq(n) = 0, for all q < bn + 1.
On the other hand, since g(m) ≥ 2, m ∈ N , for all n ≥ a(g) we have

bn + 2 ≤ n− g(bn) + 2 ≤ n

and

P
({Xn 6= 0}) = abn+1/an =

n∏

j=bn+2

2−j ≤ 2−n.

This implies
(b) (Xn) converges to zero, a.s.

Now let 0 < ε < 1, p ≥ a(g), m ≥ p and n ≥ m + g(m) be given. Then
n ≥ a(g) and by the definition of bn we have

m ≤ bn < bn + 1.

This with (a) yields that for all p ≤ q ≤ m we have

P
(||Xq(n)−Xq|| > ε

)
= P

(||Xq|| > ε
)
.

Therefore by (b), (Xn) must be a game of size g. To show that (Xn) is not
a game of size f , it should be noted that each bn ≤ cn and (bn) increases
to infinity when n runs to infinity. Let

(
c1
n

)
denote the strict increasing

subsequence of (cn) such that
(
c1
n

)
contains all elements of (cn). Then by

setting each nk = c1
k + f

(
c1
k

)
, the subsequence (nk) also stricly increases.

Moreover, by definition we have cn = c1
k for all nk ≤ n < nk+1, k ∈ N .

Finally, given p ∈ N
(
a(g)

)
let k1 denote the first index k such that p ≤ c1

k.
Then for all k ≥ k1 we have

nk = c1
k + f

(
c1
k

)
< c1

k + g
(
c1
k

)
.

Suppose first that bnk
= c1

k = cnk
. Then by definition we have

nk ≥ bnk
+ g (bnk

) = c1
k + g

(
c1
k

)
> c1

k + f
(
c1
k

)
= nk.
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It is imposible. Thus bnk
< c1

k, hence bnk
+ 1 ≤ cnk

. Consequently, by
taking

q = bnk
+ 1, m = cnk

, n = m + f(m),

we have
P

(||Xq(n)−Xq|| > ε
) ≥ 1− P

(||Xq|| > ε
)
.

This with (b) implies that (Xn) fails to be a game of size f , proving the
theorem.

In the simplest cases, given k ∈ N , take f(m) = k and g1(m) = k + 1
or g2(m) = m, m ∈ N . Then it is easily checked that

f <∗ gi, i = 1, 2; a(g1) = 3, a(g2) = 2;

b1
n = max{m,m + g1(m) ≤ n} = n− (k + 1)

and
b2
n = max{m,m + g2(m) ≤ n} = [n/2], n ∈ N,

where [a] denotes the integer part of the real number a. Thus, if in the
above definition of Xn we replace bn by b1

n or b2
n, resp., then the construc-

tion in the proof of the theorem gives the following.

Example 2.3.
(a) For every k ∈ N , there exists a real-valued game of size k + 1 which

is not a game of size k, hence it is not a game fairer with time either.
(b) There exists a real-valued game of size g for some g ∈ F such that it

is not a game of size k for any k ∈ N .

However, it is easily checked that the same proof of Lemma 2.2 [3] can
be applied to establish the following property of quasi-games.

Property 2.4. Every quasi-game contains a subsequence which is a mil.

Further, by mixing the “upcroasing” method due to J. L. Doob’s early
contribution and the recent stopping time technique we are able to prove
the following new result.

Theorem 2.5. Let (Xn) be a quasi-game with

(2.4) limn inf E
(||Xn||

)
< ∞.

Then (Xn) converges to zero in probability if (and only if) it contains a
subsequence, take (Xnk

) which converges to zero in probability.
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Proof. By Lemma 2.1 there exists some f ∈ F such that (Xn) is a game
of size f . Assume to the contrary that (Xn) does not converge to zero in
probability. Then there exists a > 0 such that

(2.5) sup
q≥n

P
(||Xq|| > 5a/4

)
> a, n ∈ N.

We claim first that for every 0 < ε < a/4 and m1 ∈ N there exists m2 >
m1 such that for every A ∈ Am1 with P (A) < a/4 and n ≥ m2 + f(m2)
there exists B ∈ Am2 with B ∩A = ∅ and P (B) < ε such that

(2.6)
∫

B

||Xn||dP ≥ a2/4.

To prove the claim let 0 < ε < a/4 and m1 ∈ N be given. Then by the
definition of quasi-games of size f , one can find some p ≥ m1 such that
for all m ≥ p and n ≥ m + f(m) we have

(2.7) P
(||Xp|| > 5a/4

)
> a and sup

p≤q≤m
P

(||Xq(n)−Xq|| > a/4
)

< ε/2.

Thus, there exists a finite sequence (yi, i ≤ s) of the closed unit ball of E∗

such that P (C1) > 7a/8, where

C1
i = {(yi, Xp) > 5a/4}\

⋃

j<i

{(yi, Xp) > 5a/4} and C1 =
⋃

i≤s

C1
i .

On the other hand, by the property of the subsequence (nk), there is some
m2 ∈ {nk} with p ≤ m2 such that P (D) < ε/2, where

D = {||Xm2 || > a/4}.
Now let A ∈ Am1 with P (A) < a/4 and n ≥ m2 + f(m2). Define

G = {||Xp(n)−Xp|| > a/4} and H = {||Xm2(n)−Xm2 || > a/4}.
Then by (2.7) we have P (G) < ε/2 and P (H) < ε/2. It follows that if we
set C2

j = C1
j \ (A ∪G), j ≤ s and C2 =

⋃
j≤s

C2
j we get

P (C2) > 7a/8− 3a/8 = a/2.

Finally, define

D1 = D ∪H, D2
j = C2

j \D1, Bj = C2
j ∩D1, j ≤ s and B =

⋃

j≤s

Bj .
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Clearly, B ∈ Am2 , B ∩A = ∅ and P (B) ≤ P (D1) < ε. Thus, to prove the
claim it remains to show that B also satisfies (2.5). To see this let j ≤ s
be given. Then we have∫

C2
j

(yj , Xn)dP =
∫

C2
j

(
yj , Xp(n)

)
dP ≥ aP (C2

j )

because C2
j ∈ Ap and on C2

j one has
(
yj , Xp(n)

) ≥ (yj , Xp) − a/4 ≥ a.
Similarly, because D2

j ∈ Am2 and on D2
j we have

(
yj , Xm2(n)

) ≤ (yj , Xm2) + a/4 ≤ a/2.

Then ∫

D2
j

(yj , Xn)dP =
∫

D2
j

(
yj , Xm2(n)

)
dP ≤ a/2P

(
C2

j

)
.

But note that Bj ∩D2
j = ∅ and C2

j = Bj ∪D2
j . This yields

∫

Bj

||Xn||dP ≥
∫

Bj

(yj , Xn)dP

≥
∫

Bj

||Xn||dP −
∫

D2
j

(yj , Xn)dP ≥ a/2P
(
C2

j

)
.

Consequently, by summation over j ≤ s we get∫

B

||Xn||dP ≥ a/2P
(
C2

) ≥ a2/4.

This proves (2.5) and the claim.

Now we are in a position to complete the proof as follows. First apply-
ing the claim to construct by induction a strictly increasing sequence (mp)
of N with the following property: whenever A ∈ Amp with P (A) < a/4
and n ≥ mp+1 + f (mp+1), there exists a set B ∈ Amp+1 with B ∩ A = ∅
and P (B) < a2−(p+1) and

∫
B

||Xn||dP ≥ a2/4. Thus, given p ∈ N

and n ≥ max{mi + f(mi), i ≤ p} we can construct by finite induc-
tion, for j ≤ p, disjoint sets Bj with B1 = ∅, P (Bj) < a2−(p+1) and∫
Bj

||Xn||dP ≥ a2/4. This implies

∫

B

||Xn||dP ≥ (p− 1)a2/4,
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where B =
⋃

j≤p

Bj . Hence lim
n

E(||Xn||) = ∞, which contradicts the as-

sumption (2.3), proving the theorem.

Corollary 2.6 ([4], Theorem 3.6). Let (Xn) be a quasi-game satisfying
(2.3). Then it admits a unique Riesz-Talagrand decomposition:

(2.8) Xn = Mn + Pn,

where (Mn) is a uniformly integrable martingale and (Pn) goes to zero in
probability.

Proof. By (2.4) there exists a subsequence (nk) of N such that the subse-
quence (Yk = Xnk

) is still a quasi-game w.r.t. (Bk = Ank
) such that

lim
k

E(||Yk||) = limn inf E(||Xn||) < ∞.

Thus, by Property 2.4 one can find a further strictly increasing subse-
quence (kp) of N such that the subsequence

(
Zp = Ykp

)
is an L1-bounded

mil w.r.t.
(Cp = Bkp

)
. Consequently, by the proof of Theorem 8 [10], (Zp)

admits a unique Riesz-Talagrand decomposition:

Zp = Lp + Wp, p ∈ N

where (Lp) is a uniformly integrable martingale with

||Lp|| ≤ Ep

(
limq inf ||Ykq ||

)
, p ∈ N,

and the potential (Wp) converges to zero, a.s. Now define the sequences
(Mn) and (Pm) as follows. For every m ∈ N let

m(p) = min
{
q ∈ N, m ≤ nkq

}
, Mm = Lm

(
m(p)

)
,

and
Pm = Xm −Mm,m ∈ N.

Then it is clear that

Xn = Mn + Pn, n ∈ N,

where by the property of the martingale (Lp), (Mn) is also a uniformly
integrable martingale. Thus, (Pn) is a quasi-game satisfying the condition:

limn inf E(||Pn||) ≤ 2 limn inf E(||Xn||) < ∞.
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On the other hand, by the property of the sequence (Wp), the subse-

quence
(
Pnkp

)
converges to zero, a.s., hence so does in probability when

p runs to infinity. By Theorem 2.5 the potential (Pn) must converge itself
to zero in probability as well. This proves (2.8) and the Corollary.
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