THE REGULARITY OF SPACES OF GERMS OF FRECHET-VALUED BOUNDED HOLOMORPHIC FUNCTIONS

NGUYEN HA THANH

INTRODUCTION

Several authors have studied the regularity of the space $\mathcal{H}(K)$ of germs of holomorphic functions on a compact set K in a locally convex space, for example, Chae [1] for K in a Banach space, Mujica [6] for K in a metric locally convex space, Dineen [2] and Soraggi [10] for K in certain locally convex spaces (non-necessarily metrizable). Recently, Vogt [14] gave a general characterization of the regularity of inductive limit of a sequence of Frechet spaces, in particular, of Köthe sequence spaces. In the present paper we shall find a necessary and sufficient condition for the space $\mathcal{H}_{\infty}(K, F)$ of germs of F-valued bounded holomorphic functions on a compact set K in E to be regular where E and F are two Frechet spaces. In the case where K is a compact set in \mathbb{C}^n , this problem was investigated in [11]. As an application we will study the regularity and completeness of the space $\mathcal{H}(K, F)$ of germs of F-valued holomorphic functions on K.

1. Preliminaries

We shall use standard notions from the theory of locally convex spaces as presented in the books of Pietsch [7] and Schaefer [9]. All locally convex spaces are assumed to be complex and Hausdorff.

1.1. Linear topological invariants

Let F be a Frechet space with a fundamental system of semi-norms $\{\|\cdot\|_k\}$. For each subset $B \subset F$ define a generalized semi-norm $\|\cdot\|_B^*$: $F' \to [0, +\infty]$ on the dual space of F by

$$||u||_B^* = \sup\{|u(x)| : x \in B\}.$$

Received March 22, 1997; in revised form October 16, 1997.

¹⁹⁹¹ Mathematics Subject Classification. 46G20, 32A30

Keywords and phrases. Germs of holomorphic functions, regularity.

Write $\|\cdot\|_k^*$ instead of $\|\cdot\|_{U_k}^*$, where $U_k = \{x \in F : \|x\|_k < 1\}$. We say that F has the property

$$\begin{aligned} (\Omega) & \text{if } \forall p \; \exists q \; \forall k \; \exists d, C > 0 \; \left\| \cdot \right\|_q^{*1+d} \leq C \left\| \cdot \right\|_k^* \left\| \cdot \right\|_p^{*d}, \\ (DN) & \text{if } \exists p \; \forall q, d > 0 \; \exists k, C > 0 : \left\| \cdot \right\|_q^{1+d} \leq C \left\| \cdot \right\|_k \left\| \cdot \right\|_p^d, \\ (\overline{DN}) & \text{if } \exists p \; \forall q \; \exists k \; \forall d > 0 \; \exists C > 0 : \left\| \cdot \right\|_q^{1+d} \leq C \left\| \cdot \right\|_k \left\| \cdot \right\|_p^d. \end{aligned}$$

The above properties were introduced and investigated by Vogt in [12] [13] and [14]. In [13] Vogt has shown that $F \in (DN)$ (resp. $F \in \Omega$) if and only if F is isomorphic to a subspace (resp. quotient space) of $B \widehat{\otimes}_{\pi} s$ for a suitable Banach space, where s denotes the space of rapidly decreasing sequences.

1.2. The space of germs of holomorphic functions

Let E, F be locally convex spaces and D an open set in E. A function $f: D \to F$ is called holomorphic if f is continuous and $u \circ f$ is Gateaux holomorphic for all $u \in F'$. By $\mathcal{H}(D, F)$ we denote the space of F-valued holomorphic functions on D. We denote by τ_0 and τ_{ω} the compact open and Nachbin topologies on $\mathcal{H}(D, F)$. Let us recall that a semi-norm ρ on $\mathcal{H}(D, F)$ is said to be τ_{ω} -continuous if there exist a compact set $K \subset D$ and a continuous semi-norm α on F such that for every neighbourhood V of K, there exists $C_V > 0$:

$$\rho(f) \le C_V \alpha_V(f) \text{ for } f \in \mathcal{H}(D, F),$$

where

$$\alpha_V(f) = \sup \left\{ \alpha(f(x)) : x \in V \right\}.$$

Put for each compact set K in E,

$$\mathcal{H}_{\infty}(K,F) = \liminf_{U \downarrow K} \mathcal{H}_{\infty}(U,F)$$

and

$$\mathcal{H}(K,F) = \liminf_{U \downarrow K} \left[\mathcal{H}_{\infty}(U,F), \tau_w \right],$$

where

$$\mathcal{H}_{\infty}(U,F) = \left\{ f \in \mathcal{H}(U,F) : f(U) \text{ is bounded} \right\}$$

equipped with the topology of uniform convergence on U. For details concerning holomorphic functions in locally convex spaces, we refer the reader to the book of Dineen [3].

Finally we recall that an inductive limit $E = \liminf_{\alpha} E_{\alpha}$ is said to be regular if every bounded set in E is contained and bounded in some E_{α} .

2. The regularity of $\mathcal{H}_{\infty}(K,F)$ and the properties (DN), (Ω)

The aim of this section is to prove the following result.

2.1. Theorem.

(i) The Frechet space F has the property (DN) if and only if $\mathcal{H}_{\infty}(K, F)$ is regular for every compact set K in every Frechet space $E \in (\Omega)$ (ii) The Frechet space E has the property (Ω) if and only if $\mathcal{H}_{\infty}(K, F)$ is regular for every compact set K in E and every Frechet space $F \in (DN)$.

For the proof of the theorem we need some notations. Put

$$\mathbf{M} = \Big\{ \alpha = (\alpha_j) \subset \mathbf{N} : \alpha_j = 0 \text{ for } j \text{ sufficiently large} \Big\}.$$

For each $\alpha \in \mathbf{M}$, $\alpha = (\alpha_1, \ldots, \alpha_n, 0, \ldots)$, and $z \in \mathbf{C}^{\mathbf{N}}$, put

$$\begin{aligned} |\alpha| &= \alpha_1 + \alpha_2 + \dots + \alpha_n \\ \alpha! &= \alpha_1! \dots \alpha_n!, \\ z^{\alpha} &= z_1^{\alpha_1} \dots z_n^{\alpha_n}. \end{aligned}$$

Note that (see [8])

(1)
$$\left(\sum_{j\geq 1} z_j\right)^n = \sum_{\alpha\in M_n} \frac{n!}{\alpha!} z^\alpha,$$

where

$$M_n = \{ \alpha \in M : |\alpha| = n \}.$$

The following is a small modification of a theorem of Ryan [8].

2.2. Lemma. Let $B(0,R) = \{z \in \ell^1 : ||z|| < R\}, R > 0$ and F a Banach space. Let 0 < R < 1 and $f : B(0,R) \to F$ a bounded holomorphic function. Then there exists a unique family $\{a_{\alpha}\}_{\alpha \in \mathbf{M}} \subset F$ such that

$$\sup\left\{\frac{\alpha^{\alpha}}{|\alpha|^{|\alpha|}}\left(\frac{R}{2}\right)^{|\alpha|}\|a_{\alpha}\|:\alpha\in\mathbf{M}\right\}<\infty,$$

NGUYEN HA THANH

and

(2)
$$\sum_{\alpha \in \mathbf{M}_n} a_{\alpha} z^{\alpha} \text{ converges to } f \text{ in } \mathcal{H}_{\infty}(B(0,r),F) \text{ for all } 0 < r < \frac{R}{2e} \cdot$$

2.3. Lemma. Let $R : E \to G$ be a continuous linear surjective map between Frechet spaces and let $\mathcal{H}_{\infty}(O_E, F)$ be regular. Then so is $\mathcal{H}_{\infty}(O_G, F)$.

Proof. Given A a bounded set in $\mathcal{H}_{\infty}(O_G, F)$. Then $\hat{R}(A)$ is bounded in $\mathcal{H}_{\infty}(O_E, F)$, where $\hat{R} : \mathcal{H}_{\infty}(O_G, F) \to \mathcal{H}_{\infty}(O_E, F)$ is the continuous linear induced by R. By the hypothesis we can find a balanced convex neighbourhood U of $0 \in E$ such that $\hat{R}(A)$ is contained and bounded in $\mathcal{H}_{\infty}(U, F)$. Put V = R(U). The open mapping theorem yields that V is a neighbourhood of $0 \in G$. We check that A is contained and bounded in $\mathcal{H}_{\infty}(V, F)$. Given $g \in A$. Choose a balanced convex neighbourhood V_g of $0 \in G$ in V such that $g \in \mathcal{H}_{\infty}(V_g, F)$. Consider the Taylor expansions of $f = \hat{R}(g) \in \mathcal{H}_{\infty}(U, F)$ and g at $0 \in E$ and $0 \in G$ on U and V_g , respectively,

$$f(x) = \sum_{n \ge 0} P_n f(x), \quad P_n f(x) = \frac{1}{2\pi i} \int_{|\lambda| = \varepsilon_x > 0} \frac{f(\lambda x)}{\lambda^{n+1}} d\lambda, \quad x \in E,$$

and

$$g(y) = \sum_{n \ge 0} P_n g(y), \quad P_n g(y) = \frac{1}{2\pi i} \int_{|\lambda| = \varepsilon_y > 0} \frac{g(\lambda y)}{\lambda^{n+1}} d\lambda, \quad y \in G.$$

Hence

$$P_n f(x) = \frac{1}{2\pi i} \int_{|\lambda| = \varepsilon_x} \frac{f(\lambda x)}{\lambda^{n+1}} d\lambda$$
$$= \frac{1}{2\pi i} \int_{|\lambda| = \varepsilon_x} \frac{gR(\lambda x)}{\lambda^{n+1}} d\lambda$$
$$= P_n g(y)$$

with y = Rx, where $\varepsilon_x > 0$ is sufficiently small such that $\lambda x \in R^{-1}(V_g) \cap U$ for $|\lambda| \leq \varepsilon_x$. Thus

$$R(P_ng) = P_nf \quad \text{for } n \ge 0$$

and hence the series $\sum_{n\geq 0} P_n g(y)$ converges to $\hat{g} \in \mathcal{H}_{\infty}(V, F)$, for which $\hat{g} = g$ in $\mathcal{H}_{\infty}(O_G, F)$ and $\hat{R}(\hat{g}) = f$. This means that A is contained and bounded in $\mathcal{H}_{\infty}(V, F)$.

2.4. Lemma [11]. Let F be a Frechet space with a continuous norm and let $\mathcal{H}_{\infty}(O_E, F)$ be regular, where O_E is the zero-element of a Frechet space E. Then $\mathcal{H}_{\infty}(K, F)$ is regular for all compact sets K in E.

Proof of Theorem 2.1.

Necessity. Assume that $\mathcal{H}_{\infty}(K, F)$ is regular for all compact sets in an arbitrary Frechet space $E \in (\Omega)$. Then $\mathcal{H}_{\infty}(\overline{\Delta}, F)$ and $\Delta = \{z \in \mathbf{C} : |z| < 1\}$ is regular. By [11], F has (DN).

Assume that $\mathcal{H}_{\infty}(K, F)$ is regular for every compact set $K \subset E$ and every Frechet space $F \in (DN)$. In particular, $\mathcal{H}_{\infty}(O_E, s)$ is regular. By Vogt [14] we have $\forall \mu \exists k, n \ \forall K, m \ \exists N, S \ \forall \sigma \in \mathcal{H}_{\infty}(O_E, s)$,

(1)
$$\|\sigma\|_{k,m} \leq S(\|\sigma\|_{\mu,n} + \|\sigma\|_{K,N}).$$

Using (1) to $\sigma = ue_p, u \in E', p \ge 1$ we get

$$||u||_{k}^{*}p^{m} \leq S(||u||_{\mu}^{*}p^{n} + ||u||_{K}^{*}p^{N}).$$

The inequality yields

$$||u||_{k}^{*} \leq S\left(\frac{1}{t}||u||_{\mu}^{*} + t^{d}||u||_{K}^{*}\right) \forall u \in E', \ \forall t \geq 1,$$

where $t = p^{m-n}$ and $d = \frac{N-m}{m-n} > 0$. We can increase S so that the inequality holds for t > 0. This means $E \in (\Omega)$.

Sufficiency. Assume that E and F has the property (Ω) and (DN), respectively. Choose an index set I and a Banach space B such that E is isomorphic to a quotient space of $\ell^1(I)\widehat{\otimes}_{\pi}s$ and F to a subspace of $B\widehat{\otimes}_{\pi}s$. Note that

$$B\widehat{\otimes}_{\pi}s = \Big\{(y_p) \subset B : \sup \|y_p\| p^n < \infty \ \forall n \ge 1\Big\}.$$

Thus, by Lemma 2.2 we may assume without loss of generality that $E \cong \ell^1(I) \widehat{\otimes}_{\pi} s$ and $F \cong B \widehat{\otimes}_{\pi} s$. To prove the regularity of $\mathcal{H}_{\infty}(K, F)$ for every compact set K in E it suffices by Lemma 2.3 to assume $K = \{O_E\}$.

First consider the case $\mathbf{I} = \mathbf{N}$. Put

$$\mathbf{M} = \{ \alpha = (\alpha_{11}, \dots, \alpha_{ij}, 0, \dots) \}.$$

and $\gamma_{ij,k} = i^k$ for $i, j, k \ge 1$. Let $\sigma \in \mathcal{H}_{\infty}(O_E, F)$. Choose $q \ge 1$ such that $\sigma \in \mathcal{H}_{\infty}(U_q, F)$, where

$$U_k = \Big\{ (z_{ij}) \subset \mathbf{C} : \sum_{i,j \ge 1} |z_{ij}| i^k < \infty \Big\}.$$

By Lemma 2.1, there exists a unique family $\{\xi_{(\alpha,p),n}\} \subset B$ such that

$$\sup\left\{\frac{\alpha^{\alpha}}{|\alpha|^{|\alpha|}}\left(\frac{1}{2}\right)^{|\alpha|}\frac{j^{n}}{\gamma_{.,k}^{\alpha}}\left\|\xi_{(\alpha,p),n}\right\|:(\alpha,p)\in\mathbf{M}\times\mathbf{N}\right\}<\infty$$

for all $n \geq 1$. By the regular characterization of Vogt [14] it remains to check that $\forall \mu \exists n, k \forall m, K \exists N, S \forall (\alpha, j)$,

(2)
$$\frac{p^m}{\gamma^{\alpha}_{.,k}} \le S\left(\frac{p^n + p^N}{\gamma^{\alpha}_{.,\mu}} + \frac{p^N}{\gamma^{\alpha}_{.,K}}\right) \cdot$$

Given $\mu \geq 1$. Take $k = 2\mu$ and n = 1. Then (2) has the form: $\forall K, m \exists S, N \ \forall (\alpha, j),$

(3)
$$\frac{p^m}{1^{\mu\alpha_{11}}\dots i^{\mu\alpha_{ij}}} \le S\left(p + \frac{p^N}{1^{(k-\mu)\alpha_{11}}\dots i^{(k-\mu)\alpha_{ij}}}\right) \cdot$$

Choose $N > \frac{m}{\mu}K + m$. Obviously, (3) holds for p, α with $p^m \leq 1^{\mu\alpha_{11}} \dots i^{\mu\alpha_{ij}}$. If $p^m > 1^{\mu\alpha_{11}} \dots i^{\mu\alpha_{ij}}$ we also (3) have because

$$\frac{p^{N}}{1^{(k-\mu)\alpha_{11}}\dots i^{(k-\mu)\alpha_{ij}}} \ge \frac{p^{m}}{1^{\mu\alpha_{11}}\dots i^{\mu\alpha_{ij}}} \times \frac{1^{(\frac{mK}{\mu}+m)\mu\alpha_{11}}\dots i^{(\frac{mK}{\mu}+m)\mu\alpha_{ij}}}{1^{(k-2\mu)\alpha_{11}}\dots i^{(k-2\mu)\alpha_{ij}}} \ge \frac{p^{m}}{1^{\mu\alpha_{11}}\dots i^{\mu\alpha_{ij}}}$$

Now we consider the general case. Let $\mathcal{F}(I)$ denote the family of countable sunsets J of I. Let A be a bounded set in $\mathcal{H}_{\infty}(O_E, F)$. By (i) for

each $J \in \mathcal{F}(I)$ we can find a convex neighbourhood W_J of $0 \in \ell^1(J) \widehat{\otimes}_{\pi} s$ such that $A|_{W_I}$ is contained and bounded in $\mathcal{H}_{\infty}(W_J, F)$. Put

$$W = U\Big\{W_J : J \in \mathcal{F}(I)\Big\}.$$

Then W is a neighbourhood of $0 \in E$. Otherwise, there exists a sequence $\{z_n\} \subset E, z_n \notin W$ for $n \geq 1$, converging to $0 \in E$. Choose $J \in \mathcal{F}(I)$ such that $\{z_n\} \subset \ell^1(J) \widehat{\otimes}_{\pi} s$. Then $z_n \in W_J \subset W$ for n sufficiently large. This is impossible. On the other hand, by the unique principle A is contained in $\mathcal{H}(W, F)$. It remains to check that there exists a neighbourhood V of $0 \in E$ in W such that A is bounded in $\mathcal{H}_{\infty}(V, F)$. Otherwise, for each $n \geq 1$ there exists k_n and a countable subset A_n of A such that

$$\sup\left\{\|f(z)\|_{k_n}: \|z\|_n < 1, \ f \in A_n\right\} = +\infty.$$

It is easy to see that there exists a countable subset J of I such that for $n \ge 1$,

$$\sup\left\{\|f(z)\|_{k_n}: \|z\|_n < 1, \quad z \in \ell^1(J)\widehat{\otimes}_{\pi}s, \quad f \in \bigcup_{j \ge 1} A_n\right\} = +\infty.$$

This is impossible because for n sufficiently large we have

$$\left\{z \in \ell^1(J)\widehat{\otimes}_{\pi}s : \|z\|_n < 1\right\} \subset W_J$$

and hence

$$\left\{ \|f(z)\|_k; \ z \in W_J, \ f \in A \right\} < \infty \quad \text{for } k \ge 1.$$

The theorem is proved.

3. Application

In this section we investigate the regularity and completeness of $\mathcal{H}(K, F)$, where

$$\mathcal{H}(K,F) = \lim \inf_{U \supset K} \left[\mathcal{H}(U,F), \tau_w \right]$$

and τ_w denotes the Nachbin topology on $\mathcal{H}(U, F)$.

3.1. Theorem. Let E and F be nuclear Frechet spaces with $E \in (\Omega)$ and $F \in (\overline{DN})$. Then $\mathcal{H}(K, F)$ is regular and complete.

We need the following two lemmas.

3.2. Lemma. Let E and F be Frechet spaces having (Ω) and (\overline{DN}) , respectively. Then every F-valued holomorphic function on an open set in E is locally bounded.

Proof. By [11] we can find a set I and a continuous linear map R from $\ell^1(I)\widehat{\otimes}_{\pi}s$ onto E, where s is the space of all rapidly decreasing sequences. Note that

$$\ell^{1}(I)\widehat{\otimes}_{\pi}s = \left\{ z = \left(z_{ij}\right)_{i \in \mathbf{I}, j \in \mathbf{N}} : \|z\|_{\gamma} = \sum_{i \in \mathbf{I}, j \in \mathbf{N}} |z_{ij}| j^{\gamma} < \infty, \ \forall \gamma \in \mathbf{N} \right\}$$

and hence $\ell^1(I)\widehat{\otimes}_{\pi} s \in (\Omega)$.

Let $f \in \mathcal{H}(D, F)$, where D is an open set in E. Since R is open, it suffices to show that $g = f \circ R$ is locally bounded on $R^{-1}(D)$. Let $z_0 \in R^{-1}(D)$. Without loss of the generality we may assume that $R^{-1}(D)$ is balanced and $z_0 = 0$. Consider the Taylor expansion of g at $0 \in \ell^1(I) \widehat{\otimes}_{\pi} s$

$$g(z) = \sum_{n \ge 0} P_n g(z)$$

where

$$P_n g(z) = \frac{1}{2\pi i} \int_{|\lambda|=1} \frac{g(\lambda z)}{\lambda^{n+1}} d\lambda \quad \text{for} \quad z \in R^{-1}(D).$$

Writing every $z \in \ell^1(I) \widehat{\otimes}_{\pi} s$ in the form

$$z = \sum_{i \in \mathbf{I}, j \in \mathbf{N}} \delta_{ij}^*(z) \delta_{ij},$$

where $\delta_{ij}^*(z) = z_{ij}$ and $\delta_{ij} = \left[\delta_{k,\ell}^{[i,j]} : \mathbf{I} \times \mathbf{N}\right]$, with

$$\delta_{k,\ell}^{[i,j]} = \begin{cases} 1 & (k,\ell) = (i,j) \\ 0 & (k,\ell) \neq (i,j), \end{cases}$$

we get

$$g(z) = \sum_{n \ge 0} P_n g \left(\sum_{i \in \mathbf{I}, j \in \mathbf{N}} \delta_{ij}^*(z) \delta_{ij} \right)$$
$$= \sum_{n \ge 0} \sum_{\substack{i_1, \dots, i_n \in \mathbf{I} \\ j_1, \dots, j_n \in \mathbf{N}}} P_n g(\delta_{i_1 j_1}, \dots, \delta_{i_n j_n}) \delta_{i_1 j_1}^*(z) \dots \delta_{i_n j_n}^*(z)$$

for $z \in R^{-1}(D)$. Since $\ell^1(I)\widehat{\otimes}_{\pi} s \in (\Omega)$ we have

(\Omega)
$$\forall \alpha \; \exists \beta \; \forall \gamma \ge \beta \; \exists d_{\gamma}, C_{\gamma} > 0 : ||| \cdot |||_{\beta}^{*(1+d_{\gamma})} \le C_{\gamma} ||| \cdot |||_{\gamma}^{*} ||| \cdot |||_{\alpha}^{*d\gamma}.$$

Since

$$\left(\frac{|\|\cdot\||_{\beta}^{*}}{|\|\cdot\||_{\alpha}^{*}}\right)^{sd_{\gamma}} \leq \left(\frac{|\|\cdot\||_{\beta}^{*}}{|\|\cdot\||_{\alpha}^{*}}\right)^{d_{\gamma}} \quad \forall s \geq 1,$$

it follows that

$$|\|\cdot\||_{\beta}^{(*)1+sd_{\gamma}} \leq C_{\gamma}|\|\cdot\||_{\gamma}^{*}\cdot|\|\cdot\||_{\alpha}^{*sd_{\gamma}} \quad \forall s \geq 1.$$

On the other hand, by applying (\Omega) to δ_{ij}^* we obtain

$$\frac{|\|\delta_{ij}\||_{\gamma}|\|\delta_{ij}\||_{\alpha}^{sd_{\gamma}}}{C_{\gamma}} \le |\|\delta_{ij}\||_{\beta}^{1+sd_{\gamma}}, \quad \forall i \in \mathbf{I}, j \in \mathbf{N}.$$

By the hypothesis $F \in (\overline{DN})$, where

$$(\overline{DN}) \exists p \; \forall q \ge p \; \exists k_q \ge q \; \forall d > 0 \; \exists D_d : \| \cdot \|_q^{1+d} \le D_d \| \cdot \|_{k_q} \| \cdot \|_p^d.$$

First choose α such that

$$M(\alpha, p) = \sup \left\{ \|g(z)\|_p : |\|z\||_{\alpha} < 1 \right\} < \infty.$$

Next choose $\beta \geq \alpha$ as in (Ω). To complete the proof, it is enough to verify that g is bounded on rU_{β} for r > 0 sufficiently small.

(iii) Given $q \ge p$, choose $k_q \ge q$ as in (\overline{DN}) . Let $\gamma_q \ge \beta$ such that

$$M(\gamma_q, k_q) < \infty$$

and let s > 0 sufficiently large for which

$$C_{\gamma_q}^{\frac{1}{(1+sd_{\gamma_q})}} \le 2.$$

Then we have

$$\begin{split} &\sum_{n\geq 0} \|P_ng(z)\|_q \leq \sum_{n\geq 0} \sum_{\substack{i_1,\ldots,i_n\in \mathbf{I}\\ j_1,\ldots,j_n\in \mathbf{N}}} \frac{\|P_ng(\delta_{i_1j_1},\ldots,\delta_{i_nj_n})\|_q}{|\|\delta_{i_1j_1}\||_{\beta}\cdots|\|\delta_{i_nj_n}\||_{\beta}} \times \\ &\times |\|\delta_{i_1j_1}\||_{\beta}\cdots|\|\delta_{i_nj_n}\||_{\beta}|\delta_{i_1j_1}^{*}(z)|\cdots|\delta_{i_nj_n}^{*}(z)| \\ &\leq \sum_{n\geq 0} \sum_{\substack{i_1,\ldots,i_n\in \mathbf{I}\\ j_1,\ldots,j_n\in \mathbf{N}}} D_{sd_{\gamma_q}}^{\frac{1}{1+sd_{\gamma_q}}} \left(C_{\gamma_q}^{\frac{1}{1+sd_{\gamma_q}}}\right)^n \times \frac{\|P_ng(\delta_{i_1j_1},\ldots,\delta_{i_nj_n})\|_{k_q}^{\frac{1}{1+sd_{\gamma_q}}}}{|\|\delta_{i_1j_1}\||_{\gamma_q}^{\frac{1}{1+sd_{\gamma_q}}}\cdots|\|\delta_{i_nj_n}\||_p^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}}} \\ &\times \frac{\|P_ng(\delta_{i_1j_1},\ldots,\delta_{i_nj_n})\|_p^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}}}{|\|\delta_{i_1j_1}\||_{\alpha}^{\frac{1}{1+sd_{\gamma}}}\cdots|\|\delta_{i_nj_n}\||_p^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}}} \\ &\times |\|\delta_{i_1j_1}\||_{\beta}\cdots|\|\delta_{i_nj_n}\||_{\beta} \delta_{i_1j_1}^{*}(z)|\cdots|\delta_{i_nj_n}^{*}(z)| \\ &\leq D_{sd_{\gamma_q}}^{\frac{1}{1+sd_{\gamma}}}M(\gamma_q,k_q)^{\frac{1}{1+sd_{\gamma}}}M(\alpha,p)^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}} \\ &\leq D_{sd_{\gamma_q}}^{\frac{1}{1+sd_{\gamma}}}M(\gamma_q,k_q)^{\frac{1}{1+sd_{\gamma}}}M(\alpha,p)^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}} \times \\ &\leq D_{sd_{\gamma_q}}^{\frac{1}{1+sd_{\gamma}}}M(\gamma_q,k_q)^{\frac{1}{1+sd_{\gamma}}}M(\alpha,p)^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}} \\ &\leq D_{sd_{\gamma_q}}^{\frac{1}{1+sd_{\gamma}}}M(\gamma_q,k_q)^{\frac{1}{1+sd_{\gamma}}}M(\alpha,p)^{\frac{sd_{\gamma_q}}{1+sd_{\gamma_q}}} \times \\ &\sum_{n\geq 0} 2^n \frac{n^n}{n!} \left(\frac{1}{4e}\right)^n < \infty \end{aligned}$$

for $||z||_{\beta} < \frac{1}{4e}$. Consequently, g and hence f is locally bounded. \Box

3.3. Lemma. Let E and F be as in Theorem 3.1. Then the canonical map

$$\mu: \mathcal{H}(K)\widehat{\otimes}_{\pi}F \to \left[\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'\right]'$$

is an isomorphism.

Proof. By Meise and Vogt [5] $\mathcal{H}'(K) \in (\Omega)$. Hence by Vogt [12], $\mathcal{H}'(K) \widehat{\otimes}_{\pi} F'$ is bornological. By Lemma 3.2 this yields

$$\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'\cong \liminf_{k} (\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'_{k}).$$

Moreover the inductive limit is regular. Hence

$$[\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'] \cong \lim \operatorname{proj}_{k}[\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'_{k}] \cong \mathcal{H}(K)\widehat{\otimes}_{\pi}F'$$

Proof of Theorem 3.1. Let $\{U_n\}$ be a neighbourhood basis of K. Since $E \in (\Omega)$ and $F \in (\overline{DN})$ we have

$$\mathcal{H}_{\infty}(K,F) = \mathcal{H}(K,F) \quad (\text{Lemma 3.2})$$

$$= \mathcal{H}(K)\widehat{\otimes}_{\pi}F \text{ (by [5] } [\mathcal{H}(K)]' \in (\Omega) \text{ and by Lemma 3.2})$$

$$\cong [\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'] \text{ (Lemma 3.3)}$$

$$\cong [(\text{lim proj } (\mathcal{H}'_{\infty}(U_n))\widehat{\otimes}_{\pi}F']'$$

$$\cong [\text{lim proj } (\mathcal{H}'_{\infty}(U_n)\widehat{\otimes}_{\pi}F')]'$$

$$\cong [\text{lim proj } (\mathcal{H}_{\infty}(U_n)\widehat{\otimes}_{\pi}F)']'$$

$$\cong [\text{lim proj } (\mathcal{H}_{\infty}(U_n,F)']'$$

$$\cong [\text{lim proj } (\mathcal{H}_{\infty}(U_n),F)]''$$

$$\cong [\mathcal{H}_{\infty}(K,F)]''.$$

Thus, $\mathcal{H}_{\infty}(K, F) \cong [H_{\infty}(K, F)]''$ is complete. It remains to check that the canonical map $\mathcal{H}(K, F) \to \mathcal{H}(K) \widehat{\otimes}_{\pi} F \cong \mathcal{H}(K) \widehat{\otimes}_{\varepsilon} F$ is continuous and hence $\mathcal{H}(K, F) \cong \mathcal{H}_{\infty}(K, F)$. For each $n \geq 1$ the restriction map

$$R_n : [\mathcal{H}(U_n, F), \tau_w] \to \mathcal{H}(K) \widehat{\otimes}_{\pi} F \cong \mathcal{H}(K) \widehat{\otimes}_{\varepsilon} F$$
$$\cong [\lim \inf_m \mathcal{H}(U_m), \tau_w] \widehat{\otimes}_{\varepsilon} F$$

is continuous. Indeed let ρ be a continuous semi-norm on $\mathcal{H}(K)\widehat{\otimes}_{\varepsilon}F$. Choose two continuous semi-norms α and β on $\mathcal{H}(K)$ and F, respectively, such that

$$\rho\Big(\sum_{k=1}^m g_k \otimes x_k\Big) \le \sup\left\{\alpha\Big(\sum_{k=1}^m x^*(x_k)g_k\Big) : x^* \in U^0_\beta\right\}$$

for $g_k \in \mathcal{H}(K)$ and $x_k \in F$, $k = \overline{1, m}$. Let V be an arbitrary neighbourhood of K in U. Take $C_V > 0$ such that

$$\alpha(g) \le C_V \|g\|_V \quad \text{for} \quad g \in \mathcal{H}_\infty(V).$$

Then

$$\rho\Big(R_n\Big(\sum_{k=1}^m g_k x_k\Big)\Big) = \rho\Big(\sum_{k=1}^m g_k \otimes x_k\Big)$$

$$\leq \sup\Big\{\alpha\Big(\sum_{k=1}^m x^*(x_k)g_k\Big) : x^* \in U^0_\beta\Big\}$$

$$\leq C_V \sup\Big\{\Big\|\sum_{k=1}^m x^*(x_k)g_k\Big\|_V : x^* \in U^0_\beta\Big\}.$$

This means that ρR_n is τ_w -continuous. Hence

$$\mathcal{H}(K,F) \cong \lim \inf_{n} \left[\mathcal{H}(U_n,F),\tau_w\right] \cong \mathcal{H}_{\infty}(K,F)$$

is regular and complete \Box

Acknowledgements

The author would like to thank the referee for helpfull remarks that let to an improvement of the presentation of the paper.

References

- S. B. Chae, Holomorphic germs on Banach spaces, Ann. Inst. Fourier 21 (3) (1971), 107-141.
- S. Dineen, Holomorphic germs on compact subsets of locally convex spaces, in: Functional Analysics, Holomorphy and Application Theory, Ed. S. Macho, Lect. Notes in Math. 843, Springer-Verlag, 1981, 247-263.
- S. Dineen, Complex Analysis in Locally Convex Spaces, North Holland Math. Stud. 57, North-Holland, Amsterdam, 1981.
- N. V. Khue and P. T. Danh, Structure of spaces of germs of holomorphic function, Publ. Math. 41 (1997), 467-480.
- R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. 75 (1983), 235-252.
- J. Mujica, Spaces of germs of holomorphic functions, Studia in Analysis. Advances in Math. Suppl. Studies, Ed. G. C. Rotas, Academic Press 4 (1994), 1-41.
- 7. A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag, 1974.
- 8. R. Ryan, Holomorphic mappings on ℓ_1 , Trans. Amer. Math. Soc. **302** (2) (1987), 797-811.
- 9. H. Schaefer, Topological Vector Spaces, Springer-Verlag, 1972.
- R. L. Soraggi, Holomorphic germs on certain locally convex spaces, Ann. Mat. Pura Appl. 144 (1986), 1-22.
- B. D. Tac and N. V. Hao, The regularity of spaces of germs of F-valued holomorphic functions, Vietnam Jour. of Math. 26 (2) (1998), 129-136.
- D. Vogt, Frecheträume zwischen denen jede stetige linear Abbildung beschränkt ist, J. Rein Angew, Math. 345 (1983), 182-200.
- 13. D. Vogt, On two classes of Frechet spaces, Arch. Math. 45 (1985), 255-266.
- D. Vogt, Regularity properties of (LF)-spaces, Progress in Functional Analysis (1992), 57-94.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EDUCATION HO CHI MINH CITY, VIETNAM