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THE REGULARITY OF SPACES OF GERMS
OF FRECHET-VALUED BOUNDED

HOLOMORPHIC FUNCTIONS

NGUYEN HA THANH

Introduction

Several authors have studied the regularity of the space H(K) of germs
of holomorphic functions on a compact set K in a locally convex space,
for example, Chae [1] for K in a Banach space, Mujica [6] for K in a
metric locally convex space, Dineen [2] and Soraggi [10] for K in certain
locally convex spaces (non-necessarily metrizable). Recently, Vogt [14]
gave a general characterization of the regularity of inductive limit of a
sequence of Frechet spaces, in particular, of Köthe sequence spaces. In
the present paper we shall find a necessary and sufficient condition for the
space H∞(K, F ) of germs of F -valued bounded holomorphic functions on
a compact set K in E to be regular where E and F are two Frechet spaces.
In the case where K is a compact set in Cn, this problem was investigated
in [11]. As an application we will study the regularity and completeness
of the space H(K,F ) of germs of F -valued holomorphic functions on K.

1. Preliminaries

We shall use standard notions from the theory of locally convex spaces
as presented in the books of Pietsch [7] and Schaefer [9]. All locally convex
spaces are assumed to be complex and Hausdorff.

1.1. Linear topological invariants

Let F be a Frechet space with a fundamental system of semi-norms{‖ · ‖k

}
. For each subset B ⊂ F define a generalized semi-norm

∥∥ ·
∥∥∗

B
:

F ′ → [0, +∞] on the dual space of F by

∥∥u
∥∥∗

B
= sup

{|u(x)| : x ∈ B
}
.
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Write
∥∥ ·

∥∥∗
k

instead of
∥∥ ·

∥∥∗
Uk

, where Uk =
{
x ∈ F : ‖x‖k < 1

}
. We say

that F has the property
(Ω) if ∀p ∃q ∀k ∃d,C > 0

∥∥ ·
∥∥∗1+d

q
≤ C

∥∥ ·
∥∥∗

k

∥∥ ·
∥∥∗d

p
,

(DN) if ∃p ∀q, d > 0 ∃k, C > 0 :
∥∥ ·

∥∥1+d

q
≤ C‖ · ‖k‖ · ‖d

p,

( DN ) if ∃p ∀q ∃k ∀d > 0 ∃C > 0 :
∥∥ ·

∥∥1+d

q
≤ C‖ · ‖k‖ · ‖d

p.
The above properties were introduced and investigated by Vogt in [12]

[13] and [14]. In [13] Vogt has shown that F ∈ (DN) (resp. F ∈ Ω) if and
only if F is isomorphic to a subspace (resp. quotient space) of B⊗̂πs for
a suitable Banach space, where s denotes the space of rapidly decreasing
sequences.

1.2. The space of germs of holomorphic functions

Let E, F be locally convex spaces and D an open set in E. A function
f : D → F is called holomorphic if f is continuous and u ◦ f is Gateaux
holomorphic for all u ∈ F ′. By H(D, F ) we denote the space of F -valued
holomorphic functions on D. We denote by τ0 and τω the compact open
and Nachbin topologies on H(D, F ). Let us recall that a semi-norm ρ on
H(D, F ) is said to be τω-continuous if there exist a compact set K ⊂ D
and a continuous semi-norm α on F such that for every neighbourhood V
of K, there exists CV > 0:

ρ(f) ≤ CV αV (f) for f ∈ H(D, F ),

where
αV (f) = sup

{
α(f(x)) : x ∈ V

}
.

Put for each compact set K in E,

H∞(K, F ) = lim ind
U↓K

H∞(U,F )

and
H(K, F ) = lim ind

U↓K
[H∞(U,F ), τw

]
,

where
H∞(U,F ) =

{
f ∈ H(U,F ) : f(U) is bounded

}

equipped with the topology of uniform convergence on U . For details
concerning holomorphic functions in locally convex spaces, we refer the
reader to the book of Dineen [3].
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Finally we recall that an inductive limit E = lim ind
α

Eα is said to be
regular if every bounded set in E is contained and bounded in some Eα.

2. The regularity of H∞(K, F ) and the properties (DN), (Ω)

The aim of this section is to prove the following result.

2.1. Theorem.
(i) The Frechet space F has the property (DN) if and only if H∞(K,F )
is regular for every compact set K in every Frechet space E ∈ (Ω)
(ii) The Frechet space E has the property (Ω) if and only if H∞(K,F ) is
regular for every compact set K in E and every Frechet space F ∈ (DN).

For the proof of the theorem we need some notations. Put

M =
{

α = (αj) ⊂ N : αj = 0 for j sufficiently large
}

.

For each α ∈ M, α = (α1, . . . , αn, 0, . . . ), and z ∈ CN, put

|α| = α1 + α2 + · · ·+ αn,

α! = α1! . . . αn!,

zα = zα1
1 . . . zαn

n .

Note that (see [8])

(1)
( ∑

j≥1

zj

)n

=
∑

α∈Mn

n!
α!

zα,

where
Mn =

{
α ∈ M : |α| = n

}
.

The following is a small modification of a theorem of Ryan [8].

2.2. Lemma. Let B(0, R) =
{
z ∈ `1 : ‖z‖ < R

}
, R > 0 and F a Banach

space. Let 0 < R < 1 and f : B(0, R) → F a bounded holomorphic
function. Then there exists a unique family

{
aα

}
α∈M

⊂ F such that

sup
{ αα

|α||α|
(R

2

)|α|
‖aα‖ : α ∈ M

}
< ∞,
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and

(2)
∑

α∈Mn

aαzα converges to f in H∞(B(0, r), F ) for all 0 < r <
R

2e
·

2.3. Lemma. Let R : E → G be a continuous linear surjective map be-
tween Frechet spaces and let H∞(OE , F ) be regular. Then so is H∞(OG, F ).

Proof. Given A a bounded set in H∞(OG, F ). Then R̂(A) is bounded
in H∞(OE , F ), where R̂ : H∞(OG, F ) → H∞(OE , F ) is the continuous
linear induced by R. By the hypothesis we can find a balanced convex
neighbourhood U of 0 ∈ E such that R̂(A) is contained and bounded in
H∞(U,F ). Put V = R(U). The open mapping theorem yields that V is
a neighbourhood of 0 ∈ G. We check that A is contained and bounded in
H∞(V, F ). Given g ∈ A. Choose a balanced convex neighbourhood Vg of
0 ∈ G in V such that g ∈ H∞(Vg, F ). Consider the Taylor expansions of
f = R̂(g) ∈ H∞(U,F ) and g at 0 ∈ E and 0 ∈ G on U and Vg, respectively,

f(x) =
∑

n≥0

Pnf(x), Pnf(x) =
1

2πi

∫

|λ|=εx>0

f(λx)
λn+1

dλ, x ∈ E,

and

g(y) =
∑

n≥0

Png(y), Png(y) =
1

2πi

∫

|λ|=εy>0

g(λy)
λn+1

dλ, y ∈ G.

Hence

Pnf(x) =
1

2πi

∫

|λ|=εx

f(λx)
λn+1

dλ

=
1

2πi

∫

|λ|=εx

gR(λx)
λn+1

dλ

= Png(y)

with y = Rx, where εx > 0 is sufficiently small such that λx ∈ R−1(Vg)∩U
for |λ| ≤ εx. Thus

R̂(Png) = Pnf for n ≥ 0
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and hence the series
∑
n≥0

Png(y) converges to ĝ ∈ H∞(V, F ), for which

ĝ = g in H∞(OG, F ) and R̂(ĝ) = f . This means that A is contained and
bounded in H∞(V, F ).

2.4. Lemma [11]. Let F be a Frechet space with a continuous norm and
let H∞(OE , F ) be regular, where OE is the zero-element of a Frechet space
E. Then H∞(K, F ) is regular for all compact sets K in E.

Proof of Theorem 2.1.

Necessity. Assume that H∞(K, F ) is regular for all compact sets in an
arbitrary Frechet space E ∈ (Ω). Then H∞(∆, F ) and ∆ =

{
z ∈ C : |z| <

1
}

is regular. By [11], F has (DN).
Assume that H∞(K, F ) is regular for every compact set K ⊂ E and

every Frechet space F ∈ (DN). In particular, H∞(OE , s) is regular. By
Vogt [14] we have ∀µ ∃k, n ∀K, m ∃N, S ∀σ ∈ H∞(OE , s),

(1) ‖σ‖k,m ≤ S
(‖σ‖µ,n + ‖σ‖K,N

)
.

Using (1) to σ = uep, u ∈ E′, p ≥ 1 we get

∥∥u
∥∥∗

k
pm ≤ S

(∥∥u
∥∥∗

µ
pn +

∥∥u
∥∥∗

K
pN

)
.

The inequality yields

∥∥u
∥∥∗

k
≤ S

(1
t

∥∥u
∥∥∗

µ
+ td

∥∥u
∥∥∗

K

)
∀u ∈ E′, ∀t ≥ 1,

where t = pm−n and d =
N −m

m− n
> 0. We can increase S so that the

inequality holds for t > 0. This means E ∈ (Ω).

Sufficiency. Assume that E and F has the property (Ω) and (DN),
respectively. Choose an index set I and a Banach space B such that
E is isomorphic to a quotient space of `1(I)⊗̂πs and F to a subspace of
B⊗̂πs. Note that

B⊗̂πs =
{

(yp) ⊂ B : sup ‖yp‖pn < ∞ ∀n ≥ 1
}

.

Thus, by Lemma 2.2 we may assume without loss of generality that E ∼=
`1(I)⊗̂πs and F ∼= B⊗̂πs. To prove the regularity of H∞(K,F ) for every
compact set K in E it suffices by Lemma 2.3 to assume K = {OE}.
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First consider the case I = N. Put

M =
{
α = (α11, . . . , αij , 0, . . .

)}.

and γij,k = ik for i, j, k ≥ 1. Let σ ∈ H∞(OE , F ). Choose q ≥ 1 such
that σ ∈ H∞(Uq, F ), where

Uk =
{

(zij) ⊂ C :
∑

i,j≥1

|zij |ik < ∞
}

.

By Lemma 2.1, there exists a unique family {ξ(α,p),n} ⊂ B such that

sup
{ αα

|α||α|
(1

2

)|α| jn

γα
.,k

∥∥ξ(α,p),n

∥∥ : (α, p) ∈ M×N
}

< ∞

for all n ≥ 1. By the regular characterization of Vogt [14] it remains to
check that ∀µ ∃n, k ∀m,K ∃N,S ∀(α, j),

(2)
pm

γα
.,k

≤ S
(pn+

γα
.,µ

+
pN

γα
.,K

)
·

Given µ ≥ 1. Take k = 2µ and n = 1. Then (2) has the form: ∀K, m
∃S, N ∀(α, j),

(3)
pm

1µα11 . . . iµαij
≤ S

(
p +

pN

1(k−µ)α11 . . . i(k−µ)αij

)
·

Choose N >
m

µ
K+m. Obviously, (3) holds for p, α with pm ≤ 1µα11 . . . iµαij .

If pm > 1µα11 . . . iµαij we also (3) have because

pN

1(k−µ)α11 . . . i(k−µ)αij
≥ pm

1µα11 . . . iµαij
× 1( mK

µ +m)µα11 . . . i(
mK

µ +m)µαij

1(k−2µ)α11 . . . i(k−2µ)αij

≥ pm

1µα11 . . . iµαij

Now we consider the general case. Let F(I) denote the family of count-
able sunsets J of I. Let A be a bounded set in H∞(OE , F ). By (i) for
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each J ∈ F(I) we can find a convex neighbourhood WJ of 0 ∈ `1(J)⊗̂πs
such that A

∣∣
WJ

is contained and bounded in H∞(WJ , F ). Put

W = U
{

WJ : J ∈ F(I)
}

.

Then W is a neighbourhood of 0 ∈ E. Otherwise, there exists a sequence
{zn} ⊂ E, zn 6∈ W for n ≥ 1, converging to 0 ∈ E. Choose J ∈ F(I) such
that {zn} ⊂ `1(J)⊗̂πs. Then zn ∈ WJ ⊂ W for n sufficiently large. This
is impossible. On the other hand, by the unique principle A is contained

in H(
0

W, F ). It remains to check that there exists a neighbourhood V of

0 ∈ E in
0

W such that A is bounded in H∞(V, F ). Otherwise, for each
n ≥ 1 there exists kn and a countable subset An of A such that

sup
{
‖f(z)‖kn : ‖z‖n < 1, f ∈ An

}
= +∞.

It is easy to see that there exists a countable subset J of I such that for
n ≥ 1,

sup
{
‖f(z)‖kn : ‖z‖n < 1, z ∈ `1(J)⊗̂πs, f ∈

⋃

j≥1

An

}
= +∞.

This is impossible because for n sufficiently large we have

{
z ∈ `1(J)⊗̂πs : ‖z‖n < 1

}
⊂ WJ

and hence
{
‖f(z)‖k; z ∈ WJ , f ∈ A

}
< ∞ for k ≥ 1.

The theorem is proved.

3. Application

In this section we investigate the regularity and completeness ofH(K, F ),
where

H(K, F ) = lim ind
U⊃K

[H(U,F ), τw

]

and τw denotes the Nachbin topology on H(U,F ).
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3.1. Theorem. Let E and F be nuclear Frechet spaces with E ∈ (Ω) and
F ∈ (DN ). Then H(K, F ) is regular and complete.

We need the following two lemmas.

3.2. Lemma. Let E and F be Frechet spaces having (Ω) and (DN ),
respectively. Then every F -valued holomorphic function on an open set in
E is locally bounded.

Proof. By [11] we can find a set I and a continuous linear map R from
`1(I)⊗̂πs onto E, where s is the space of all rapidly decreasing sequences.
Note that

`1(I)⊗̂πs =
{

z =
(
zij

)
i∈I,j∈N

: ‖z‖γ =
∑

i∈I,j∈N

∣∣zij

∣∣jγ < ∞, ∀γ ∈ N
}

and hence `1(I)⊗̂πs ∈ (Ω).
Let f ∈ H(D,F ), where D is an open set in E. Since R is open,

it suffices to show that g = f ◦ R is locally bounded on R−1(D). Let
z0 ∈ R−1(D). Without loss of the generality we may assume that R−1(D)
is balanced and z0 = 0. Consider the Taylor expansion of g at 0 ∈ `1(I)⊗̂πs

g(z) =
∑

n≥0

Png(z)

where

Png(z) =
1

2πi

∫

|λ|=1

g(λz)
λn+1

dλ for z ∈ R−1(D).

Writing every z ∈ `1(I)⊗̂πs in the form

z =
∑

i∈I,j∈N

δ∗ij(z)δij ,

where δ∗ij(z) = zij and δij =
[
δ
[i,j]
k,` : I×N

]
, with

δ
[i,j]
k,` =

{
1 (k, `) = (i, j)
0 (k, `) 6= (i, j),

we get

g(z) =
∑

n≥0

Png
( ∑

i∈I,j∈N

δ∗ij(z)δij

)

=
∑

n≥0

∑
i1,...,in∈I

j1,...,jn∈N

Png(δi1j1 , . . . , δinjn)δ∗i1j1(z) . . . δ∗injn
(z)
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for z ∈ R−1(D). Since `1(I)⊗̂πs ∈ (Ω) we have

(Ω) ∀α ∃β ∀γ ≥ β ∃dγ , Cγ > 0 : |‖ · ‖|∗(1+dγ)
β ≤ Cγ |‖ · ‖|∗γ |‖ · ‖|∗dγ

α .

Since
( |‖ · ‖|∗β
|‖ · ‖|∗α

)sdγ

≤
( |‖ · ‖|∗β
|‖ · ‖|∗α

)dγ

∀s ≥ 1,

it follows that

|‖ · ‖|(∗)1+sdγ)
β ≤ Cγ |‖ · ‖|∗γ · |‖ · ‖|∗sdγ

α ∀s ≥ 1.

On the other hand, by applying (Ω) to δ∗ij we obtain

|‖δij‖|γ |‖δij‖|sdγ
α

Cγ
≤ |‖δij‖|1+sdγ

β , ∀i ∈ I, j ∈ N.

By the hypothesis F ∈ (DN ), where

(DN ) ∃p ∀q ≥ p ∃kq ≥ q ∀d > 0 ∃Dd : ‖ · ‖1+d
q ≤ Dd‖ · ‖kq‖ · ‖d

p.

First choose α such that

M(α, p) = sup
{
‖g(z)‖p : |‖z‖|α < 1

}
< ∞.

Next choose β ≥ α as in (Ω). To complete the proof, it is enough to verify
that g is bounded on rUβ for r > 0 sufficiently small.

(iii) Given q ≥ p, choose kq ≥ q as in ( DN ). Let γq ≥ β such that

M(γq, kq) < ∞

and let s > 0 sufficiently large for which

C
1

(1+sdγq )
γq ≤ 2.
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Then we have

∑

n≥0

‖Png(z)‖q ≤
∑

n≥0

∑
i1,...,in∈I

j1,...,jn∈N

‖Png(δi1j1 , . . . , δinjn
)‖q

|‖δi1j1‖|β · · · |‖δinjn
‖|β ×

× |‖δi1j1‖|β · · · |‖δinjn
‖|β |δ∗i1j1(z)| · · · |δ∗injn

(z)|

≤
∑

n≥0

∑
i1,...,in∈I

j1,...,jn∈N

D
1

1+sdγq

sdγq

(
C

1
1+sdγq
γq

)n

×
∥∥Png(δi1j1 , . . . , δinjn)

∥∥ 1
1+sdγ

kq∣∣∥∥δi1j1

∥∥∣∣1+sdγ

γq
· · ·

∣∣∥∥δinjn

∥∥∣∣1+sdγ

γq

×

×
∥∥Png(δi1j1 , . . . , δinjn)

∥∥
sdγq

1+sdγq
p

∣∣∥∥δi1j1

∥∥∣∣
sdγq

1+sdγ

α
· · ·

∣∣∥∥δinjn

∥∥∣∣
sdγq

1+sdγ

α

× |‖δi1j1‖|β · · · |‖δinjn‖|β |δ∗i1j1(z)| · · · |δ∗injn
(z)|

≤ D
1

1+sdγ

sdγq
M

(
γq, kq

) 1
1+sdγ M

(
α, p

) sdγq
1+sdγq

∑

n≥0

2n nn

n!

( ∑
i∈I

j∈N

|δ∗ij(z)|‖δij‖β

)n

≤ D
1

1+sdγ

sdγq
M

(
γq, kq

) 1
1+sdγ M

(
α, p

) sdγq
1+sdγq ×

∑

n≥0

2n nn

n!

∥∥z
∥∥n

β

≤ D
1

1+sdγ

sdγq
M

(
γq, kq

) 1
1+sdγ M

(
α, p

) sdγq
1+sdγq ×

∑

n≥0

2n nn

n!

( 1
4e

)n

< ∞

for ‖z‖β <
1
4e
· Consequently, g and hence f is locally bounded.

3.3. Lemma. Let E and F be as in Theorem 3.1. Then the canonical
map

µ : H(K)⊗̂πF → [H′(K)⊗̂πF ′
]′

is an isomorphism.

Proof. By Meise and Vogt [5]H′(K) ∈ (Ω). Hence by Vogt [12],H′(K)⊗̂πF ′

is bornological. By Lemma 3.2 this yields

H′(K)⊗̂πF ′ ∼= lim ind
k

(H′(K)⊗̂πF ′k
)
.

Moreover the inductive limit is regular. Hence

[H′(K)⊗̂πF ′] ∼= limproj
k

[H′(K)⊗̂πF ′k] ∼= H(K)⊗̂πF ′
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Proof of Theorem 3.1. Let
{
Un

}
be a neighbourhood basis of K. Since

E ∈ (Ω) and F ∈ (DN ) we have

H∞(K,F ) = H(K, F ) (Lemma 3.2)

= H(K)⊗̂πF (by [5] [H(K)]′ ∈ (Ω) and by Lemma 3.2)
∼= [H′(K)⊗̂πF ′] (Lemma 3.3)
∼= [(lim proj (H′∞(Un))⊗̂πF ′]′

∼= [lim proj (H′∞(Un)⊗̂πF ′)]′

∼= [lim proj (H∞(Un)⊗̂πF )′]′

∼= [lim proj (H∞(Un, F )′]′

∼= [lim proj (H∞(Un), F )]′′

∼= [H∞(K, F )]′′.

Thus, H∞(K, F ) ∼= [H∞(K, F )]′′ is complete. It remains to check that
the canonical map H(K,F ) → H(K)⊗̂πF ∼= H(K)⊗̂εF is continuous and
hence H(K, F ) ∼= H∞(K, F ). For each n ≥ 1 the restriction map

Rn : [H(Un, F ), τw] → H(K)⊗̂πF ∼= H(K)⊗̂εF

∼= [lim ind
m
H(Um), τw]⊗̂εF

is continuous. Indeed let ρ be a continuous semi-norm on H(K)⊗̂εF .
Choose two continuous semi-norms α and β on H(K) and F , respectively,
such that

ρ
( m∑

k=1

gk ⊗ xk

)
≤ sup

{
α
( m∑

k=1

x∗(xk)gk

)
: x∗ ∈ U0

β

}

for gk ∈ H(K) and xk ∈ F , k = 1,m. Let V be an arbitrary neighbour-
hood of K in U . Take CV > 0 such that

α(g) ≤ CV ‖g‖V for g ∈ H∞(V ).

Then

ρ
(
Rn

( m∑

k=1

gkxk

))
= ρ

( m∑

k=1

gk ⊗ xk

)

≤ sup
{

α
( m∑

k=1

x∗(xk)gk

)
: x∗ ∈ U0

β

}

≤ CV sup
{∥∥∥

m∑

k=1

x∗(xk)gk

∥∥∥
V

: x∗ ∈ U0
β

}
.
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This means that ρRn is τw-continuous. Hence

H(K, F ) ∼= lim ind
n

[H(Un, F ), τw] ∼= H∞(K, F )

is regular and complete
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