THE REGULARITY OF SPACES OF GERMS OF FRECHET-VALUED BOUNDED HOLOMORPHIC FUNCTIONS

NGUYEN HA THANH

INTRODUCTION

Several authors have studied the regularity of the space $\mathcal{H}(K)$ of germs of holomorphic functions on a compact set K in a locally convex space, for example, Chae [1] for K in a Banach space, Mujica [6] for K in a metric locally convex space, Dineen $[2]$ and Soraggi $[10]$ for K in certain locally convex spaces (non-necessarily metrizable). Recently, Vogt [14] gave a general characterization of the regularity of inductive limit of a sequence of Frechet spaces, in particular, of Köthe sequence spaces. In the present paper we shall find a necessary and sufficient condition for the space $\mathcal{H}_{\infty}(K, F)$ of germs of F-valued bounded holomorphic functions on a compact set K in E to be regular where E and F are two Frechet spaces. In the case where K is a compact set in \mathbb{C}^n , this problem was investigated in [11]. As an application we will study the regularity and completeness of the space $\mathcal{H}(K, F)$ of germs of F-valued holomorphic functions on K.

1. Preliminaries

We shall use standard notions from the theory of locally convex spaces as presented in the books of Pietsch [7] and Schaefer [9]. All locally convex spaces are assumed to be complex and Hausdorff.

1.1. Linear topological invariants

Let F be a Frechet space with a fundamental system of semi-norms \overline{a} $\|\cdot\|_k$ $\frac{1}{2}$ For each subset $B \subset F$ define a generalized semi-norm $\|\cdot\|_{F}^*$ $_{B}^{*}$: $F' \to [0, +\infty]$ on the dual space of F by

$$
||u||_B^* = \sup \{|u(x)| : x \in B\}.
$$

Received March 22, 1997; in revised form October 16, 1997.

¹⁹⁹¹ Mathematics Subject Classification. 46G20, 32A30

Keywords and phrases. Germs of holomorphic functions, regularity.

Write $\|\cdot\|_{\scriptscriptstyle L}^*$ $\sum_{k=1}^{\infty}$ instead of $\|\cdot\|_{r}^{*}$ \bigcup_{k}^{*} , where $U_k =$ \overline{a} $x \in F : ||x||_k < 1$ ª . We say that F has the property ° ° ° ° ° °

$$
\begin{aligned} &\text{(}\Omega\text{) if }\forall p\ \exists q\ \forall k\ \exists d,C>0\ \left\|\cdot\right\|_q^{*1+d} \leq C\right\|\cdot\left\|_k^*\right\|\cdot\left\|_p^{*d},\\ &\text{(}DN\text{) if }\exists p\ \forall q,d>0\ \exists k,C>0:\left\|\cdot\right\|_q^{1+d} \leq C\|\cdot\|_k\|\cdot\|_p^d,\\ &\text{(}\overline{DN}\text{) if }\exists p\ \forall q\ \exists k\ \forall d>0\ \exists C>0:\left\|\cdot\right\|_q^{1+d} \leq C\|\cdot\|_k\|\cdot\|_p^d.\end{aligned}
$$

The above properties were introduced and investigated by Vogt in [12] [13] and [14]. In [13] Vogt has shown that $F \in (DN)$ (resp. $F \in \Omega$) if and only if F is isomorphic to a subspace (resp. quotient space) of $B\widehat{\otimes}_{\pi} s$ for a suitable Banach space, where s denotes the space of rapidly decreasing sequences.

1.2. The space of germs of holomorphic functions

Let E, F be locally convex spaces and D an open set in E . A function $f: D \to F$ is called holomorphic if f is continuous and $u \circ f$ is Gateaux holomorphic for all $u \in F'$. By $\mathcal{H}(D, F)$ we denote the space of F-valued holomorphic functions on D. We denote by τ_0 and τ_ω the compact open and Nachbin topologies on $\mathcal{H}(D, F)$. Let us recall that a semi-norm ρ on $\mathcal{H}(D, F)$ is said to be τ_{ω} -continuous if there exist a compact set $K \subset D$ and a continuous semi-norm α on F such that for every neighbourhood V of K, there exists $C_V > 0$:

$$
\rho(f) \le C_V \alpha_V(f) \text{ for } f \in \mathcal{H}(D, F),
$$

where

$$
\alpha_V(f) = \sup \Big\{ \alpha(f(x)) : x \in V \Big\}.
$$

Put for each compact set K in E ,

$$
\mathcal{H}_{\infty}(K,F) = \lim_{U \downarrow K} \text{ind}\mathcal{H}_{\infty}(U,F)
$$

and

$$
\mathcal{H}(K,F) = \liminf_{U \downarrow K} \left[\mathcal{H}_{\infty}(U,F), \tau_w \right],
$$

where

$$
\mathcal{H}_{\infty}(U,F) = \Big\{ f \in \mathcal{H}(U,F) : f(U) \text{ is bounded} \Big\}
$$

equipped with the topology of uniform convergence on U . For details concerning holomorphic functions in locally convex spaces, we refer the reader to the book of Dineen [3].

Finally we recall that an inductive limit $E = \liminf_{\alpha} E_{\alpha}$ is said to be regular if every bounded set in E is contained and bounded in some E_{α} .

2. THE REGULARITY OF $\mathcal{H}_{\infty}(K, F)$ and the properties (DN) , (Ω)

The aim of this section is to prove the following result.

2.1. Theorem.

(i) The Frechet space F has the property (DN) if and only if $\mathcal{H}_{\infty}(K, F)$ is regular for every compact set K in every Frechet space $E \in (\Omega)$ (ii) The Frechet space E has the property (Ω) if and only if $\mathcal{H}_{\infty}(K,F)$ is regular for every compact set K in E and every Frechet space $F \in (DN)$.

For the proof of the theorem we need some notations. Put

$$
\mathbf{M} = \Big\{ \alpha = (\alpha_j) \subset \mathbf{N} : \alpha_j = 0 \text{ for } j \text{ sufficiently large} \Big\}.
$$

For each $\alpha \in \mathbf{M}$, $\alpha = (\alpha_1, \ldots, \alpha_n, 0, \ldots)$, and $z \in \mathbf{C}^{\mathbf{N}}$, put

$$
|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n,
$$

\n
$$
\alpha! = \alpha_1! \dots \alpha_n!,
$$

\n
$$
z^{\alpha} = z_1^{\alpha_1} \dots z_n^{\alpha_n}.
$$

Note that (see [8])

(1)
$$
\left(\sum_{j\geq 1}z_j\right)^n = \sum_{\alpha\in M_n}\frac{n!}{\alpha!}z^{\alpha},
$$

where

$$
M_n = \{ \alpha \in M : |\alpha| = n \}.
$$

The following is a small modification of a theorem of Ryan [8].

2.2. Lemma. Let $B(0, R) = \{z \in \ell^1 : ||z|| < R\}$, $R > 0$ and F a Banach space. Let $0 \lt R \lt 1$ and $f : B(0,R) \to F$ a bounded holomorphic space. Let $0 < K < 1$ and $j : B(0, R) \to F$ a bounded notomorphic function. Then there exists a unique family $\{a_{\alpha}\}_{\alpha \in \mathbf{M}} \subset F$ such that

$$
\sup\Big\{\frac{\alpha^\alpha}{|\alpha|^{|\alpha|}}\Big(\frac R2\Big)^{|\alpha|}\|a_\alpha\|: \alpha\in\mathbf{M}\Big\}<\infty,
$$

120 NGUYEN HA THANH

and

(2)
$$
\sum_{\alpha \in \mathbf{M}_n} a_{\alpha} z^{\alpha} \text{ converges to } f \text{ in } \mathcal{H}_{\infty}(B(0,r),F) \text{ for all } 0 < r < \frac{R}{2e}.
$$

2.3. Lemma. Let $R : E \to G$ be a continuous linear surjective map between Frechet spaces and let $\mathcal{H}_{\infty}(O_{E}, F)$ be regular. Then so is $\mathcal{H}_{\infty}(O_{G}, F)$.

Proof. Given A a bounded set in $\mathcal{H}_{\infty}(O_G, F)$. Then $\hat{R}(A)$ is bounded in $\mathcal{H}_{\infty}(O_E, F)$, where $\hat{R}: \mathcal{H}_{\infty}(O_G, F) \to \mathcal{H}_{\infty}(O_E, F)$ is the continuous linear induced by R . By the hypothesis we can find a balanced convex neighbourhood U of $0 \in E$ such that $\hat{R}(A)$ is contained and bounded in $\mathcal{H}_{\infty}(U, F)$. Put $V = R(U)$. The open mapping theorem yields that V is a neighbourhood of $0 \in G$. We check that A is contained and bounded in $\mathcal{H}_{\infty}(V, F)$. Given $g \in A$. Choose a balanced convex neighbourhood V_g of $0 \in G$ in V such that $g \in H_{\infty}(V_g, F)$. Consider the Taylor expansions of $f = \hat{R}(g) \in \mathcal{H}_{\infty}(U, F)$ and g at $0 \in E$ and $0 \in G$ on U and V_g , respectively,

$$
f(x) = \sum_{n\geq 0} P_n f(x), \quad P_n f(x) = \frac{1}{2\pi i} \int_{|\lambda| = \varepsilon_x > 0} \frac{f(\lambda x)}{\lambda^{n+1}} d\lambda, \quad x \in E,
$$

and

$$
g(y) = \sum_{n\geq 0} P_n g(y), \quad P_n g(y) = \frac{1}{2\pi i} \int_{\substack{\lambda \mid x = \varepsilon_y > 0}} \frac{g(\lambda y)}{\lambda^{n+1}} d\lambda, \quad y \in G.
$$

Hence

$$
P_n f(x) = \frac{1}{2\pi i} \int\limits_{|\lambda|=\varepsilon_x} \frac{f(\lambda x)}{\lambda^{n+1}} d\lambda
$$

$$
= \frac{1}{2\pi i} \int\limits_{|\lambda|=\varepsilon_x} \frac{gR(\lambda x)}{\lambda^{n+1}} d\lambda
$$

$$
= P_n g(y)
$$

with $y = Rx$, where $\varepsilon_x > 0$ is sufficiently small such that $\lambda x \in R^{-1}(V_g) \cap U$ for $|\lambda| \leq \varepsilon_x$. Thus

$$
\hat{R}(P_n g) = P_n f \quad \text{for } n \ge 0
$$

and hence the series \sum $n\geq 0$ $P_n g(y)$ converges to $\hat{g} \in \mathcal{H}_{\infty}(V, F)$, for which $\hat{g} = g$ in $\mathcal{H}_{\infty}(O_G, F)$ and $\hat{R}(\hat{g}) = f$. This means that A is contained and bounded in $\mathcal{H}_{\infty}(V, F)$.

2.4. Lemma [11]. Let F be a Frechet space with a continuous norm and let $\mathcal{H}_{\infty}(O_E, F)$ be regular, where O_E is the zero-element of a Frechet space E. Then $\mathcal{H}_{\infty}(K, F)$ is regular for all compact sets K in E.

Proof of Theorem 2.1.

Necessity. Assume that $\mathcal{H}_{\infty}(K, F)$ is regular for all compact sets in an *Recessity.* Assume that $\pi_{\infty}(\mathbf{A}, F)$ is regular for all compact sets in an arbitrary Frechet space $E \in (\Omega)$. Then $\mathcal{H}_{\infty}(\overline{\Delta}, F)$ and $\Delta = \{z \in \mathbf{C} : |z| < \Omega \}$ 1} is regular. By [11], F has (DN) .

Assume that $\mathcal{H}_{\infty}(K, F)$ is regular for every compact set $K \subset E$ and every Frechet space $F \in (DN)$. In particular, $\mathcal{H}_{\infty}(O_E, s)$ is regular. By Vogt [14] we have $\forall \mu \exists k, n \ \forall K, m \ \exists N, S \ \forall \sigma \in \mathcal{H}_{\infty}(O_{E}, s),$

(1)
$$
\|\sigma\|_{k,m} \le S(|\sigma\|_{\mu,n} + \|\sigma\|_{K,N}).
$$

Using (1) to $\sigma = ue_p, u \in E', p \ge 1$ we get

$$
||u||_{k}^{*} p^{m} \leq S(||u||_{\mu}^{*} p^{n} + ||u||_{K}^{*} p^{N}).
$$

The inequality yields

$$
\big\|u\big\|_k^*\leq S\Big(\frac{1}{t}\big\|u\big\|_{\mu}^*+t^d\big\|u\big\|_K^*\Big)\;\forall u\in E',\;\forall t\geq 1,
$$

where $t = p^{m-n}$ and $d =$ $N-m$ $m - n$ > 0 . We can increase S so that the inequality holds for $t > 0$. This means $E \in (\Omega)$.

Sufficiency. Assume that E and F has the property (Ω) and (DN) , respectively. Choose an index set I and a Banach space B such that E is isomorphic to a quotient space of $\ell^1(I)\widehat{\otimes}_{\pi} s$ and F to a subspace of $B\widehat{\otimes}_{\pi} s$. Note that

$$
B\widehat{\otimes}_{\pi} s = \Big\{ (y_p) \subset B : \sup ||y_p|| p^n < \infty \ \forall n \ge 1 \Big\}.
$$

Thus, by Lemma 2.2 we may assume without loss of generality that $E \cong$ $\ell^1(I)\widehat{\otimes}_{\pi} s$ and $F \cong B\widehat{\otimes}_{\pi} s$. To prove the regularity of $\mathcal{H}_{\infty}(K,F)$ for every compact set K in E it suffices by Lemma 2.3 to assume $K = \{O_E\}.$

First consider the case $I = N$. Put

$$
\mathbf{M} = \{\alpha = (\alpha_{11}, \dots, \alpha_{ij}, 0, \dots)\}.
$$

and $\gamma_{ij,k} = i^k$ for $i, j, k \geq 1$. Let $\sigma \in \mathcal{H}_{\infty}(O_E, F)$. Choose $q \geq 1$ such that $\sigma \in H_{\infty}(U_q, F)$, where

$$
U_k = \Big\{ (z_{ij}) \subset \mathbf{C} : \sum_{i,j \geq 1} |z_{ij}| i^k < \infty \Big\}.
$$

By Lemma 2.1, there exists a unique family $\{\xi_{(\alpha,p),n}\}\subset B$ such that

$$
\sup\Big\{\frac{\alpha^\alpha}{|\alpha|^{|\alpha|}}\Big(\frac{1}{2}\Big)^{|\alpha|}\frac{j^n}{\gamma_{.,k}^\alpha}\big\|\xi_{(\alpha,p),n}\big\| : (\alpha,p)\in {\bf M}\times{\bf N}\Big\}<\infty
$$

for all $n \geq 1$. By the regular characterization of Vogt [14] it remains to check that $\forall \mu \exists n, k \forall m, K \exists N, S \forall (\alpha, j),$

(2)
$$
\frac{p^m}{\gamma_{.,k}^{\alpha}} \leq S\Big(\frac{p^n + \gamma_{.,\mu}^N}{\gamma_{.,\mu}^{\alpha}} + \frac{p^N}{\gamma_{.,K}^{\alpha}}\Big).
$$

Given $\mu \geq 1$. Take $k = 2\mu$ and $n = 1$. Then (2) has the form: $\forall K, m$ $\exists S, N \; \forall (\alpha, j),$

(3)
$$
\frac{p^m}{1^{\mu\alpha_{11}}\dots i^{\mu\alpha_{ij}}} \leq S\Big(p + \frac{p^N}{1^{(k-\mu)\alpha_{11}}\dots i^{(k-\mu)\alpha_{ij}}}\Big).
$$

Choose $N > \frac{m}{n}$ μ K+m. Obviously, (3) holds for p, α with $p^m \leq 1^{\mu \alpha_{11}} \dots i^{\mu \alpha_{ij}}$. If $p^m > 1^{\mu \alpha_{11}} \dots i^{\mu \alpha_{ij}}$ we also (3) have because

$$
\frac{p^N}{1^{(k-\mu)\alpha_{11}}\dots i^{(k-\mu)\alpha_{ij}}} \ge \frac{p^m}{1^{\mu\alpha_{11}}\dots i^{\mu\alpha_{ij}}} \times \frac{1^{\left(\frac{mK}{\mu}+m\right)\mu\alpha_{11}}\dots i^{\left(\frac{mK}{\mu}+m\right)\mu\alpha_{ij}}}{1^{(k-2\mu)\alpha_{11}}\dots i^{(k-2\mu)\alpha_{ij}}}
$$

$$
\ge \frac{p^m}{1^{\mu\alpha_{11}}\dots i^{\mu\alpha_{ij}}}
$$

Now we consider the general case. Let $\mathcal{F}(I)$ denote the family of countable sunsets J of I. Let A be a bounded set in $\mathcal{H}_{\infty}(O_{E}, F)$. By (i) for

each $J \in \mathcal{F}(I)$ we can find a convex neighbourhood W_J of $0 \in \ell^1(J) \widehat{\otimes}_{\pi} s$ such that $A|_{W_J}$ is contained and bounded in $\mathcal{H}_{\infty}(W_J, F)$. Put

$$
W = U\Big\{W_J : J \in \mathcal{F}(I)\Big\}.
$$

Then W is a neighbourhood of $0 \in E$. Otherwise, there exists a sequence $\{z_n\} \subset E$, $z_n \notin W$ for $n \geq 1$, converging to $0 \in E$. Choose $J \in \mathcal{F}(I)$ such that $\{z_n\} \subset \ell^1(J) \widehat{\otimes}_{\pi} s$. Then $z_n \in W_J \subset W$ for n sufficiently large. This is impossible. On the other hand, by the unique principle A is contained in $\mathcal{H}(W,F)$. It remains to check that there exists a neighbourhood V of $0 \in E$ in W such that A is bounded in $\mathcal{H}_{\infty}(V, F)$. Otherwise, for each $n \geq 1$ there exists k_n and a countable subset A_n of A such that

$$
\sup \{ \|f(z)\|_{k_n} : \|z\|_n < 1, \ f \in A_n \} = +\infty.
$$

It is easy to see that there exists a countable subset J of I such that for $n \geq 1$,

$$
\sup\left\{\|f(z)\|_{k_n}:\|z\|_n<1,\quad z\in\ell^1(J)\widehat{\otimes}_{\pi} s,\quad f\in\bigcup_{j\geq 1}A_n\right\}=+\infty.
$$

This is impossible because for n sufficiently large we have

$$
\left\{ z \in \ell^1(J) \widehat{\otimes}_{\pi} s : ||z||_n < 1 \right\} \subset W_J
$$

and hence

$$
\Big\{\|f(z)\|_k;\ z\in W_J,\ f\in A\Big\}<\infty\quad\text{for }k\geq 1.
$$

The theorem is proved.

3. Application

In this section we investigate the regularity and completeness of $\mathcal{H}(K, F)$, where £ ¤

$$
\mathcal{H}(K,F) = \lim \inf_{U \supset K} \left[\mathcal{H}(U,F), \tau_w \right]
$$

and τ_w denotes the Nachbin topology on $\mathcal{H}(U, F)$.

124 NGUYEN HA THANH

3.1. Theorem. Let E and F be nuclear Frechet spaces with $E \in (\Omega)$ and $F \in (\overline{DN})$. Then $\mathcal{H}(K, F)$ is regular and complete.

We need the following two lemmas.

3.2. Lemma. Let E and F be Frechet spaces having (Ω) and (\overline{DN}) , respectively. Then every F-valued holomorphic function on an open set in E is locally bounded.

Proof. By [11] we can find a set I and a continuous linear map R from $\ell^1(I)\widehat{\otimes}_{\pi} s$ onto E, where s is the space of all rapidly decreasing sequences. Note that

$$
\ell^1(I)\widehat{\otimes}_{\pi} s = \left\{ z = (z_{ij})_{i \in \mathbf{I}, j \in \mathbf{N}} : ||z||_{\gamma} = \sum_{i \in \mathbf{I}, j \in \mathbf{N}} |z_{ij}|j^{\gamma} < \infty, \ \forall \gamma \in \mathbf{N} \right\}
$$

and hence $\ell^1(I)\widehat{\otimes}_{\pi} s \in (\Omega)$.

Let $f \in \mathcal{H}(D, F)$, where D is an open set in E. Since R is open, it suffices to show that $g = f \circ R$ is locally bounded on $R^{-1}(D)$. Let $z_0 \in R^{-1}(D)$. Without loss of the generality we may assume that $R^{-1}(D)$ is balanced and $z_0 = 0$. Consider the Taylor expansion of g at $0 \in \ell^1(I) \widehat{\otimes}_{\pi} s$

$$
g(z) = \sum_{n\geq 0} P_n g(z)
$$

where

$$
P_n g(z) = \frac{1}{2\pi i} \int\limits_{|\lambda|=1} \frac{g(\lambda z)}{\lambda^{n+1}} d\lambda \quad \text{for} \quad z \in R^{-1}(D).
$$

Writing every $z \in \ell^1(I) \widehat{\otimes}_{\pi} s$ in the form

$$
z = \sum_{i \in \mathbf{I}, j \in \mathbf{N}} \delta_{ij}^*(z) \delta_{ij},
$$

where $\delta_{ij}^*(z) = z_{ij}$ and $\delta_{ij} =$ £ $\delta_{k,\ell}^{[i,j]}: \mathbf{I} \times \mathbf{N}$ ¤ , with ½

$$
\delta_{k,\ell}^{[i,j]} = \begin{cases} 1 & (k,\ell) = (i,j) \\ 0 & (k,\ell) \neq (i,j), \end{cases}
$$

we get

$$
g(z) = \sum_{n\geq 0} P_n g\Big(\sum_{i\in \mathbf{I}, j\in \mathbf{N}} \delta_{ij}^*(z) \delta_{ij}\Big)
$$

=
$$
\sum_{n\geq 0} \sum_{\substack{i_1,\dots,i_n\in \mathbf{I} \\ j_1,\dots,j_n\in \mathbf{N}}} P_n g(\delta_{i_1j_1},\dots,\delta_{i_nj_n}) \delta_{i_1j_1}^*(z) \dots \delta_{i_nj_n}^*(z)
$$

for $z \in R^{-1}(D)$. Since $\ell^1(I) \widehat{\otimes}_{\pi} s \in (\Omega)$ we have

$$
\text{(}\Omega\text{)} \qquad \forall \alpha \exists \beta \ \forall \gamma \geq \beta \ \exists d_{\gamma}, C_{\gamma} > 0 : \|\|\cdot\|\|_{\beta}^{*(1+d_{\gamma})} \leq C_{\gamma}\|\|\cdot\|\|_{\gamma}^{*}\|\|\cdot\|\|_{\alpha}^{*d_{\gamma}}.
$$

Since

$$
\left(\frac{|\|\cdot\||_\beta^*}{|\|\cdot\||_\alpha^*}\right)^{sd_\gamma}\leq \left(\frac{|\|\cdot\||_\beta^*}{|\|\cdot\||_\alpha^*}\right)^{d_\gamma} \quad \forall s\geq 1,
$$

it follows that

$$
|\| \cdot \| \big|_{\beta}^{(*)1 + sd_{\gamma}} \leq C_{\gamma} |\| \cdot \| \big|_{\gamma}^{*} \cdot |\| \cdot \| \big|_{\alpha}^{* sd_{\gamma}} \quad \forall s \geq 1.
$$

On the other hand, by applying (Ω) to δ_{ij}^* we obtain

$$
\frac{|\|\delta_{ij}\||_{\gamma} \||\delta_{ij}\||^{{sd}_{\gamma}}_{\alpha}}{C_{\gamma}} \leq ||\delta_{ij}||^{\,1+sd_{\gamma}}_{\beta}, \quad \forall i \in I, j \in \mathbf{N}.
$$

By the hypothesis $F \in (\overline{DN} \,),$ where

$$
(\overline{DN}) \exists p \; \forall q \ge p \; \exists k_q \ge q \; \forall d > 0 \; \exists D_d : \|\cdot\|_q^{1+d} \le D_d \|\cdot\|_{k_q} \|\cdot\|_p^d.
$$

First choose α such that

$$
M(\alpha, p) = \sup \{ ||g(z)||_p : |||z|||_{\alpha} < 1 \} < \infty.
$$

Next choose $\beta \geq \alpha$ as in (Ω) . To complete the proof, it is enough to verify that g is bounded on rU_β for $r > 0$ sufficiently small.

(iii) Given $q \ge p$, choose $k_q \ge q$ as in (\overline{DN}) . Let $\gamma_q \ge \beta$ such that

$$
M(\gamma_q, k_q) < \infty
$$

and let $s > 0$ sufficiently large for which

$$
C_{\gamma_q}^{\frac{1}{(1+sd_{\gamma_q})}}\leq 2.
$$

Then we have

$$
\sum_{n\geq 0}||P_n g(z)||_q \leq \sum_{n\geq 0} \sum_{\substack{i_1,\ldots,i_n\in\mathbb{N} \\ j_1,\ldots,j_n\in\mathbb{N}}} \frac{||P_n g(\delta_{i_1j_1},\ldots,\delta_{i_nj_n})||_q}{|||\delta_{i_1j_1}|||_{\beta}\cdots|||\delta_{i_nj_n}|||_{\beta}} \times
$$
\n
$$
\times |||\delta_{i_1j_1}|||_{\beta}\cdots|||\delta_{i_nj_n}|||_{\beta}|\delta_{i_1j_1}^*(z)|\cdots|\delta_{i_nj_n}^*(z)|
$$
\n
$$
\leq \sum_{n\geq 0} \sum_{\substack{i_1,\ldots,i_n\in\mathbb{N} \\ j_1,\ldots,j_n\in\mathbb{N}}} D^{\frac{1}{1+sd\gamma q}}_{sd\gamma q} \left(C^{\frac{1}{\gamma q} + sd\gamma q}_{\gamma q}\right)^n \times \frac{||P_n g(\delta_{i_1j_1},\ldots,\delta_{i_nj_n})||_{k_q}^{\frac{1}{1+sd\gamma}}}{|||\delta_{i_1j_1}|||_{\gamma_q}^{\gamma}} \times
$$
\n
$$
\times \frac{||P_n g(\delta_{i_1j_1},\ldots,\delta_{i_nj_n})||_{\frac{1}{1+sd\gamma q}}^{\frac{sd\gamma q}{1+sd\gamma q}}}{|||\delta_{i_1j_1}|||_{\beta}\cdots|||\delta_{i_nj_n}|||_{\beta}|\delta_{i_1j_1}^*(z)|\cdots|\delta_{i_nj_n}^*(z)|}
$$
\n
$$
\leq D^{\frac{1}{1+sd\gamma}}_{sd\gamma q} M(\gamma_q,k_q)^{\frac{1}{1+sd\gamma}} M(\alpha,p)^{\frac{sd\gamma q}{1+sd\gamma q}} \sum_{n\geq 0} 2^n \frac{n^n}{n!} \Big(\sum_{\substack{i\in\mathcal{I} \\ j\in\mathbb{N}}} |\delta_{i_1j}^*(z)|||\delta_{i_2j}||_{\beta}\Big)^n
$$
\n
$$
\leq D^{\frac{1}{1+sd\gamma}}_{sd\gamma q} M(\gamma_q,k_q)^{\frac{1}{1+sd\gamma}} M(\alpha,p)^{\frac{sd\gamma q}{1+sd\gamma q}} \times \sum_{n\geq 0} 2^n \frac{n^n}{n!
$$

for $||z||_{\beta} <$ 1 4e \cdot Consequently, g and hence f is locally bounded.

3.3. Lemma. Let E and F be as in Theorem 3.1. Then the canonical map £ $\frac{1}{2}$

$$
\mu: \mathcal{H}(K)\widehat{\otimes}_{\pi} F \to \big[\mathcal{H}'(K)\widehat{\otimes}_{\pi} F'\big]'
$$

is an isomorphism.

Proof. By Meise and Vogt [5] $\mathcal{H}'(K) \in (\Omega)$. Hence by Vogt [12], $\mathcal{H}'(K) \widehat{\otimes}_{\pi} F'$ is bornological. By Lemma 3.2 this yields

$$
\mathcal{H}'(K)\widehat{\otimes}_{\pi}F' \cong \liminf_{k} \big(\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'_{k}\big).
$$

Moreover the inductive limit is regular. Hence

$$
[\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'] \cong \lim \underset{k}{\text{proj}}[\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'_{k}] \cong \mathcal{H}(K)\widehat{\otimes}_{\pi}F'
$$

Proof of Theorem 3.1. Let $\{U_n\}$ ª be a neighbourhood basis of K . Since $E \in (\Omega)$ and $F \in (\overline{DN})$ we have

$$
\mathcal{H}_{\infty}(K, F) = \mathcal{H}(K, F) \quad \text{(Lemma 3.2)}
$$
\n
$$
= \mathcal{H}(K)\widehat{\otimes}_{\pi}F \text{ (by [5] } [\mathcal{H}(K)]' \in (\Omega) \text{ and by Lemma 3.2})
$$
\n
$$
\cong [\mathcal{H}'(K)\widehat{\otimes}_{\pi}F'] \text{ (Lemma 3.3)}
$$
\n
$$
\cong [(\lim \text{proj } (\mathcal{H}'_{\infty}(U_n))\widehat{\otimes}_{\pi}F']'
$$
\n
$$
\cong [\lim \text{proj } (\mathcal{H}'_{\infty}(U_n)\widehat{\otimes}_{\pi}F')]'
$$
\n
$$
\cong [\lim \text{proj } (\mathcal{H}_{\infty}(U_n, F)']'
$$
\n
$$
\cong [\lim \text{proj } (\mathcal{H}_{\infty}(U_n, F)']'
$$
\n
$$
\cong [\lim \text{proj } (\mathcal{H}_{\infty}(U_n), F)]''
$$
\n
$$
\cong [\mathcal{H}_{\infty}(K, F)]''.
$$

Thus, $\mathcal{H}_{\infty}(K, F) \cong [H_{\infty}(K, F)]''$ is complete. It remains to check that the canonical map $\mathcal{H}(K, F) \to \mathcal{H}(K) \widehat{\otimes}_{\pi} F \cong \mathcal{H}(K) \widehat{\otimes}_{\varepsilon} F$ is continuous and hence $\mathcal{H}(K, F) \cong \mathcal{H}_{\infty}(K, F)$. For each $n \geq 1$ the restriction map

$$
R_n : [\mathcal{H}(U_n, F), \tau_w] \to \mathcal{H}(K) \widehat{\otimes}_{\pi} F \cong \mathcal{H}(K) \widehat{\otimes}_{\varepsilon} F
$$

$$
\cong [\lim \inf_m \mathcal{H}(U_m), \tau_w] \widehat{\otimes}_{\varepsilon} F
$$

is continuous. Indeed let ρ be a continuous semi-norm on $\mathcal{H}(K)\widehat{\otimes}_{\varepsilon}F$. Choose two continuous semi-norms α and β on $\mathcal{H}(K)$ and F, respectively, such that

$$
\rho\Big(\sum_{k=1}^m g_k \otimes x_k\Big) \le \sup \Big\{\alpha\Big(\sum_{k=1}^m x^*(x_k)g_k\Big) : x^* \in U_\beta^0\Big\}
$$

for $g_k \in \mathcal{H}(K)$ and $x_k \in F$, $k = \overline{1,m}$. Let V be an arbitrary neighbourhood of K in U. Take $C_V > 0$ such that

$$
\alpha(g) \le C_V ||g||_V \quad \text{for} \quad g \in \mathcal{H}_{\infty}(V).
$$

Then

$$
\rho\Big(R_n\Big(\sum_{k=1}^m g_k x_k\Big)\Big) = \rho\Big(\sum_{k=1}^m g_k \otimes x_k\Big)
$$

$$
\leq \sup\Big\{\alpha\Big(\sum_{k=1}^m x^*(x_k)g_k\Big) : x^* \in U_\beta^0\Big\}
$$

$$
\leq C_V \sup\Big\{\Big\|\sum_{k=1}^m x^*(x_k)g_k\Big\|_V : x^* \in U_\beta^0\Big\}.
$$

This means that ρR_n is τ_w -continuous. Hence

$$
\mathcal{H}(K,F) \cong \lim_{n} \inf_{n} \left[\mathcal{H}(U_n,F), \tau_w \right] \cong \mathcal{H}_{\infty}(K,F)
$$

is regular and complete \Box

ACKNOWLEDGEMENTS

The author would like to thank the referee for helpfull remarks that let to an improvement of the presentation of the paper.

REFERENCES

- 1. S. B. Chae, Holomorphic germs on Banach spaces, Ann. Inst. Fourier 21 (3) (1971), 107-141.
- 2. S. Dineen, Holomorphic germs on compact subsets of locally convex spaces, in: Functional Analysics, Holomorphy and Application Theory, Ed. S. Macho, Lect. Notes in Math. 843, Springer-Verlag, 1981, 247-263.
- 3. S. Dineen, Complex Analysis in Locally Convex Spaces, North Holland Math. Stud. 57, North-Holland, Amsterdam, 1981.
- 4. N. V. Khue and P. T. Danh, Structure of spaces of germs of holomorphic function, Publ. Math. 41 (1997), 467-480.
- 5. R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. **75** (1983), 235-252.
- 6. J. Mujica, Spaces of germs of holomorphic functions, Studia in Analysis. Advances in Math. Suppl. Studies, Ed. G. C. Rotas, Academic Press 4 (1994), 1-41.
- 7. A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag, 1974.
- 8. R. Ryan, *Holomorphic mappings on* ℓ_1 , Trans. Amer. Math. Soc. **302** (2) (1987), 797-811.
- 9. H. Schaefer , Topological Vector Spaces, Springer-Verlag, 1972.
- 10. R. L. Soraggi, Holomorphic germs on certain locally convex spaces, Ann. Mat. Pura Appl. 144 (1986), 1-22.
- 11. B. D. Tac and N. V. Hao, The regularity of spaces of germs of F-valued holomorphic functions, Vietnam Jour. of Math. 26 (2) (1998), 129-136.
- 12. D. Vogt, Frecheträume zwischen denen jede stetige linear Abbildung beschränkt ist, J. Rein Angew, Math. 345 (1983), 182-200.
- 13. D. Vogt, On two classes of Frechet spaces, Arch. Math. 45 (1985), 255-266.
- 14. D. Vogt, *Regularity properties of* (LF) *-spaces*, Progress in Functional Analysis (1992), 57-94.

Department of Mathematics, University of Education Ho Chi Minh City, Vietnam