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A REMARK ON VITUSHKIN’S COVERING

NGUYEN VAN CHAU

Abstract. It is shown that every polynomial map of the complex plane

lC2
with exceptional value set homeomorphic to the complex line lC must

have a singularity. This implies the nonexistence of Vitushkin’s covering
in the polynomial case.

1. Introduction

In [V1] A. G. Vitushkin constructed an example of a real 4-dimensional
manifold X with a 2-dimensional submanifold M and a branching covering
F : X −→ lR4 branched only along M such that X−M is homeomorphic
to lR4, where M is homeomorphic to lR2 and the restriction of F on
M is an embedding. S. Y. Orevkov in [O3] realized Vitushkin’s covering
as a complex analytic mapping from a Stein manifold onto a ball in the
complex plane lC2 (see also [O2]). Such examples are very important for
a better understanding of the geometrical nature of the famous Jacobian
Conjecture, which was posed by O. H. Keller [K] in 1939 and which is
still open even in the 2-dimensional case. This conjecture asserts that
every polynomial map of the complex affine space lCn with non-zero con-
stant Jacobian must be bijective. (See [BCW] for a nice survey on this
conjecture).

The aim of this short paper is to show that a kind of Vitushkin’s cov-
ering does not exist in the polynomial case. We will prove the following

Theorem 1.1. Let f be a polynomial map of lC2 with nonzero-constant
Jacobian. Assume that there exists a curve Γ homeomorphic to the com-
plex line lC such that the map f : lC2−f−1(Γ) −→ lC2−Γ is an unbranched
covering. Then f is bijective.

This theorem shows that a counterexample to the Jacobian Conjec-
ture, if exists, should have a structure which is more complicated than
Vitushkin’s covering.
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In fact, for each polynomial map f of lC2 with finite fibers the standard
results on the resolution of singularity yield the existence of a compact al-
gebraic variety X containing lC2 as an open Zaziski subset and a regular
extension F of f from X onto lC lP1 × lC lP1 (see for example [V1] and
[O1]). The set D := X − lC2 is an algebraic curve in X, every irre-
ducible component of which is isomorphic to the line lC lP1. Each pair of
these components either has no common point or transversally intersects
at an unique common point. But every triple of them never have a com-
mon point. Removing from X the inverse image F−1({∞} × lC lP1) and
F−1( lC lP1 × {∞}) one obtains the complex manifold X∗ containing lC2

and the curve M := X∗− lC2. The restriction of F on X∗ is a proper map
onto lC2. Consider the case when f is not a proper map. In this case, M
is not empty. Some irreducible components of the curve M are isomorphic
to the complex line lC and restrictions of F on them are not constant. The
remained irreducible components are isomorphic to lC lP1, on which F is
constant. Therefore, the simplest configuration of the extension of f may
be the case when F branches only along M , M is isomorphic to the line
lC and the restriction of F on M is an embedding into lC2. This is the

situation for which Vitushkin’s covering is an analytical realization.
Note that the image Bf := F (M) is a subset of the exceptional value

set Ef - the set of all values a ∈ lC2 for which the number of solutions
of the equation f(x, y) = a, (x, y) ∈ lC2, not counted with multiplity, is
smaller than the geometrical degree of f . Here, by the geometrical degree
of f we simply mean the number of solutions of the equation f(x, y) = a
for generic values a ∈ lC2. The set Ef is an algebraic curve in lC2 com-
posed of the curve Bf and the critical value set of f . The mapping
f : lC2 − f−1(Ef ) −→ lC2 − Ef is an unbranched covering. So, Bf is just
the set of all values a ∈ lC2 at which the number of solutions of the equa-
tion f(x, y) = a, counted with multiplity, is not constant. In Vitushkin’s
analytical covering the image Bf is diffeomorphic to lR2. Using these
notions, our result can be reformulated as follows:

Every polynomial map of lC2 with the exceptional value set Ef homeo-
morphic to the complex line lC must have a singularity.

The proof of Theorem 1.1 will use Lins and Zaidenberg’s theorem [LZ],
a generalization of Abhyankar-Moh-Suzuki’s theorem [AM] on the embed-
dings of the line into the plane, and Orevkov’s estimation on geometrical
degree of f in term of the regular extension of f [O1].

2. Proof of Theorem 1.1

Consider a polynomial map f of lC2 with finite fibres, f = (P, Q), where
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P , Q ∈ lC[x, y]. Let J(f) := PxQy − PyQx be the Jacobian of f and Ef

the exceptional value set of f . Let F : X −→ lC lP1 × lC lP1 be a regular
extension of f and D := X − lC2. Denote by Dfc the curve composed
of all components l of D such that F (l) ∩ lC2 is not empty, by Df the
curve composed of all components l ⊂ Dfc the restriction of F on which
is not constant, by Dc the closure of Dfc−Df in X, and by D∞ the curve
composed of all components not belong to Dfc.

Lemma 2.1. Suppose L is a line in lC2 such that L intersects Ef at an
unique point. Then, every irreducible component of the curve f−1(L) is ho-
momorphic to one of lC and lC∗ := lC−{0}. Furthermore, if f−1(L∩Ef ) 6=
∅, then there is at least an irreducible component of f−1(L) homomorphic
to lC.

Proof. Let a be the unique common point of L and Ef and V be an
irreducible component of the curve f−1(L). Let r be the number of the
irreducible branches of V located at a point of F−1(a) and r∞ the number
of the irreducible branches of V located at a point of D∞. Since L∩Ef =
{a}, V − f−1(a) is smooth and can be viewed as a punctured Riemann
surface of genus g with exact r + r∞ of punctures. The restriction of
f on V determines a n-fold unbranched covering from V − f−1(a) onto
L − {a} with degree n not larger than the geometrical degree of f . In
particular, the number r and r∞ are always positive. Let χ(V − f−1(a))
and χ(L − {a}) be the Euler-Pointcare characteristic of V − f−1(a) and
L− {a}, respectively. Then, by Riemann-Hurwitz’s relation

2− 2g − r − r∞ = χ(V − f−1(a)) = nχ(L− {a}) = 0.

It follows that g = 0 and r = r∞ = 1. Hence, there is only an irreducible
branch in V such that it locates at a point za of F−1(a). Obviously, V is
homeomorphic to lC∗ (and lC) if za ∈ Df (res. za ∈ lC2).

The above observation also shows that the number of irreducible com-
ponents of f−1(L) homeomorphic to lC is equal to the number of irre-
ducible branches of f−1(L) located at f−1(L∩Ef ). Thus, if f−1(L∩Ef ) 6=
∅, then there is at least an irreducible component of f−1(L) homeomorphic
to lC.

Lemma 2.2. Assume that J(f) ∈ lC∗ and there exists a line L ⊂ lC2 such
that an irreducible components of the curve f−1(L) is diffeomorphic to the
line lC. Then f is bijective.

Proof. Let V be an irreducible component of f−1(L) and assume that
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V is diffeomorphic to lC. By Abhyankar-Moh-Suzuki’s theorem [AM] on
the embedding of the line into the plane the curve V is isomorphic to
lC. Hence, we can choose a suitable affine coordinate (x, y) in lC2 so

that f(x, y) = (P (x, y), Q(x, y)) and the line {x = 0} is an irreducible
component of the curver P = 0. Since J(f) ∈ lC∗, we have that P (x, y) =
xP ∗(x, y) and Q(x, y) = a + bx + cy+ higher terms, where P ∗(0, y) 6= 0
and c 6= 0.

Observe that f is bijective if deg P = 1 or deg Q = 1. Then we need
only to consider the case deg Q > 1. For this case we will show that
P ∗ is a non-zero constant. Then, deg P = 1 and, of couse, f is bijective.
Assume for the contrary that P ∗ is not constant. Recall that the Newton’s
diagram Γg of a polynomial g(x, y) =

∑
amnxmyn is the convex hull of

the set {(m,n) : amn 6= 0} ∪ {(0, 0)}. Let ΓP and ΓQ be the Newton’s
diagrams of P and Q, respectively. According to a result of Nakai and
Baba [NB] (see also [AO]), the condition J(f) ∈ lC∗ ensures that the
convex sets ΓP and ΓQ are similar, i.e. deg Q.ΓP = deg P.ΓQ. Drawing
the diagrams ΓP and ΓQ one can see that ΓP has an edge connecting the
vertice (0, 0) to another vertice in the cone (1, 0) + lR2

+ and ΓQ has an
edge connecting the vertices (0, 0) and (0, 1). This implies that ΓP and
ΓQ can not be similar which contradicts the previous assumption. .

Consider the regular extension F of f and the associated curves D,
D∞, Dfc, Df and Dc. The followings facts are due to S. Yu. Ozevkov
(see the Lemmas 2.2, 3.1, 4.2 and 5.2 in [O1]):

(i) We can construct a regular extension F : X −→ lC lP1× lC lP1 such
that each connected component K of the curve Dfc is composed of an
irreducible component l := l0 of Df and a finite number of irreducible
components li of Dc, i = 1, 2, ..., k, for which l ∩D∞ = {∗} and

li ∩ lj =
{ {∗} for |i− j| = 1,

∅ otherwise.

For convenience, we denote l ∩ l1 = {el}. The curve D∞ can be reduced
to one point, denoted by ∞. For each connected component K of the
curve Dfc the curve Dc ∩ K can be reduced to the corresponding point
el. By this procedure of reduction we obtain a compact manifold X∗ and
a continuous extension F ∗ : X∗ −→ lC2 ∪ {∞} of f which is analytical
everywhere except at most at the points ∞ and el.

(ii) Let π : X −→ X∗ be the natural projection. Then, for each
l ⊂ Df the local degree degx F ∗ of F ∗ at x is a constant µlF

∗ for almost
x ∈ π(l), except at most at the point el and a finite number of exceptional
points. These exceptional points are either singular points of the curve
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DetDF ∗ = 0 or the points at which the restriction of F ∗ on π(l) is not a
local embedding.

Lemma 2.3 ([O1, Lemma 4.2]). If J(f) ∈ C∗, then

deg F ∗ − 1 =
∑

l⊂Df

(
µlF

∗ −
∑

x∈π(l)−{∞}
(µlF

∗ − degx F ∗)
)
,

where deg F ∗ denotes the geometrical degree of the proper map F ∗.
Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f and Γ be as in the statement of the theorem.
Assume to the contrary that f is not bijective. Then, by definition, Γ is
just the exceptional value set Ef of f , Γ = Ef . Since Γ is homeomorphic
to the line lC, by Lins and Zaidenberg’s theorem [LZ] the curve Γ is isomor-
phic to a quasi-homogenous irreducible curve given by a parameterization
ξ → (ξn, ξm) with gcd(m,n) = 1. Thus, changing affine coordinates in lC2

we can assume that the curve Ef is a quasi-homogenous irreducible curve.
It follows that there always exists a line L such that L intersects Ef at an
unique point. Let L be such a line and L ∩ Ef = {a}.

If f−1(a) 6= ∅, by Lemma 2.1 the curve f−1(L) has an irreducible
component diffeomorphic to lC. Therefore, by Lemma 2.2 we get a con-
tradiction. Thus, the proof is complete if we can show that

f−1(a) 6= ∅.
Consider the extension F ∗ : X∗ −→ lC2 ∪ {∞} of f . By definition,

f−1(a) 6= ∅ if and only if
∑

l⊂Df

∑

x∈π(l),F∗(x)=a

degx F ∗ ≤ deg F ∗ − 1.

By the equality in Lemma 2.3, the preceding inequality holds if

µl(a) :=
∑

x∈π(l),F∗(x)=a

degx F ∗ ≤ µlF
∗ +

∑

x∈π(l)−{∞}
(degx F ∗ − µlF

∗)

for every irreducible component l ⊂ Df .
We shall prove now the last inequality.
Let l be an irreducible component of the curve Df , l ⊂ Df . Note that

by the assumption of the theorem the curve Ef is just the image F ∗π(Df )
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and has only one singular point a. Therefore, as shown in (ii), the degree
degx F ∗ is locally constant on π(l) except at most at the point el and
the points in F ∗−1(a) ∩ π(l). Furthermore, since l is homeomorphic to
lC lP1, π(l) − {∞} is homeomorphic to lC and the restriction F ∗l of F ∗

from π(l)−{∞} onto Ef is a proper map of a finite degree. Denote by dl

the degree of the map F ∗l .
Case el ∈ F ∗−1(a): In this case, the mapping F ∗l : π(l) − {∞} −

F ∗−1(a) −→ Ef −{a} is a dl-fold unbranched covering. This implies that
F ∗−1(a)∩π(l) consists of an unique point, denoted by al. Then we obtain

µl(a) = degal
F ∗ = µlF

∗ +
∑

x∈π(l)−{∞}
(defxF ∗ − µlF

∗).

Case el /∈ F ∗−1(a): For convenience, denote e := F ∗(el). Considering
the dl-fold unbranched covering F ∗l : π(l)−{∞}−F ∗−1({a; e}) −→ Ef −
{a; e}, we can see that

dl = #F ∗−1
l (a) + #F ∗−1

l (e)− 1.

On the other hand, since e 6= a, the curve Ef is smooth at e. Therefore,
as shown in (ii), at each point x ∈ F ∗−1

l (e) − {el} the mapping F ∗l is a
local embedding and degx F ∗ = µlF

∗. This implies

dl = degel
F ∗l + #F ∗−1

l (e)− 1.

Hence, we have that

(1) #F ∗−1(a) = degel
F ∗l .

The following estimation on the degree of F ∗ at the point el can be easily
verified:

(2) degel
F ∗l .µlF

∗ ≤ degel
F ∗.

Using (1) and (2) we obtain

µlF
∗ +

∑

x∈π(l)−{∞}
(degx F ∗ − µlF

∗)

= µlF
∗ +

∑

x∈π(l),F∗(x)=a

(degx F ∗ − µlF
∗) + degel

F ∗ − µlF
∗

= µlF
∗ + µl(a)−#F ∗−1

l (a).µlF
∗ + degel

F ∗ − µlF
∗

≥ µlF
∗ + µl(a)−#F ∗−1

l (a).µlF
∗ + degel

F ∗l .µlF
∗ − µlF

∗

≥ µl(a).

This concludes the proof.
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