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A UNIQUE RANGE SET OF P-ADIC
MEROMORPHIC FUNCTIONS WITH 10 ELEMENTS

PEI-CHU HU AND CHUNG-CHUN YANG

Abstract. In this paper, we will exhibit a unique range set for p-adic
meromorphic functions with 10 elements.

1. Introduction

Nevanlinna theory is so beautiful that one would naturally be interested
in determining how such a theory would look in the p-adic case. H. H.
Khoai [7], H. H. Khoai and M. V. Quang [9], and A. Boutabaa [1] proved p-
adic analogues of two “main theorems” and defect relations of Nevanlinna
theory. H. H. Khoai [8] and W. Cherry and Zh. Ye [2] began to study
several variable p-adic Nevanlinna theory, and proved the defect relation of
hyperplanes in general position. Hu and Yang [6] proved p-adic analogues
of the defect relation for moving targets and the second main theorem for
differential polynomials.

For a non-constant meromorphic function f on lC and a set S ⊂ lC∪{∞}
we define

Ef (S) =
⋃

a∈S

{mz | f(z) = a with multiplicity m}.

A set S ⊂ lC∪{∞} is called an unique range set for meromorphic functions
(URSM) if for any pair of non-constant meromorphic functions f and g
on lC, the condition Ef (S) = Eg(S) implies f = g. A set S ⊂ lC ∪ {∞} is
called an unique range set for entire functions (URSE) if for any pair of
non-constant entire functions f and g on lC, the condition Ef (S) = Eg(S)
implies f = g. Gross and Yang [4] showed that the set
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S = {z ∈ lC | z + ez = 0}
is a URSE. Recently, URSE and also URSM with finitely many elements
have been found by Yi [13, 14], Li and Yang [10, 11], Mues and Reinders
[12], Frank and Reinders [3], Hu and Yang [5]. Li and Yang [10] introduced
the notation

λM = inf{#S | S is a URSM },
λE = inf{#S | S is a URSE },

where #S is the cardinality of the set S. The best lower and upper bounds
known so far are

5 ≤ λE ≤ 7, 6 ≤ λM ≤ 11.

For p-adic meromorphic (or entire) function f on lCp, we can simi-
larly define Ef (S) for a set S ⊂ lCp ∪ {∞}, and introduce the notation
λM and λE . In [6] we obtained λE ≤ 4 for p-adic entire functions and
λM ≤ 12 for p-adic meromorphic functions. W. Cherry ask us whether
the Frank-Reinders’ method gives a p-adic URSM with 10 elements by
using the −log r term in their second main theorem. In this paper, we
will give a confirmed answer to Cherry’s question, i.e., λM ≤ 10 for p-adic
meromorphic functions.

2. Nevanlinna theory of p-adic meromorphic functions

Let p be a prime number, let Qp be the field of p-adic numbers, and let
lCp be the p-adic completion of the algebraic closure of Qp. The absolute

value | |p in lCp is normalized so that | p |p = p−1. We further use the
notion ordp for the additive valuation on lCp.

Recall that in a metric space whose metric comes from a Non-
Archimedean norm, a sequence is Cauchy if and only if the difference
between adjacent terms approaches zero; and if the metric space is com-
plete, an infinite sum converges if and only if its general term approaches
zero. So if we consider expressions of the form

f(Z) =
∞∑

n=0

anZn, (an ∈ lCp),

we can give a value
∞∑

n=0
anzn to f(z) whenever an z substituted for Z for

which
| anzn |p→ 0.
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Define the “radius ρ of convergence” by

1
ρ

= lim
n→∞

sup | an |
1
n
p .

Then the series converges if | z |p< ρ and diverges if | z |p> ρ. Also the
function f(z) is said to be p-adic analytic on B(ρ), where

B(ρ) = {z ∈ lCp | | z |p< ρ}.

If ρ = ∞, the function f(z) also is said to be p-adic entire on lCp.
Consider non-constant p-adic analytic function

f(z) =
∞∑

n=0

anzn (an ∈ lCp)

on B(ρ) (0 < ρ ≤ ∞). The essence of the Wiman-Valiron method is the
analysis of the behaviour of the function by means of the maximum term:

µ(r, f) = max
n≥0

| an |p rn (0 < r =| z |p< ρ)

together with the central index:

ν(r, f) = max
n≥0

{n | | an |p rn = µ(r, f)}.

Define
ν(0, f) = lim

r→0
ν(r, f).

Lemma 2.1 ([6]). The central index ν(r, f) increases as r → ρ, and
satisfies the formula:

logµ(r, f) = log | aν(0,f) |p +

r∫

0

ν(t, f)− ν(0, f)
t

dt+ν(0, f)log r. (0 < r < ρ)

The following technical lemma can be found in [2]:

Lemma 2.2 (Weierstrass Preparation Theorem). There exists an unique
monic polynomial P of degree ν(r, f) and a p-adic analytic function g on
B[r] such that f = gP , where

B[r] = {z ∈ lCp | | z |p≤ r}.
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Furthermore, g does not have any zero inside B[r], and P has exactly
ν(r, f) zeros, counting multiplicity, on B[r].

Let n(r, 1
f ) denote the number of zeros (couting multiplicity) of f with

absolute value ≤ r and define the valence function of f for 0 by

N
(
r,

1
f

)
=

r∫

0

n
(
t,

1
f

)− n
(
0,

1
f

)

t
dt + n

(
0,

1
f

)
log r (0 < r < ρ).

Lemma 2.2 shows that
n
(
r,

1
f

)
= ν(r, f).

Then Lemma 2.1 imply the Jensen formula:

(1) N(r,
1
f

) = log µ(r, f)− log | an(0, 1
f ) |p .

We also denote the number of distinct zeros of f on B[r] by n
(
r,

1
f

)
and

define

N
(
r,

1
f

)
=

r∫

0

n
(
t,

1
f

)− n
(
0,

1
f

)

t
dt + n

(
0,

1
f

)
log r (0 < r < ρ).

For each n we draw the graph γn(t) which depicts ordp(anzn) as a
function of t = ordp(z). Then γn(t) is a straight line with slope n. Let
γ(t, f) denote the boundary of the intersection of all of the half-planes
lying under the lines γn(t). This line is what we call the Newton polygon
of the function f(z) (see [9]). The points t at which γ(t, f) has vertices
are called the critical points of f(z). A finite segment [α, β] contains only
finitely many critical points. It is clear that if t is a critical point, then
ordp(an) + nt attains its minimum at least at two values of n. Obviously,
we have

µ(r, f) = p−γ(t,f),

where r = p−t. A basic property of the Newton polygon is that, if t =
ordp(z) is not a critical point, then

| f(z) |p= p−γ(t,f),
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which implies
| f(z) |p= µ(r, f).

Further, we note that if h is another p-adic analytic function on B(ρ),
then

(2) µ(r, fh) = µ(r, f)µ(r, h).

By a meromorphic function f on B(ρ) we will mean the quotient
g

h
of two p-adic analytic functions g and h such that g and h have not any
common factors in the ring of p-adic analytic functions on B(ρ). Note
that (2) hold and that greatest common divisors of any two p-adic analytic
functions exist. We can uniquely extend µ to meromorphic function f =

g

h
by defining

µ(r, f) =
µ(r, g)
µ(r, h)

.

Also set
γ(t, f) = γ(t, g)− γ(t, h).

It is clear that, if t = ordp(z) is not a critical point for f(z), i.e., t is not
a critical point for either g(z) or h(z), then

| f(z) |p= p−γ(t,f) = µ(r, f).

Define the counting function n(r, f) and the valence function N(r, f)
of f for poles respectively by

n(r, f) = n
(
r,

1
h

)
, N(r, f) = N

(
r,

1
h

)
.

Then applying (1) for g and h, we obtain the Jensen formula:

(3) N
(
r,

1
f

)
−N(r, f) = log µ(r, f)− Cf ,

where Cf is a constant depending only on f . Define

m(r, f) = log+µ(r, f) = max{0, log µ(r, f)}.

Finally, we define the characteristic function:

T (r, f) = m(r, f) + N(r, f).
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Here we exhibit some basic facts which will be used in the following sec-
tions.

Lemma 2.3 (First Main Theorem, cf. [1, 9]). Let f be a non-constant
meromorphic function in B(ρ). Then for every a ∈ lCp we have

m
(
r,

1
f − a

)
+ N

(
r,

1
f − a

)
= T (r, f) + O(1) (r → ρ).

Lemma 2.4 (The Lemma of Logarithmic Derivative, cf. [1, 2, 9]). Let f
be a nonconstant meromorphic function in B(ρ). Then

m
(
r,

f ′

f

)
= O(1) (r → ρ).

Lemma 2.5 (Second Main Theorem, cf. [1, 2, 9]) Let f be a non-constant
meromorphic function in B(ρ) and let a1, ..., aq be distinct numbers of lCp.
Then

(q − 1)T (r, f) ≤ N(r, f) +
q∑

j=1

N
(
r,

1
f − aj

)
−N1(r, f)− log r + O(1),

where
N1(r, f) = 2N(r, f)−N(r, f ′) + N

(
r,

1
f ′

)
.

Furthermore, we have

N(r, f)+
q∑

j=1

N
(
r,

1
f − aj

)
−N1(r, f) ≤ N(r, f)+

q∑

j=1

N
(
r,

1
f − aj

)
−N0

(
r,

1
f ′

)
,

∑

a∈ lCp∪{∞}
Θf (a) ≤ 2,

where N0

(
r, 1

f ′

)
is the valence function of the zeros of f ′ where f does

not take one of the values a1, ..., aq, and where

Θf (a) = 1− lim
r→∞

sup
N

(
r,

1
f − a

)

T (r, f)
.
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3. Uniqueness of p-adic meromorphic functions

We recall the following useful facts:

Lemma 3.1 ([2]). If f is a p-adic entire function on lCp that is never
zero, then f is constant.

Lemma 3.2 ([6]). Let f be a non-constant p-adic meromorphic functions
on lCp. Take a positive integer n, {a0, a1, ..., an} ⊂ lCp with a0 6= 0 and
set

L[f ] = a0f
n + a1f

n−1 + · · ·+ an.

Then
T (r, L[f ]) = nT (r, f) + O(1).

Theorem 3.1. Take integer n ≥ 10 and let b ∈ lCp − {0,−1}. Then the
polynomial P (z) defined by

P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)
2

zn−2 + b

has only simple zeros, and if f and g are non-constant p-adic meromorphic
functions on lCp such that Ef (S) = Eg(S), then f ≡ g, where

S = {z ∈ lCp | P (z) = 0}.

Proof. Write S = {r1, r2, ..., rn} and define

Q(z) =
(n− 1)(n− 2)

2
z2 − n(n− 2)z +

n(n− 1)
2

.

By two main theorems, we have the estimate

(n− 2)T (r, g) ≤
n∑

k=1

N
(
r,

1
g − rk

)
− log r + O(1)

=
n∑

k=1

N
(
r,

1
f − rk

)
− log r + O(1)

≤ nT (r, f)− log r + O(1).

Similarly we can obtain the estimate

(n− 2)T (r, f) ≤ nT (r, g)− log r + O(1).
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Define

h1 = −1
b
fn−2Q(f), h2 =

h3

b
gn−2Q(g), h3 =

P (f)
P (g)

.

Then we have
h1 + h2 + h3 = 1.

Write f =
f1

f2
and g =

g1

g2
, where pairs f1, f2 and g1, g2 are p-adic entire

functions on lCp without common factors, respectively. Then

h3 = c
(g2

f2

)n

, c =
P (f)fn

2

P (g)gn
2

.

Note that c is an p-adic entire function on lCp which is never zero, and
hence is constant. Thus we have

N(r, h3) ≤ N(r, f), N
(
r,

1
h3

)
≤ N(r, g).

In the following, we will prove h3 ≡ 1.
Assume, to the contrary, that h3 6≡ 1. First we prove that h1 can not

be expessed linearly by {1, h3} and {1, h2}, respectively. Assume that we
have a linear expression

h1 = a1h3 + a2, a1, a2 ∈ lCp.

Since h1 is not constant, then a1 6= 0, and h3 is not constant. If a2 6= 0,
then the second main theorem implies

nT (r, f) = T (r, h1) + O(1)

≤ N
(
r,

1
h1

)
+ N(r, h1) + N

(
r,

1
h1 − a2

)
− log r + O(1)

≤ N
(
r,

1
f

)
+ N

(
r,

1
Q(f)

)
+ N(r, f) + N

(
r,

1
h3

)
− log r + O(1)

≤ 4T (r, f) + N(r, g)− log r + O(1)

≤ 4T (r, f) + T (r, g)− log r + O(1)

≤
(
4 +

n

n− 2

)
T (r, f)− log r + O(1),
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which yields n < 5 + 2
n−2 , a contradiction! If a2 = 0, setting

Q(z) =
(n− 1)(n− 2)

2
(z − s1)(z − s2),

then by h1 = a1c
(

g2
f2

)n

, we see

N
(
r,

1
f

)
≥ n

2
N

(
r,

1
f

)
, N

(
r,

1
f − sj

)
≥ nN

(
r,

1
f − sj

)
, j = 1, 2.

Then

Θf (sj) = 1− lim
r→∞

sup
N

(
r, 1

f−sj

)

T (r, f)
≥ 1− 1

n
(j = 1, 2), Θf (0) ≥ 1− 2

n
,

and again by the second main theorem,

1− 2
n

+ 2(1− 1
n

) ≤ Θf (0) +
2∑

j=1

Θf (sj) ≤ 2.

This is impossible since n ≥ 10.
Assume that we have a linear expression

h1 = b1h2 + b2, b1, b2 ∈ lCp.

Since h1 is not constant, then b1 6= 0, and h2 is not constant. If b2 6= 0,
then the second main theorem implies

nT (r, f) = T (r, h1) + O(1)

≤ N
(
r,

1
h1

)
+ N(r, h1) + N

(
r,

1
h1 − b2

)
− log r + O(1)

≤ N
(
r,

1
f

)
+ N

(
r,

1
Q(f)

)
+ N(r, f) + N

(
r,

1
h2

)
− log r + O(1)

≤ 4T (r, f) + N
(
r,

1
g

)
+ N

(
r,

1
Q(g)

)
− log r + O(1)

≤ 4T (r, f) + 3T (r, g)− log r + O(1)

≤ (4 +
3n

n− 2
)T (r, f)− log r + O(1),
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which yields n < 7 +
6

n− 2
, a contradiction! If b2 = 0, then we have

(1 +
1
b1

)h1 + h3 = 1 which is impossible. Thus we proved the claim. In

consequence, h2 and h3 are not constant.
Define

F =
1

P (f)
, G =

1
P (g)

.

If 1, F, G are linearly independent, then

H =
F ′′

F ′
− G′′

G′
= − W

F ′G′
6≡ 0,

where W is the Wronskian of 1, F, G . Note that poles of H can only occur

where F ′ or G′ has a zero. We write N0

(
r,

1
F ′

)
for the valence function of

the zeros of F ′ where F does not take one of the values A1 = 0, A2 =
1
b

and A3 =
1

b + 1
. N0(r,

1
G′

) is defined analogously. Then

N(r,H) ≤
3∑

j=1

{
N2)

(
r,

1
F −Aj

)
−N

(
r,

1
F −Aj

)

+ N2)

(
r,

1
G−Aj

)
−N

(
r,

1
G−Aj

)}

+ N0

(
r,

1
F ′

)
+ N0

(
r,

1
G′

)
,

where Nk)(r, f) is the valence function of f which counts a pole according
to its multiplicity if the multiplicity is less than or equal to k and counts
a pole k times if its multiplicity is great than k. Note that H has a zero
at every point where F and G have a simple pole. It follows that

N(r, F ) + N(r,G) ≤ N
(
r,

1
H

)
+

1
2
{N(r, F ) + N(r,G)}.

By the first main theorem and the lemma of logarithmic derivatives, we
see

N(r, F ) + N(r,G) ≤ N(r,H) +
1
2
{T (r, F ) + T (r,G)}+ O(1).
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The second main theorem applied to F and G gives

2{T (r, F ) + T (r,G) + log r} ≤
3∑

j=1

{
N

(
r,

1
F −Aj

)
+ N

(
r,

1
G−Aj

)}

+ N(r, F ) + N(r,G)−N0

(
r,

1
F ′

)

−N0

(
r,

1
G′

)
+ O(1).

Hence we obtain

3
2
{T (r, F ) + T (r,G)}+ 2log r ≤

3∑

j=1

{
N2)

(
r,

1
F −Aj

)

+ N2)

(
r,

1
G−Aj

)}
+ O(1).

Since

P ′(z) =
n(n− 1)(n− 2)

2
zn−3(z − 1)2,

we have P (1) = 1 + b with multiplicity 3 and P (0) = b with multiplicity
n− 2. Therefore we can write

P (z)− b− 1 = (z − 1)3Q1(z), Q1(1) 6= 0,

P (z)− b = zn−2Q(z), Q(0) 6= 0,

where Q1(z) is a polynomial of degree n−3, having only simple zeros. For
every a ∈ lCp − {b, b + 1}, P (z) − a has only simple zeros. In particular,
P (z) has only simple zeros and thus S has exactly n elements. From the
first main theorem we conclude that

N2)

(
r,

1
F −A1

)
= N2)(r, P (f)) = 2N(r, f)

≤ 2T (r, f) + O(1),

N2)

(
r,

1
F −A2

)
= N2)

(
r,

1
P (f)− b

)
≤ 2N

(
r,

1
f

)
+ N2)

(
r,

1
Q(f)

)

≤ 4T (r, f) + O(1),

N2)

(
r,

1
F −A3

)
= N2)

(
r,

1
P (f)− b− 1

)

≤ 2N
(
r,

1
f − 1

)
+ N2)

(
r,

1
Q1(f)

)

≤ (n− 1)T (r, f) + O(1).
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It follows that

3∑

j=1

N2)

(
r,

1
F −Aj

)
≤ (n + 5)T (r, f) + O(1) = (1 +

5
n

)T (r, F ) + O(1),

and the same inequality holds with f and F replaced by g and G. Thus

we would get
3
2

< 1+
5
n

, and hence n < 10 which is a contradiction to our
assumptions. It follows that 1, F,G are linearly dependent. Then there
exists (c1, c2, c3) ∈ lC3

p − {0} such that

c1 + c2F + c3G = 0,

and hence
−bc1h1 + c3h3 = −bc1 − c2.

This is impossible.

Therefore we must have h3 = 1, i.e. P (f) = P (g). Set h =
f

g
. We see

(4)
(n− 1)(n− 2)

2
(hn−1)g2−n(n−2)(hn−1−1)g +

n(n− 1)
2

(hn−2−1) = 0.

If h is constant, (4) implies hn − 1 = 0 and hn−1 − 1 = 0. It follows that
h = 1 and hence f = g.

It remains to consider the case that h is not constant. We write (4) in
the form

(5) ((hn − 1)g − n

n− 1
(hn−1 − 1))2 = − n

(n− 1)2(n− 2)
ϕ(h),

where ϕ is defined by

ϕ(z) = (n− 1)2(zn − 1)(zn−2 − 1)− n(n− 2)(zn−1 − 1)2.

An elementary calculation gives

ϕ(k)(1) = 0 (0 ≤ k ≤ 3), ϕ(4)(1) = 2n(n− 1)2(n− 2) 6= 0.

Hence we can write

ϕ(z) = (z − 1)4(z − t1)(z − t2) · · · (z − t2n−6),
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where t1, ..., t2n−6 ∈ lCp − {1}. Now assume that

ϕ(z) = ϕ′(z) = 0,

for some z ∈ lCp. A simple calculation shows that z satisfies the following
equation

(n− 1)(n− 2)(zn − 1)− 2n(n− 2)(zn−1 − 1) + n(n− 1)(zn−2 − 1) = 0.

Hence ϕ has at least (2n− 6)− (n− 1) = n− 5 simple zeros in lCp − {1},
w.l.o.g., assume that t1, ..., tn−5 are simple zeros of ϕ. From (5) we see
that

Θh(tj) ≥ 1
2

(1 ≤ j ≤ n− 5).

Thus the second main theorem yields

2 ≥
n−5∑

j=1

Θh(tj) ≥ n− 5
2

,

and hence n ≤ 9 in contradiction to our assumption n ≥ 10. This complete
the proof of the theorem.
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