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ON THE CONVERGENCE OF SOLUTIONS
OF A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

IN BANACH SPACES

PHAM NGOC BOI

Abstract. The main result of this paper shows the asymptotic behaviour
of solutions to perturbed linear differential equations in Banach spaces.

1. Introduction

Let B be a Banach space equiped with the norm ‖.‖. Consider in B the
following equations on the finite interval [0, T ]:

dx

dt
= A(t)x, x(0) = x0,(1)

dx

dt
= [A(t) + R(t, ε)] x, x(0) = x0,(2)

dy

dt
= R(t, ε) y, y(0) = y0,(3)

(0 ≤ ε ≤ ε0) ,

where A(t) and R(t, ε) belong to [B], the space of all bounded linear op-
erators from B into itself with the norm |‖.‖|.

A continuous function x(t) : [0, T ] → B is called a solution of equation
(1), ((2), (3)) if x(t) is almost everywhere differentiable and satisfied (1)
((2), (3)). Note that (1) has a unique solution if A(t) is B–integrable
(integral in the Bochner sense) on [0, T ], in particular, A(t) is strongly
continuous on [0, T ] (see [6]).

By X(t), X(t, ε), Y (t, ε) we denote the Cauchy operators of equations
(1), (2), (3), respectively. By ‖.‖Lp we denote the norm in Lp[0, T ], 1 ≤
p ≤ ∞.
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Assume that H(t) ∈ [B] and the function

t → |‖H(t)‖|,
[0, T ] → R

belongs to Lp[0, T ]. We define

|‖H(.)‖|p = ‖|‖H(.)‖|‖Lp .

If |‖H(., ε) −H(.)‖|p → 0 as ε → 0 then we say H(t, ε) → H(t) in Lp as
ε → 0. Similarly, for z(t) ∈ C([0, T ];B) we define

‖z(.)‖p = ‖‖z(.)‖‖Lp ,

and say z(t, ε) → z(t) in Lp as ε → 0 if ‖z(., ε)− z(.)‖p → 0 as ε → 0.
In the case B is finite - dimensional, A. Yu. Levin [1] proved the follow-

ing reducible theorem:

Theorem 1. The pair of relations

(4) X(t, ε) → X(t) , X−1(t, ε) → X−1(t)

in Lp as ε → 0 is equivalent to the pair of relations

(5) Y (t, ε) → I , Y −1(t, ε) → I

in Lp as ε → 0 for any p ≥ 1.

This theorem showed the approach of solutions of the linear system (2)
to the solution of the linear equation (1).

A. Yu. Levin [2], N. T. Hoan [3], P.P. Zabreiko, and N. H.Thai [4] gave
several conditions to ensure the relations (5), which describe the behaviour
of solutions of system (2).

If B is an arbitrary Banach space, Levin’s theorem and the above-
mentioned results are still valid with the uniform convergence topology of
the operators in [B]. However, it does not give us any information on the
convergence of solutions of (2) to the solution of (1). The purpose of this
paper is to give some insight on this problem. Althought all operators
appeared in our equations are bounded, it seems to us that many results
remain valid for several unbounded operators.
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2. Main results

Assume that A(t), R(t, ε) are strongly continuous (see [5]) and

(6) sup
ε∈[0,ε0]

T∫

0

|‖R(t, ε)‖| dt < ∞ .

The main result of this paper is the following

Theorem 2. Let x(t), x(t, ε), y(t) be the solutions of (1), (2), (3), respec-
tively. Then the condition x(t, ε) → x(t) in Lp as ε → 0, for each x0 ∈ B
is necessary and sufficient for y(t, ε) → y0 in Lp as ε → 0, for each y0 ∈ B
(1 ≤ p ≤ ∞).

To prove this theorem we need the following lemma.

Lemma. Suppose that F (t, ε) ∈ [B] for t ∈ [0, T ] and ε ∈ [0, ε0] satisfies
a) sup

ε∈[0,ε0]

|‖F (., ε)‖|p = M < ∞ , 1 ≤ p ≤ ∞;

b) ‖F (., ε)x0‖p → 0 for each x0 ∈ B as ε → 0 .
Then ‖F (., ε)x(.)‖p → 0 , ε → 0, for any continuous function x(t) from
[0, T ] into B.

Proof. 1) The case 1 ≤ p < ∞: We first note that for any a, b ≥ 0,

(7) (a + b)p ≤ 2p−1(ap + bp) .

Suppose that α is an arbitrary positive number. Because [0, T ] is compact,
we have a finite sequence of points t1 = 0 < t2 < · · · < tk = T such that

sup
0≤i≤k−1

‖x(ti+1)− x(ti)‖ <
α

2
M−1.

By Minkowski’s inequality and the inequality (7) we obtain

ti+1∫

ti

∥∥F (t, ε)x(t)
∥∥p

dt ≤








ti+1∫

ti

∥∥F (t, ε)[x(t)− x(ti)]
∥∥p

dt




1
p

+




ti+1∫

ti

∥∥F (t, ε) x(ti)
∥∥p

dt




1
p





p

≤ 2p−1





ti+1∫

ti

∥∥F (t, ε)[x(t)− x(ti)]
∥∥p

dt +

ti+1∫

ti

∥∥F (t, ε)x(ti)
∥∥p

dt



 .
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Therefore

(8)

T∫

0

∥∥F (t, ε)x(t)
∥∥p

dt ≤

2p−1
k−1∑

i=0

ti+1∫

ti

∥∥F (t, ε)[x(t)− x(ti)]
∥∥p

dt + 2p−1
k−1∑

i=0

ti+1∫

ti

∥∥F (t, ε)x(ti)
∥∥p

dt .

By the condition b) we have

(9) 2p−1
k−1∑

i=0

ti+1∫

ti

∥∥F (t, ε)x(ti)
∥∥p

dt ≤ 2p−1
k−1∑

i=0

T∫

0

∥∥F (t, ε)x(ti)
∥∥p

dt <
αp

2

for a sufficiently small ε. On the other hand,

2p−1
k−1∑

i=0

ti+1∫

ti

∥∥F (t, ε)[x(t)− x(ti)]
∥∥p

dt

≤ 2p−1
k−1∑

i=0

ti+1∫

ti

∣∣∥∥F (t, ε)
∥∥∣∣p∥∥[x(t)− x(ti)]

∥∥p
dt

< 2p−1
(α

2

)p

M−1
k−1∑

i=0

∫ ti+1

ti

∣∣∥∥F (t, ε)
∥∥∣∣pdt

=
αp

2
M−1

∫ T

0

∣∣∥∥F (t, ε)
∥∥∣∣pdt

≤ αp

2
.(10)

Combining (8), (9), (10) we deduce that
∥∥F (., ε)x(.)

∥∥
p

< α.
2) The case p = ∞. The proof is similar.

Proof of Theorem 2. By X(t), X(t, ε), Y (t, ε) we denote the Cauchy
operators of (1), (2), (3), respectively, or for short we write X, X(ε),
Y (ε). Because A(t) is strongly continuous and by the uniformly bounded
principle, we have sup

t∈[0,T ]

|‖A(t)‖| ≤ N < ∞ (see [5]). The inequality

sup
ε∈[0,ε0]

T∫
0

|‖R(t, ε)‖|dt < ∞ implies
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(11) |‖X(ε)|‖, |‖X−1(ε)|‖, |‖Y (ε)|‖, |‖Y −1(ε)|‖ are uniformly bounded
by K < ∞ (see [6]).

1) The sufficiency. Assume

(12) ‖y(., ε)− y0‖p → 0 as ε → 0

for each y0 ∈ B. Let Z(t, ε) = X−1(ε)Y (ε)X, then

dZ

dt
= X−1(ε) Y (ε)A X −X−1(ε) AY (ε)X.

Setting F (t, ε) = X−1(ε) Y (ε)AX −X−1(ε) AY (ε)X we get

‖F (., ε)x0‖p ≤(13)

K
{ ‖Y (ε)AXx0 −AXx0‖p + |‖A‖| ‖Y (ε)Xx0 −Xx0‖p

}

for each x0 ∈ B.
The assumption (12) implies ‖(Y (ε) − I)x0‖p → 0, ε → 0 for each

x0 ∈ B. Applying the above lemma to the continuous functions h(t) =
A(t)X(t)x0, x(t) = X(t) x0 we get

‖Y (ε)AX x0 −AX x0‖p → 0 ,

‖Y (ε)X x0 −X x0‖p → 0 as ε → 0 .

Thus, ‖F (., ε)x0‖p → 0 as ε → 0. On the other hand, by the Hölder
inequality we obtain

(14) ‖F (., ε)x0‖1 ≤ T 1− 1
p ‖F (., ε) x0‖p → 0 as ε → 0

Since
dZ(t, ε)x0

dt
= F (t, ε)x0 and Z(0, ε)x0 = x0, it follows

‖Z(t, ε) x0 − x0‖ ≤
t∫

0

‖F (t, ε)x0‖ dt ,

sup
t
‖Z(t, ε)x0 − x0‖ ≤

T∫

0

‖F (t, ε)x0‖ dt .
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By virtue of (14), sup
t
‖Z(t, ε) x0 − x0‖ → 0 as ε → 0. Thus,

(15) ‖Z(., ε) x0 − x0‖p → 0 as ε → 0 .

Applying Lemma to x(t) = X(t) x0 we get

‖Z(., ε)x0 −X−1(ε)X x0‖p(16)

≤ |‖X−1(ε)‖| ‖Y (ε)X x0 −X x0‖p

≤ K ‖Y (ε)X x0 −X x0‖p → 0 as ε → 0 .

From (15) and (16) we obtain ‖X−1(ε)X x0 − x0‖p → 0 and

‖X(ε) x0 −X x0‖p ≤ |‖X(ε)‖| ‖X−1(ε)X x0 − x0‖p → 0 as ε → 0.

Thus
x(t, ε) → x(t) in Lp as ε → 0 .

2) The necessity. Suppose ‖x(., ε) − x(.)‖p → 0 as ε → 0 for each
x0 ∈ B. We show that (12) is valid. From ‖[X(., ε) −X(.)] x0‖p → 0 for
each x0 ∈ B and applying the above lemma to the continuous function
v(t) = X−1(t) x0 we see that ‖[X(ε)−X] X−1 x0‖p → 0. Then

(17) ‖X(ε)X−1x0 − x0‖p → 0 as ε → 0 .

Setting Q(t, ε) = Y −1(ε)X(ε) X−1 we obtain

(18)
dQ

dt
= Y −1(ε)AX(ε)X−1 − Y −1(ε)X(ε) X−1A .

By K(t, ε) we denote the right-hand side of (18). Then, for each x0 ∈ B,

‖K(., ε) x0‖p ≤ ‖Y −1(ε)AX(ε)X−1x0 − Y −1(ε)A x0‖p(19)

+ ‖Y −1(ε)X(ε)X−1Ax0 − Y −1(ε)A x0‖p ≤
KN ‖X(ε) X−1x0 − x0‖p + K ‖X(ε) X−1 A x0 −Ax0‖p .

By the above lemma we deduce ‖X(ε)X−1 Ax0−Ax0‖p → 0. Combining
(17) and (19) we get

‖K(., ε)x0‖p → 0 as ε → 0 .

Similarly to the previous proof we obtain ‖Q(., ε) y0 − y0‖p → 0 as
ε → 0 for each y0 ∈ B and ‖Y (., ε) y0 −Q(., ε) y0‖p → 0 , as ε → 0. This
implies ‖Y (., ε) y0−y0‖p → 0 , hence y(t, ε) → y0 in Lp , as ε → 0 for each
y0 ∈ B.
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Theorem 3. Suppose sup
ε∈[0,ε0]

|‖R(., ε)‖|q < ∞, where
1
p

+
1
q

= 1 (p = ∞
if q = 1 and q = ∞ if p = 1). Then the condition x(t, ε) → x(t) in
Lp as ε → 0, for each x0 ∈ B, is necessary and sufficient for

(20)
∥∥∥

t∫

0

R(s, ε) y0 ds
∥∥∥

p
→ 0 as ε → 0.

Proof. The inequality

|‖R(., ε)‖|1 ≤ ‖R(., ε)‖q . T 1− 1
q

implies sup
ε∈[0,ε0]

|‖R(t, ε)‖|1 < ∞ . By Theorem 2, to prove Theorem 3 it

suffices to show that condition (20) is equivalent to y(t, ε) → y0 in Lp as
ε → 0 for each y0 ∈ B. Consider the following Volterra integral equation

z(t, ε) =

t∫

0

‖R(s, ε) z(s, ε)‖ ds + f(t) ,

where f ∈ Lp[0, T ] . As in [3] we have

(21) ‖z‖Lp ≤
(
1 + T

1
p |‖R(., ε)‖|q exp |‖R(., ε)‖|1

) ‖f‖Lp .

Assume now (20) is true. Then

(22) y(t, ε) = y0 +

t∫

0

R(s, ε) y0 ds +

T∫

0

R(s, ε) [y(s, ε)− y0] ds .

Thus

‖y(t, ε)− y0‖ ≤
∥∥∥

t∫

0

R(s, ε) y0 ds
∥∥∥ +

t∫

0

‖R(s, ε) [y(s, ε)− y0]‖ ds .

By the theorem on integral inequalities (see [6], p. 154) we obtain ‖y(t, ε)−
y0‖ ≤ z(t, ε), where z(t, ε) is the solution of the equation

(23) z(t, ε) =

t∫

0

‖R(s, ε) z(s, ε) ds‖+
∥∥∥

t∫

0

R(s, ε) y0 ds
∥∥∥ .
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Applying the estimate (21) with respect to equation (23), where f(t) =
∥∥ t∫

0

R(s, ε) y0 ds
∥∥, we get

‖y(., ε)− y0‖p ≤ ‖z(., ε)‖Lp
≤

(
1 + T

1
p |‖R(., ε)‖|q exp |‖R(., ε)‖|1

) ∥∥∥
t∫

0

R(s, ε) y0 ds
∥∥∥

p
→ 0 as ε → 0 .

Therefore, y(t, ε) → y0 in Lp as ε → 0.
Conversely, suppose y(t, ε) → y0 in Lp as ε → 0 for each y0 ∈ B. From

(22) we get

(24)

t∫

0

R(s, ε) y0 ds =
(
y(t, ε)− y0

)
+

t∫

0

R(s, ε)[y(s, ε)− y0] ds .

By the Hölder inequality we have

(25)

t∫

0

‖R(s, ε)[y(s, ε)− y0]‖ ds ≤
T∫

0

|‖R(s, ε)‖| ‖y(s, ε)− y0‖ ds

≤ |‖R(., ε)‖|q . ‖y(., ε)− y0‖p .

From (24) and (25) we obtain

∥∥∥
t∫

0

R(s, ε) y0 ds
∥∥∥

p
≤ ‖y(., ε)− y0‖p + T

1
p |‖R(., ε)‖|q ‖y(., ε)− y0‖p .

This implies
∥∥ t∫

0

R(s, ε) y0 ds
∥∥

p
→ 0 as ε → 0 for each y0 ∈ B. The

theorem is completely proved.

Now consider the equation

(26)
dx

dt
= [A(t) + R(t, ε)] x + f(t, ε) , x(0, ε) = xε

0

and

(27)
dx

dt
= A(t)x + f(t) , x(0) = x0 ,
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Denote the solution of (26), (27) by x(t, ε) and x(t), respectively. We have
the following result

Theorem 4. Suppose sup
ε∈[0,ε0]

|‖R(., ε)‖|q < ∞, where
1
p

+
1
q

= 1 (p = ∞
if q = 1 and q = ∞ if p = 1) and

∥∥
t∫

0

R(s, ε) y0 ds
∥∥

p
→ 0 as ε → 0.

If xε
0 → x0 in B and f(t, ε), f(t) belong to C([0, T ];B) such that f(t, ε) →

f(t) in ÃLp as ε → 0, then x(t, ε) → x(t) in Lp as ε → 0.

Proof. It is well-known that

x(t, ε) = X(t, ε) xε
0 +

t∫

0

X(t, ε)X−1(s, ε) f(s, ε) ds ,

x(t) = X(t) x0 +

t∫

0

X(t) X−1(s) f(s) ds .

Hence

(28) ‖x(t, ε)− x(t)‖p ≤ ‖X(t, ε) xε
0 −X(t) x0‖p+

∥∥∥
t∫

0

X(t, ε)X−1(s, ε) f(s, ε) ds−
t∫

0

X(t)X−1(s) f(s) ds
∥∥∥

p
.

By virtue of Theorem 3 and xε
0 → x0 in B we have

‖X(ε)xε
0 −X x0‖p ≤(29)

‖X(ε)xε
0 −X(ε)x0‖p + ‖X(ε)x0 −X x0‖p → 0 as ε → 0.

On the other hand,

(30)
∥∥∥

t∫

0

X(t, ε)X−1(s, ε) f(s, ε) ds−
t∫

0

X(t)X−1(s) f(s) ds
∥∥∥

p
≤

∥∥∥
t∫

0

X(t, ε) X−1(s, ε) [f(s, ε)− f(s)] ds
∥∥∥

p
+
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+
∥∥∥X(t, ε)

∫ t

0

[X−1(s, ε) f(s)−X−1(s) f(s)] ds
∥∥∥

p
+

∥∥∥X(t, ε)
∫ t

0

X−1(s) f(s) ds−X(t)

t∫

0

X−1(s) f(s) ds
∥∥∥

p
.

From (11) we deduce that

∥∥∥
t∫

0

X(t, ε)X−1(s, ε) [f(s, ε)− f(s)] ds
∥∥∥

p
≤(31)

∥∥∥
T∫

0

|‖X(t, ε)‖| |‖X−1(s, ε)‖| ‖f(s, ε)− f(s)‖ ds
∥∥∥

p
≤

T
1
q K2 ‖f(., ε)− f(.)‖p T

1
p =

K2 T ‖f(., ε)− f(.)‖p → 0 as ε → 0 .

From (17) we get

‖X−1(ε) x0−X−1 x0‖p ≤ |‖X−1(ε)‖| ‖x0−X(ε)X−1(s) x0‖p → 0 as ε → 0

for each x0 ∈ B. Applying the above lemma we obtain ‖X−1(ε) f −
X−1 f‖p → 0 as ε → 0. This implies

∥∥∥X(t, ε)

t∫

0

[X−1(s, ε) f(s)−X−1(s) f(s)] ds
∥∥∥

p
≤(32)

K
∥∥∥

T∫

0

‖X−1(s, ε) f(s)−X−1(s) f(s)‖ ds
∥∥∥

p
=

K T ‖X−1(ε) f −X−1f‖p → 0 .

Now applying the above lemma to h(t) =
t∫
0

X−1(s) f(s) ds we get

(33)
∥∥∥X(t, ε)

t∫

0

X−1(s) f(s) ds−X(t)

t∫

0

X−1(s) f(s) ds
∥∥∥

p
→ 0 .
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From (30), (31), (32), (33) we deduce

(34)
∥∥∥

t∫

0

X(t, ε) X−1(s, ε) f(s, ε) ds−
t∫

0

X−1(s) f(s) ds
∥∥∥

p
→ 0 as ε → 0 .

Thus ‖x(., ε)−x(.)‖p → 0, by (28), (29), (34). The theorem is proved.

Note that condition
T∫
0

|‖R(t, ε)‖| dt → 0 implies condition
∥∥ t∫

0

R(t, ε)x0

∥∥
p
→

0 for each x0 ∈ B. We give below some examples where ‖R(s, ε)x0ds‖p → 0

as ε → 0 but
T∫
0

|‖R(t, ε)‖| dt 6→ 0 as ε → 0.

Example 1. Let T = 1 and R(t, ε) = sin
t

ε
I. It is easy to check that

|‖R(t, ε)‖| =
∣∣ sin

t

ε

∣∣. This implies

sup
ε∈[0,1]

|‖R(t, ε)‖|q < ∞ , t ∈ [0, 1],

∥∥∥
t∫

0

R(s, ε)xds
∥∥∥

p
= ε ‖x‖ ∥∥1− cos

t

ε

∥∥
Lp
→ 0 as ε → 0

for each x ∈ B. Thus, R(t, ε) satisfies Theorem 2. But

lim
ε→0

T∫

0

|‖R(t, ε)‖| dt = lim
ε→0

1∫

0

∣∣ sin
t

ε

∣∣ dt = lim
ε→0

ε

1
ε∫

0

| sin s| ds.

It is well known that lim
ε→0

ε

1
ε∫
0

| sin s| ds = k > 0. (see [7], p. 384).

Example 2. Let B = `1, T = 1. We consider R(t, ε) in a form of a

sequence R
(
t,

1
n

)
, n = 1, 2, 3, . . . . Assume that rij(t), i, j = 1, 2, 3, ...

are continuous functions on [0,1] such that

sup
t∈[0,1]

∞∑

i=1

∞∑

j=1

|rij(t)| = M < ∞ .
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Then R
(
t,

1
n

)
is the infinite matrix

(
rij(t, n)

)
, n = 1, 2, ..., where

rij(t, n) =
{

0 for j ≤ n,

ri j−n(t) for j > n,

and R
(
t,

1
n

)
acts in `1 by the multiplication. It is easy to check that

R
(
t,

1
n

)
∈ [`1] and

sup
t∈[0,1]

∥∥∥R
(
t,

1
n

)
x
∥∥∥ ≤ M

∞∑

i=n+1

|xi| n = 1, 2, 3, ..,

where x = (x1, x2, . . . ) ∈ `1. This implies that sup
n

∣∣∥∥R
(
.,

1
n

)∥∥∣∣
q

< ∞ for

any q ≥ 1. Also, we have sup
t∈[0,1]

∥∥R
(
t,

1
n

)
x
∥∥ → 0 for each x ∈ `1 as

1
n
→ 0.

Thus
∥∥∥

t∫
0

R
(
s,

1
n

)x ds
∥∥∥

p
→ 0 for each x ∈ `1 as

1
n
→ 0. Hence, R

(
t,

1
n

)

satisfies Theorem 2. It is easy to show that
∥∥∥R

(
t,

1
n

)∥∥∥ ≥ |r11(t)|.

Hence we can choose r11(t) such that
1∫
0

∥∥R
(
t,

1
n

)∥∥ dt 6→ 0 as ε =
1
n
→ 0.
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