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ON SEGRE BOUND FOR THE REGULARITY INDEX
OF FAT POINTS IN P222

PHAN VAN THIEN

Abstract. In this paper we reprove Segre bound for the regularity index
of fat points in P2 by a simple and natural method which may be used to
study fat points in Pn, n≥3.

1. Introduction

Let X = {P1, . . . , Ps} be distinct points in the projective space Pn =
Pn(k), k an algebraically closed field, and let m1, . . . , ms be positive
integers. A form f (or a hypersurface) of the polynomial ring R :=
k[X0, . . . , Xn] is said to have multiplicity mi at Pi if all derivatives of
f of order ≤ mi vanish at Pi.

If ℘1, . . . , ℘s are the prime ideals in R corresponding to the points
P1, . . . , Ps, we will denote by m1P1 + · · ·+msPs the zero-scheme defined
by the ideal ℘m1

1 ∩· · ·∩℘ms
s of all forms of R vanishing at Pi with mutiplicity

≥ mi, i = 1, . . . , s. We will call Z := m1P1 + · · ·+msPs a set of fat points
in Pn.

Let consider the graded ring A := R/(℘m1
1 ∩ · · · ∩ ℘ms

s ), which is the
homogeneous coordinate ring of Z. It is well known that A =

⊕
t≥0 At is

a one-dimensional Cohen-Macaulay graded ring whose multiplicity is

e =
s∑

i=1

(
mi + n− 1

n

)
.

Furthermore, the Hilbert function HA(t) := dimkAt strictly increases until
it reaches the mutiplicity, at which it stabilizes. The regularity index of
A (or of the fat points Z) is defined to be the least integer t such that
HA(t) = e, and we will denote it by r(Z) (or by r(A)).
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The regularity index r(Z) gives upper bounds for the maximum degree
of sygyzy modules of IZ . It enables us to estimate the complexity of Z.
The problem to find an upper bound for the regularity index has been dealt
with by many authors and several different results have been obtained.

For almost all sets X of s points in P2 B. Segre [S] found the upper
bound:

r(Z) ≤ max
{

m1 + m2 − 1,
[1
2

s∑

i=1

mi

]}
if m1 ≥ · · · ≥ ms.

Such a set of points is always in general position. A set X of points in Pn

is said to be in general position if no n+1 points of X lie on a hyperplane
of Pn. For fat points in general position in P2, E. Davis and G. Geramita
[DG] first gave the bound r(Z) ≤ [

sm

2
] for the case m1 = · · · = ms = m.

Then M. V. Catalisano [C1] successfully proved the bound:

r(Z) ≤ max
{

m1 + m2 − 1,
[1
2

s∑

i=1

mi

]}
if m1 ≥ · · · ≥ ms.

She also showed that this bound is attained for fat points lying on an
irreducible conic [C2].

The above result was then generalized to fat points in general position
in Pn by M.V. Catalisano, N.V. Trung and G. Valla, see [CTV]. They
showed that

r(Z) ≤ max
{

m1 + m2 − 1,
[ 1
n

( s∑

i=1

mi + n− 2
)]}

if m1 ≥ · · · ≥ ms.

and that this bound is sharp for fat points lying on a rational normal
curve. We will call it the Segre bound for the regularity index of fat
points in general position. See [G], [TV] for other bounds for fat points
with stronger properties.

For arbitrary fat points in P2, an upper bound for the regularity index
was first given by W. Fulton [Fu]:

r(Z) ≤
s∑

i=1

mi − 1.

It was afterwards extended by E. Davis and A. Geramita [DG] to arbitrary
fat points in Pn. They also showed that the bound is attained if and only
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if the fat points lie on a line. It is clear that this bound is rather large.
Recently G. Fatabbi [Fa] has found the following generalized version of
Segre bound:

Theorem 1. Let P1, . . . , Ps be arbitrary points in P2 and Z = m1P1 +
· · ·+ msPs a set of fat points in P2. Then

r(Z) ≤ max
{

h− 1,
[1
2

s∑

i=1

mi

]}
,

where h := max
{ k∑

j=1

mij |Pi1 , . . . , Pik
are collinear

}
.

It is clear that this bound is better than Fulton’s bound. In her paper
Fatabbi used elaborate geometric methods, and the proof is rather long.
It is impossible to extend her proof for fat points in Pn, n ≥ 3.

We will reprove the above theorem by a simple algebraic proof. This
proof follows the method of [CTV], [TV]. An overview of this method has
been given in [T]. We would like to point out that our proof may be used
to study fat points in Pn, n ≥ 3, because it depends on properties of forms
and ideals in the ring k[X0, X1, X2], which may be generalized to the ring
k[X0, . . . , Xn].

2. Proof of Theorem 1

First we recall two lemmas in [CTV] which have been proved simply
by linear algebra.

The first lemma allows us to use induction to estimate the regularity
index of fat points.

Lemma 1 [CTV, Lemma 1]. Let P1, . . . , Ps, P be distinct points in Pn

and let ℘ be the defining ideal of P . If m1, . . . , ms and a are positive
integers, J := ℘m1

1 ∩ · · · ∩ ℘ms
s , and I := J ∩ ℘a, then

r(R/I) = max
{
a− 1, r(R/J), r(R/(J + ℘a))

}
.

Note that A/(J + ℘a) is an Artinian ring. For an Artinian ring B
we define the regularity index r(B) to be the least integer t such that
HB(t) = 0.

The second lemma gives a simple characterization for r(R/(J + ℘a)).
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Lemma 2 [CTV, Lemma 3]. let Let P1, . . . , Ps be distinct points in Pn

and m1, . . . , ms, a positive integers. Put J := ℘m1
1 ∩ · · · ∩ ℘ms

s and ℘ :=
(X1, . . . , Xn). Then r(R/(J + ℘a)) ≤ t if and only if Xt−i

0 M ∈ J + ℘i+1

for every monomial M of degree i in X1, . . . , Xn, comme i = 0, . . . , a−1.

To estimate r(R/(J + ℘a)) we shall need the following lemma.

Lemma 3. Let P1, . . . , Ps, P be distinct points in P2 and m1, . . . , ms

positive integers. Put J := ℘m1
1 ∩ · · · ∩ ℘ms

s , and

l := max
{ r∑

j=1

mij

∣∣Pi1 , . . . , Pir , P are collinear
}

,

t(J) := max
{

l,
[1
2

( s∑

i=1

mi + 1
)]}

.

Then we can find t = t(J) lines, say L1, . . . , Lt, avoiding P such that
L1 · · ·Lt ∈ J .

Proof. The case t = 1 is trivial because either J = ℘1 or J = ℘1 ∩ ℘2.
If t > 1 we will show that there exists a line L avoiding P such as if we
define

J ′ :=
(

∩
Pi /∈L

℘mi
i

)
∩

(
∩

Pi∈L
℘mi−1

i

)
,

then t(J ′) ≤ t(J)− 1. We distinguish two cases.

Case 1. l ≥
[1
2

( s∑

i=1

mi + 1
)]

. If there exist three lines, say d1, d2, d3,

passing through P such that
∑

Pi∈dj

mi = l, then

[1
2

( s∑

i=1

mi + 1
)]
≥

[3l + 1
2

]
> l,

a contradiction. Therefore, there are at most two lines, say d1, d2, passing
through P such that

∑
Pi∈d1

mi =
∑

Pi∈d2

mi = l. Choose L to be a line

avoiding P passing through a point Pi ∈ d1 and, if d2 exists, a point
Pj ∈ d2.

Case 2. l <
[1
2

( s∑

i=1

mi + 1
)]

. There exists a point Pj /∈ d1. Choose L to

be a line avoiding P and passing through a point Pi ∈ d1 and Pj .
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Clearly, t(J ′) ≤ t(J)− 1 for such a line L. Let t′ = t(J ′). By induction
we may assume that there exist lines, say L1, . . . , Lt′ , avoiding P such
that L1 · · ·Lt′ ∈ J ′. Since L ∈ ∏

Pi∈L

℘i, we get

L1 · · ·Lt′L ∈ J ′
∏

Pi∈L

℘i ⊆ J.

Lemma 4. Let P1, . . . , Ps, P be distinct points in P2, and m1 ≥ · · · ≥
ms ≥ a positive integers. Let ℘ be the defining prime ideal of P and
J := ℘m1

1 ∩ · · · ∩ ℘ms
s . Then

r(R/(J + ℘a)) ≤ max
{

l + a− 1,
[1
2

( s∑

i=1

mi + a
)]}

,

where l := max
{ r∑

j=1

mij

∣∣Pi1 , . . . , Pir , P are collinear
}
.

Proof. Let

t := max
{

l,
[1
2

( s∑

i=1

mi + a
)]}

,

and let us assume P = (1, 0, 0), so that ℘ = (X1, X2).

Case 1. All of P1, . . . , Ps, P lie on a line. In this case, we get t = l =
s∑

i=1

mi. By Lemma 3 we can find l lines, say L1, . . . , Ll, avoiding P such

that L1 · · ·Ll ∈ J . For every j = 1, . . . , l we can write Lj = X0 + Hj for
a suitable linear form Hj ∈ ℘. Then X l

0 ∈ J + ℘. Let i be any integer,
0 ≤ i ≤ a − 1, and let M be a monomial of degree i in X1, X2. Then
X l

0M ∈ J + ℘i+1. This implies X l+a−1−i
0 M ∈ J + ℘i+1. By Lemma 2 we

get
r(R/(J + ℘a)) ≤ l + a− 1.

Case 2. All of P1, . . . , Ps, P don’t lie on a line. In this case we can find
a point Pk, 2 ≤ k ≤ s, such that P, P1, Pk are not collinear. After a
suitable change of coordinates we may further assume that P = (1, 0, 0),
P1 = (0, 1, 0), Pk = (0, 0, 1). Let i be any integer, 0 ≤ i ≤ a − 1, and
let M = Xc1

1 Xc2
2 , c1 + c2 = i, be a monomial of degree i in X1, X2. Set

m′
1 = m1 − i + c1, m′

k = mk − i + c2, m′
i = mi if i 6= 1, k. Let

t′ = max
{

l′,
[1
2

( s∑

i=1

m′
i + 1

)]}
,
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where l′ := max
{ r∑

j=1

m′
ij

∣∣Pi1 , . . . , Pir
, P are collinear

}
. By Lemma 3

we can find t′ lines, say L1, . . . , Lt′ , avoiding P such that L1 · · ·Lt′ ∈
J ′ := ℘

m′
1

1 ∩ · · · ∩ ℘
m′

s
s . Since M = Xc1

1 Xc2
2 ∈ ℘i−c1

1 ∩ ℘i−c2
k , we get

ML1 · · ·Lt′ ∈ J . For every j = 1, . . . , t′ we can write Lj = X0 + Hj for a
suitable linear form Hj ∈ ℘. Then Xt′

0 M ∈ J + ℘i+1.

If t′ = l′, then t′ + i ≤ l′ + a− 1 ≤ l + a− 1. If t′ =
[1
2

( s∑

i=1

m′
i + 1

)]
,

then

t′ + i =
[1
2

( s∑

i=1

mi − 2i + c1 + c2 + 1
)]

+ i ≤
[1
2

( s∑

i=1

mi + a
)]

.

Hence t′ + i ≤ t. Therefore, Xt−i
0 M ∈ J + ℘i+1. By Lemma 2 we get

r(R/(J + ℘a)) ≤ t.

Now we are going to prove Theorem 1.

Proof of Theorem 1. The case s = 1 is trivial. For s > 1 we will assume
that m1 ≥ · · · ≥ ms. Let J := ℘m1

1 ∩· · ·∩℘
ms−1
s−1 , I = J ∩℘ms

s . By Lemma
1

r(R/I) = max
{
ms − 1, r(R/J), r(R/(J + ℘ms

s ))
}
.

By induction we may assume that

r(R/J) ≤ max
{

h′ − 1,
[1
2

s−1∑

i=1

mi

]}
,

where

h′ := max
{ r∑

j=1

m′
ij

∣∣Pi1 , . . . , Pir are collinear, Pij ∈
{
P1, . . . , Ps−1}

}
.

By Lemma 4

r(R/(J + ℘ms
s )) ≤ max

{
l + ms − 1,

[1
2

s∑

i=1

mi

]}
,
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where l := max
{ r∑

j=1

mij

∣∣Pi1 , . . . , Pir
, Ps are collinear

}
. Since h ≤ h′ and

l + ms ≤ h we get

r(R/I) ≤ max
{

ms − 1, h′ − 1, l + ms − 1,
[1
2

s∑

i=1

mi

]}

≤ max
{

h− 1,
[1
2

s∑

i=1

mi

]}
.

Remark. The above proof for Theorem 1 is much shorter than Fatabbi’s
proof. From our proof one can also see that in order to get a similar bound
in Pn, n ≥ 3, one has to find an appropriate bound for r(R/(J + ℘ms

s )).
This is more or less a purely algebraic problem.
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