ON (k + 1)-DIMENSIONAL SPACE-LIKE RULED SURFACE IN THE MINKOWSKI SPACE

MURAT TOSUN*, ISMAIL AYDEMIR** AND NURI KURUOĞLU**

ABSTRACT. In this paper, we introduce the (k+1)-dimensional spacelike ruled surfaces in Minkowski space R_1^n and obtain interesting results related to asymptotic and tangential bundle of these spaces. Further, we give derivatives equations of these space-like ruled surfaces.

1. INTRODUCTION

We shall assume throughout the paper that all manifolds, maps, vector fields, etc... are differentiable of class C^{∞} . Let \mathbb{R}^n be the *n*-dimensional vector space. The following symmetric, bilinear and non-degenerate metric tensor is called the Lorentz metric on \mathbb{R}^n :

$$\langle X, Y \rangle = \sum_{i=1}^{n-1} x_i y_i - x_n y_n, \quad X = (x_1, x_2, \dots, x_n), \quad Y = (y_1, y_2, \dots, y_n).$$

 R^n together with the Lorentz metric is called the *n*-dimensional Minkowski space, denoted by R_1^n . Let M be a surface on the *n*-dimensional Minkowski space R_1^n . If the induced metric on M is positive defined, then M is called the space-like surface. A curve α in R_1^n is space-like curve if $\langle \dot{\alpha}, \dot{\alpha} \rangle > 0$, where $\dot{\alpha}$ is the velocity vector of α . Further, the basic definitions and theorems related to the Minkowski space R_1^n have been found in [3]. The generalized ruled surface in *n*-dimensional Euclidean space has been studied by H. Frank and O. Giering [1], M. Juzza [2] and C. Thas [4], [5].

The aim of this paper is to define the (k + 1)-dimensional generalized ruled surface in Minkowski space R_1^n and to obtain the derivatives equation of this space.

2. Space-like ruled surfaces

Let $\{e_1(t), e_2(t), \ldots, e_k(t)\}$ be an orthonormal vector field, which is defined at each point $\alpha(t)$ of a space-like curve of a *n*-dimensional Minkowski

Received April 23, 1997; in revised form September 29, 1997.

¹⁹⁹¹ Mathematics subject classification. 53C42.

Key words and phrases. Minkowski space, generalized ruled surfaces.

space R_1^n . This system spannes at the point $\alpha(t) \in R_1^n$ a k-dimensional subspace of a tangent space $T_{R_1^n}(\alpha(t))$. This subspace is denoted by $E_k(t)$ and is given by

$$E_k(t) = \{e_1(t), e_2(t), \dots, e_k(t)\}$$

If the subspace $E_k(t)$ moves along the curve α we obtain a (k + 1)dimensional surface in R_1^n . This surface is called a (k + 1)-dimensional generalized space-like ruled surface of the *n*-dimensional Minkowski space R_1^n and is denoted by M. The subspace $E_k(t)$ and the space-like curve α are called the generating space and the base curve respectively. For this ruled surface we can give the following parametrization:

(2.1)
$$\phi(t, u_1, u_2, \dots, u_k) = \alpha(t) + \sum_{i=1}^k u_i e_i(t).$$

If we take the derivate of ϕ with respect to t and u_i , $1 \leq i \leq k$, we get

$$\phi_t = \dot{\alpha}(t) + \sum_{i=1}^k u_i \dot{e}_i(t),$$

$$\phi_{u_i} = e_i(t), \quad 1 \le i \le k.$$

Throughout the paper we assume that the system

(2.2)
$$\left\{ \dot{\alpha}(t) + \sum_{i=1}^{k} u_i \dot{e}_i(t), e_1(t), e_2(t), \dots, e_k(t) \right\}$$

is linear independent and that the subspace $E_k(t)$ is a space-like subspace. The vector subspace

$$Sp\left\{e_1, e_2, \dots, e_k, \dot{e}_1, \dot{e}_2, \dots, \dot{e}_k\right\}$$

is called the asymptotic bundle of M with respect to $E_k(t)$ and it is denoted by A(t). We have

(2.3)
$$\dim (A(t)) = k + m, \quad 0 \le m \le k.$$

There exists an orthonormal basis of A(t) which we denote as follows

$$\Big\{e_1(t), e_2(t), \dots, e_k(t), a_{k+1}(t), a_{k+2}(t), \dots, a_{k+m}(t)\Big\}.$$

Now there are two possibilities for the asymptotic bundle A(t):

- (i) A(t) is a space-like subspace of R_1^n
- (ii) A(t) is a time-like subspace of R_1^n .

Consider a fixed point P of M. If P is given by $P = \phi(t, u_1, u_2, ..., u_k)$ then a bases of the tangent space in P is given by

$$\Big\{\dot{\alpha} + \sum_{i=1}^k u_i \dot{e}_i, e_1, e_2, \dots, e_k\Big\}.$$

We can define any point P of $E_k(t)$ by changing u_i , $1 \le i \le k$ for a fixed value of t. The space

(2.4)
$$Sp\left\{\dot{\alpha}, e_1, e_2, \dots, e_k, \dot{e}_1, \dot{e}_2, \dots, \dot{e}_k\right\}$$

includes the union of all the tangent spaces of $E_k(t)$ at a point P. This space is denoted by T(t) and called the tangential bundle of M in $E_k(t)$. It can be easily seen that

(2.5)
$$k+m \le \dim T(t) \le k+m+1, \quad 0 \le m \le k.$$

In what follow we study separately the properties of the asymptotic bundle A(t) and of the tangential bundle which depend on their dimension.

We assume that the asymptotic bundle is a space-like subspace. If $\dim (T(t)) = k + m$, then $\{e_1, e_2, \ldots, e_k, a_{k+1}, a_{k+2}, \ldots, a_{k+m}\}$ is an orthonormal base of A(t) as well as of T(t). Consequently the tangential bundle is space-like subspace. If the dimension of T(t) is equal to k+m+1 we find that

$$\dot{\alpha} \notin Sp\{e_1, e_2, \dots, e_k, a_{k+1}, a_{k+2}, \dots, a_{k+m}\}.$$

In this case,

$$(2.6) \qquad \{e_1, e_2, \dots, e_k, a_{k+1}, a_{k+2}, \dots, a_{k+m}, a_{k+m+1}\}\$$

is an orthonormal bases of T(t). Since α is a space-like curve we find again that T(t) is a space-like subspace.

Therefore we can give the following result:

Lemma 2.1. If the asymptotic bundle A(t) of M is a space-like subspace, then the tangential bundle T(t) is also a space-like subspace.

Now we assume that the asymptotic bundle A(t) is a time-like subspace. If the dimension of T(t) is equal to k+m, we get $\{e_1, e_2, \ldots, e_k, a_{k+1}, a_{k+2}, \ldots, a_{k+m}\}$ as the tangential bundle of A(t) as well as of T(t). That means that T(t) is a time-like subspace.

If the dimension of T(t) is equal to k+m+1, then we find an orthnormal base of T(t) by

$$\{e_1, e_2, \dots, e_k, a_{k+1}, a_{k+2}, \dots, a_{k+m}, a_{k+m+1}\}$$

And hence T(t) is a time-like subspace and we can give the result below:

Lemma 2.2. If the asymptotic bundle A(t) of M is a time-like subspace, then allways the tangential bundle T(t) is a time-like subspace.

Theorem 2.3. Let M be a (k + 1)-dimensional space-like ruled surface in R_1^n and $E_k(t)$ the generating space of M. We can find an intervall J, such that $t_0 \in J \subset I$ and that then exist a unique orthonormal bases $\{e_1(t_0), e_2(t_0), \ldots, e_k(t_0)\}$ of $E_k(t)$ which satisfies:

$$\langle \dot{\overline{e}}_j, \overline{e}_i \rangle = 0, \quad 1 \le i, j \le k.$$

Proof. Because $E_k(t)$ is a space-like subspace of the Minkowski space R_1^n , we have for the base $\{e_i(t)\}, 1 \leq i \leq k$,

$$\langle e_i, e_j \rangle = \delta_{ij}, \quad 1 \le i, j \le k.$$

Let a_{jh} , $1 \leq j, h \leq k$ be the functions which are defined as solutions of the system of differential equations

(2.7)
$$\dot{a}_{jh} + \sum_{i=1}^{k} a_{ji} \langle \dot{e}_i, e_h \rangle = 0$$

and

$$\overline{e}_j = \sum_{i=1}^k a_{ji} e_i.$$

In this case

$$\dot{\bar{e}}_j = \sum_{i=1}^k \dot{a}_{ji} e_i + \sum_{i=1}^k a_{ji} \dot{e}_i,$$

and therefore we get

$$\left\langle \dot{\bar{e}}_{j}, e_{h} \right\rangle = \sum_{i=1}^{k} \dot{a}_{ji} \left\langle e_{i}, e_{h} \right\rangle + \sum_{i=1}^{k} a_{ji} \left\langle \dot{e}_{i}, e_{h} \right\rangle = \dot{a}_{jh} + \sum_{i=1}^{k} a_{ji} \left\langle \dot{e}_{i}, e_{h} \right\rangle = 0$$
$$\left\langle \dot{\bar{e}}_{j}, \bar{e}_{s} \right\rangle = \left\langle \dot{\bar{e}}_{j}, \sum_{h=1}^{k} a_{sh} e_{h} \right\rangle = \sum_{h=1}^{k} a_{sh} \left\langle \dot{\bar{e}}_{j}, e_{h} \right\rangle = 0.$$

As conclusion we find

$$\langle \overline{e}_j, \overline{e}_i \rangle$$
 = $\langle \dot{\overline{e}}_j, \overline{e}_i \rangle + \langle \overline{e}_j, \dot{\overline{e}}_i \rangle = 0.$

If we compute the values of the solutions of (2.7) for we get an orthonormal matrix $[a_{jh}(t_0)]$ and the base $\{\overline{e}_i(t_0)\}, 1 \leq i \leq k$, is orthogonal too. Therefore, for each point t it will be orthogonal, that is the condition

$$\langle \overline{e}_j, \overline{e}_i \rangle = \left\langle \sum_{i=1}^k a_{ji} e_i, \sum_{t=1}^k a_{st} e_t \right\rangle = \sum_{i=1}^k a_{ji} a_{st} = \delta_{js}$$

is satisfied. This yields an orthonormal base with

$$\left\langle \overline{e}_j, \overline{e}_s \right\rangle = 0, \quad 1 \le i, j \le k.$$

Theorem 2.4. Let M be a (k + 1)-dimensional space-like ruled surface, $E_k(t)$ its generating space and A(t) the asymptotic bundle of M. If A(t)is a time-like subspace, then we can find an open interval J such that for the system $\{e_1(t), e_2(t), \ldots, e_m(t)\}$ of an orthonormal bases of $E_k(t)$ the following relations hold:

$$\begin{split} \left\langle \stackrel{\circ}{e}_{i}(t), \stackrel{\circ}{e}_{j}(t) \right\rangle &= 0, \quad 1 \leq i, j \leq m, \ i \neq j, \\ \left\langle \stackrel{\circ}{e}_{1}(t), \stackrel{\circ}{e}_{1}(t) \right\rangle &> \cdots > \left\langle \stackrel{\circ}{e}_{s-1}(t), \stackrel{\circ}{e}_{s-1}(t) \right\rangle > \left\langle \stackrel{\circ}{e}_{s+1}(t), \stackrel{\circ}{e}_{s+1}(t) \right\rangle \\ &> \cdots > \left\langle \stackrel{\circ}{e}_{m}(t), \stackrel{\circ}{e}_{m}(t) \right\rangle > 0, \\ &\left\langle \stackrel{\circ}{e}_{s}(t), \stackrel{\circ}{e}_{s}(t) \right\rangle < 0, \quad 1 \leq s \leq m, \end{split}$$

where $\overset{\circ}{e}_i(t)$ is defined by:

$$\overset{\circ}{e}_{i}(t) = \dot{e}_{i}(t) - \sum_{i=1}^{m} \left\langle \dot{e}(t), e_{s}(t) \right\rangle e_{s}(t).$$

MURAT TOSUN ET AL.

Proof. Let

(2.8)
$$e(t) = \sum_{i=1}^{m} \gamma_i(t) e_i(t), \quad ||e(t)|| = 1$$

be the constant unit vector and

(2.9)
$$\overset{\circ}{e}(t) = \dot{e}(t) - \sum_{s=1}^{m} \left\langle \dot{e}(t), e_s(t) \right\rangle e_s(t)$$

an arbitrary space-like vector. With (2.8) and (2.9) we find

(2.10)
$$\overset{\circ}{e}_{i}(t) = \dot{e}_{i}(t) - \sum_{s=1}^{m} \left\langle \dot{e}_{i}(t), e_{s}(t) \right\rangle e_{s}(t)$$

and

(2.11)
$$\overset{\circ}{e}(t) = \sum_{i=1}^{m} \gamma_i(t) \overset{\circ}{e}_i(t).$$

From this equations we also get

(2.12)
$$e^{2}(t) = \sum_{i,j=1}^{m} \gamma_{i}(t)\gamma_{j}(t) \langle \overset{\circ}{e}_{i}(t), \overset{\circ}{e}_{j}(t) \rangle, \quad t \in J.$$

Since the A(t) is a time-like subspace we obtain from (2.10) a bases $\{e_1, e_2, \ldots, e_k, \hat{e}_1, \hat{e}_2, \ldots, \hat{e}_m\}$ of the asymptotic bundle A(t). Because A(t) is a time-like subspace, one of the vectors $\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_m$ is a time-like vector. Let $\hat{e}_s, 1 \leq s \leq m$ be these time-like vectors. Every generating space $E_k(t)$ determines in $S_1^{n-1} \subset R_1^n$ a $S^{k-1}(t)$ unit subsphere. Suppose that for all $t \in J$, the functions $\hat{e}^2(t)$ has an extremum on $S^{k-1}(t)$. In this case $\langle \hat{e}_i, \hat{e}_i \rangle = \varepsilon_i, 1 \leq i \leq m, \gamma_i$ and $\varepsilon_i \lambda^2$ and with the help of the Lagrange product we get

(2.13)
$$F(t,\gamma_i) = \mathring{e}^2(t,\gamma_i) - \varepsilon_i \lambda^2 \big[e^2(t,\gamma_i) - 1 \big].$$

If we replace (2.8) and (2.12) in this last equation and take the partial derivate of F according to γ_i , then we get

(2.14)
$$F_{\gamma_i}(t) = \sum_{j=1}^m \gamma_j \langle \overset{\circ}{e}_i, \overset{\circ}{e}_j \rangle - \varepsilon_i \lambda^2 \gamma_i(t) = 0, \quad 1 \le i \le m.$$

For this homogenous linear system of equations, in $\gamma_1, \gamma_2, \ldots, \gamma_m$, we can find at least a value $\lambda^2 \in R$ such that its coefficident matrix is symmetric and singular. Therefore, there exists for all $t \in J$ a nontrivial solution $(\gamma_1, \gamma_2, \ldots, \gamma_m)$. Suppose now that for all $t_0 \in I_m \subset J$ the base vector $e_m(t_0)$ of the generating space $E_k(t)$ is a solution of $e(t) = \sum_{i=1}^m \gamma_i(t)e_i(t)$ and that in this base vector, $\hat{e}^2(t, \gamma_i)$ has an absolute minimum on $S^{k-1}(t_0)$. Hence

$$\gamma_1(t_0) = \dots = \gamma_{m-1}(t_0) = 0, \quad \gamma_m(t_0) = 1,$$

and we get

(2.15)
$$\begin{pmatrix} \overset{\circ}{e}_{1}, \overset{\circ}{e}_{m} \end{pmatrix} = \dots = \langle \overset{\circ}{e}_{s}, \overset{\circ}{e}_{m} \rangle = \dots = \langle \overset{\circ}{e}_{m-1}, \overset{\circ}{e}_{m} \rangle = 0, \\ \langle \overset{\circ}{e}_{m}, \overset{\circ}{e}_{m} \rangle = \lambda_{m}^{2}(t_{0}) = 0.$$

In a similar way we can do this for $e_{m-1}(t_0)$ and find

$$\gamma_1(t_0) = \dots = \gamma_m(t_0) = 0, \quad \gamma_{m-1}(t_0) = 1,$$

and

$$\langle \overset{\circ}{e}_{1}, \overset{\circ}{e}_{m-1} \rangle = \dots = \langle \overset{\circ}{e}_{s}, \overset{\circ}{e}_{m-1} \rangle = \dots = \langle \overset{\circ}{e}_{m}, \overset{\circ}{e}_{m-1} \rangle = 0,$$

$$\langle \overset{\circ}{e}_{m-1}, \overset{\circ}{e}_{m-1} \rangle = \lambda_{m-1}^{2}(t_{0}) > 0.$$

Because $\lambda_m^2(t_0)$ is the absolute minimum on $S^{k-1}(t)$ of $e^{2}(t, \gamma_i)$ in an intervall $I_m \subset J$ of the covering of I, we get

$$\left\langle \overset{\circ}{e}_{m-1}, \overset{\circ}{e}_{m-1} \right\rangle > \left\langle \overset{\circ}{e}_{m}, \overset{\circ}{e}_{m} \right\rangle > 0.$$

The above method can be applied to all space-like base vectors $e_i(t_0)$ such that on a covering of the intervall $J \subset I$ we get

$$\langle \overset{\circ}{e_1}, \overset{\circ}{e_1} \rangle > \dots > \langle \overset{\circ}{e_{s-1}}, \overset{\circ}{e_{s-1}} \rangle > \langle \overset{\circ}{e_{s+1}}, \overset{\circ}{e_{s+1}} \rangle > \dots > \langle \overset{\circ}{e_m}, \overset{\circ}{e_m} \rangle > 0.$$

Now let $e_s(t_0)$ in $I_s \subset J \subset I$ a solution vector of e(t) and in the base vector $e_s(t_0)$ the functions $\hat{e}^2(t, \gamma_i)$ has an absolute minimum on $S^{k-1}(t)$. In this case we find $t_0 \in I_s$ such that

(2.16)
$$\gamma_1(t_0) = \dots = \gamma_{s-1}(t_0) = \gamma_{s+1}(t_0) = \dots = \gamma_m(t_0) = 0,$$

 $\gamma_s(t_0) = 1.$

This last equation and (2.12) yield

$$\langle \overset{\circ}{e}_{1}, \overset{\circ}{e}_{s} \rangle = \dots = \langle \overset{\circ}{e}_{s-1}, \overset{\circ}{e}_{s} \rangle = \dots = \langle \overset{\circ}{e}_{m}, \overset{\circ}{e}_{s} \rangle = 0,$$

 $\langle \overset{\circ}{e}_{s}, \overset{\circ}{e}_{s} \rangle = -\lambda_{s}^{2}(t_{0}) = 0.$

Consequently, we have, in a covering of the interval $J \subset I$,

$$\left< \overset{\circ}{e}_i, \overset{\circ}{e}_j \right> = 0, \quad 1 \le i, j \le k, \quad i \ne j$$

and

$$\begin{split} \left\langle \overset{\circ}{e}_{1}, \overset{\circ}{e}_{1} \right\rangle > \cdots > \left\langle \overset{\circ}{e}_{s-1}, \overset{\circ}{e}_{s-1} \right\rangle > \left\langle \overset{\circ}{e}_{s+1}, \overset{\circ}{e}_{s+1} \right\rangle > \cdots > \left\langle \overset{\circ}{e}_{m}, \overset{\circ}{e}_{m} \right\rangle > 0, \\ \left\langle \overset{\circ}{e}_{s}, \overset{\circ}{e}_{s} \right\rangle < 0. \end{split}$$

This completes the proof.

Theorem 2.5. Let M be a (k + 1)-dimensional space-like ruled surface and A(t) the asymptotic bundle of M. Let A(t) be a space-like subspace and $\{e_1(t), e_2(t), \ldots, e_k(t)\}$ an orthonormal bases of $E_k(t)$. We can find an open interval J such that for the system $\{e_1(t), e_2(t), \ldots, e_m(t)\}$ the following relations hold:

where $\overset{\circ}{e}_i(t)$ is given by

$$\overset{\circ}{e}_{i}(t) = \dot{e}_{i}(t) - \sum_{s=1}^{m} \left\langle \dot{e}(t), e_{s}(t) \right\rangle e_{s}(t).$$

Proof. Let

(2.17)
$$e(t) = \sum_{i=1}^{m} \gamma_i(t) e_i(t), \quad ||e(t)|| = 1$$

be the constant unit vector and

(2.18)
$$\overset{\circ}{e}(t) = \dot{e}(t) - \sum_{s=1}^{m} \langle \dot{e}(t), e_s(t) \rangle e_s(t)$$

an arbitrary space-like vector. With (2.17) and (2.18) we find

(2.19)
$$\overset{\circ}{e}_{i}(t) = \dot{e}_{i}(t) - \sum_{s=1}^{m} \langle \dot{e}_{i}(t), e_{s}(t) \rangle e_{s}(t)$$

and

(2.20)
$$\overset{\circ}{e}(t) = \sum_{i=1}^{m} \gamma_i(t) \overset{\circ}{e}_i(t).$$

From this equations we also get

(2.21)
$$e^{2}(t) = \sum_{i,j=1}^{0} \gamma_{i}(t)\gamma_{j}(t) \langle \overset{\circ}{e}_{i}(t), \overset{\circ}{e}_{j}(t) \rangle, \quad t \in J.$$

Since the A(t) is a space-like subspace we obtain from (2.19) a bases $\{e_1, e_2, \ldots, e_k, \hat{e}_1, \hat{e}_2, \ldots, \hat{e}_m\}$ of A(t), the asymptotic bundle. Each generating space $E_k(t)$ determines a unit subsphere $S^{k-1}(t)$ on $S_1^{n-1} \subset R_1^n$. Let the functions $\hat{e}^2(t)$ have an extremum on $S^{k-1}(t)$ for all $t \in J$. In this case, with γ_i , $1 \leq i \leq m$, and λ^2 and with help of the Lagrange product we obtain the following functions

(2.22)
$$F(t,\gamma_i) = \overset{\circ}{e}{}^2(t,\gamma_i) - \lambda^2 \big[e^2(t,\gamma_i) - 1 \big].$$

If we use (2.17) and (2.21) and take the partial derivate of F according to $\gamma_i, 1 \leq i \leq m$, we get

$$F_{\gamma_i}(t) = \sum_{j=1}^m \gamma_j \left\langle \stackrel{\circ}{e}_i, \stackrel{\circ}{e}_j \right\rangle - \lambda^2 \gamma_i(t) = 0, \quad 1 \le i \le m.$$

Now, following the proof of Theorem 2.4 we can complete the proof.

Because of Theorem 2.5 and Theorem 2.6 we can give the following corollary:

Corolary 2.6. For the asymptotic bundle

$$A(t) = Sp\{\alpha, e_1, e_2, \dots, e_k, e_1, e_2, \dots, e_k\}$$

we can find an orthonormal bases in the following form:

(2.23)
$$\left\{ e_1, e_2, \dots, e_k, \overset{\circ}{e_1}, \overset{\circ}{e_2}, \dots, \overset{\circ}{e_m} \right\}, \quad 0 \le m \le k.$$

Theorem 2.7. Let M be a (k + 1)-dimensional space-like ruled surface in \mathbb{R}_1^n with generating space $E_k(t)$ and asymptotic bundle A(t). We can choose an orthonormal bases $\{e_1(t), e_2(t), \ldots, e_k(t)\}$ of $E_k(t)$ such that the following relations are held:

$$\dot{e}_i = \sum_{j=1}^k \alpha_{ij} e_j + \kappa_i a_{k+1}, \quad 1 \le i \le m,$$

$$\dot{e}_s = \sum_{j=1}^k \alpha_{sj} e_j, \quad m+1 \le s \le k,$$

where $\alpha_{ij} = -\alpha_{ji}$ and $\kappa_1 > \kappa_2 > \cdots > \kappa_m > 0$.

Proof. Because of Corollary 2.6 we can find an orthonormal bases of A(t) in the form:

$$\{e_1, e_2, \dots, e_k, \overset{\circ}{e}_1, \overset{\circ}{e}_2, \dots, \overset{\circ}{e}_m\}, \quad 0 \le m \le k.$$

If we define

(2.24)
$$a_{k+1} = \frac{\overset{\circ}{e_i}}{\|\overset{\circ}{e_i}\|}, \quad 1 \le i \le m,$$

we can find an orthonormal bases of the asymptotic bundle A(t) in the following form:

$$\{e_1, e_2, \ldots, e_k, a_{k+1}, a_{k+2}, \ldots, a_{k+m}, a_{k+m+1}\}.$$

Moreover, we can write

(2.25)
$$\dot{e}_i = \sum_{j=1}^k \alpha_{ij} e_j + \sum_{v=1}^m \sigma_{iv} a_{k+v}, \quad 1 \le i \le m,$$

because $\dot{e}_i \in Sp\{e_1, e_2, ..., e_k, a_{k+1}, a_{k+2}, ..., a_{k+m}\}$. Since $\langle e_i, e_j \rangle = \delta_{ij}$, $1 \leq i, j \leq k$, we get

(2.26)
$$\langle \dot{e}_i, e_j \rangle = -\langle e_i, \dot{e}_j \rangle.$$

Therefore we see that $\alpha_{ij} = -\alpha_{ji}$ using (2.25) and (2.26).

From the relations (2.25) we evalute σ_{iv} . Two cases could be appeared: (i) Let A(t) be a time-like subspace. Then

$$\sigma_{iv} = \varepsilon_v \langle \dot{e}_i, a_{k+v} \rangle, \quad \varepsilon_v = \langle a_{k+v}, a_{k+v} \rangle = \pm 1.$$

If we replace $\dot{e}_i(t)$ by its vector value we get

$$\sigma_{iv} = \varepsilon_v \left\langle \stackrel{\circ}{e}_i, a_{k+v} \right\rangle.$$

Using equation (2.24) in this last equation we obtain

$$\sigma_{iv} = \frac{\varepsilon_v}{\left\| \overset{\circ}{e}_v \right\|} \, \left\langle \overset{\circ}{e}_i , \overset{\circ}{e}_v \right\rangle.$$

Now we denote $\| \stackrel{\circ}{e}_v \|$ by κ_v . From Theorem 2.4 we get $\sigma_{ii} = \kappa_i$ and $\kappa_1 > \kappa_2 > \cdots > \kappa_m > 0.$

Therefore, the equation (2.25) yields

$$\dot{e}_i = \sum_{j=1}^k \alpha_{ij} e_j + \kappa_i a_{k+i}, \quad 1 \le i \le m$$

(ii) Let A(t) be a space-like subspace. In this case,

$$\sigma_{iv} = \varepsilon_v \left\langle \dot{e}_i, a_{k+v} \right\rangle.$$

Therefore, if we follow the method of (i) we obtain $\kappa_1 > \kappa_2 > \cdots > \kappa_m > 0$ and ,

$$\dot{e}_i = \sum_{j=1}^{\kappa} \alpha_{ij} e_j + \kappa_i a_{k+1}, \quad 1 \le i \le m.$$

This proves the first part of the theorem.

In both cases, if A(t) is a time-like subspace or a space-like subspace, we get for $s \neq v$, that $\sigma_{sv} = 0$ if we write $m + 1 \leq s \leq k$ in the equation (2.25). But this is sufficient for

$$\dot{e}_s(t) = \sum_{j=1}^k \alpha_{sj} e_j, \quad m+1 \le s \le k.$$

References

- H. Frank und O. Giering, Verallgemeinerte regelflachen, Math. Zeit. 150 (1976), 261-271.
- M. Juza, Ligne de striction sur une généralisation à plusieurs dimensions d'une surface reglée, Czechosl. Math. J. 12 (1962), 143-250.
- 3. B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York-London, 1983.
- 4. C. Thas, *Minimal monosystems*, Yokohama Math. J. 26 (1978), 157-167.
- C. Thas, Een (lokale) studie van de (m + 1)-dimensionale variëteiten van de ndimensionale euklidische ruimte Rⁿ (n ≥ 2m + 1 en m ≥ 1) beschreven door êêndimensionele familie van m-dimensionele lineaire suimten, Med. Konink. Acad. Wetensch. Lett, Schone Kunst. Belgie, Jaargang, No. 4 (1974), 76-80.

* Sakarya University, Department of Mathematics
Faculty of Arts and Sciences
54100, Sakarya Turkey
** Ondokuz Mayis University, Department of Mathematics
Faculty of Education
Samsun Turkey