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ON (k + 1)-DIMENSIONAL SPACE-LIKE RULED
SURFACE IN THE MINKOWSKI SPACE

MURAT TOSUN∗, ISMAIL AYDEMIR∗∗ AND NURI KURUOǦLU∗∗

Abstract. In this paper, we introduce the (k+1)-dimensional space-
like ruled surfaces in Minkowski space Rn

1 and obtain interesting results
related to asymptotic and tangential bundle of these spaces. Further, we
give derivatives equations of these space-like ruled surfaces.

1. Introduction

We shall assume throughout the paper that all manifolds, maps, vector
fields, etc... are differentiable of class C∞. Let Rn be the n-dimensional
vector space. The following symmetric, bilinear and non-degenerate metric
tensor is called the Lorentz metric on Rn:

〈X, Y 〉 =
n−1∑

i=1

xiyi − xnyn, X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn).

Rn together with the Lorentz metric is called the n-dimensional Minkowski
space, denoted by Rn

1 . Let M be a surface on the n-dimensional Minkowski
space Rn

1 . If the induced metric on M is positive defined, then M is called
the space-like surface. A curve α in Rn

1 is space-like curve if 〈α̇, α̇〉 > 0,
where α̇ is the velocity vector of α. Further, the basic definitions and
theorems related to the Minkowski space Rn

1 have been found in [3]. The
generalized ruled surface in n-dimensional Euclidean space has been stud-
ied by H. Frank and O. Giering [1], M. Juzza [2] and C. Thas [4], [5].

The aim of this paper is to define the (k + 1)-dimensional generalized
ruled surface in Minkowski space Rn

1 and to obtain the derivatives equation
of this space.

2. Space-like ruled surfaces

Let
{
e1(t), e2(t), . . . , ek(t)

}
be an orthonormal vector field, which is de-

fined at each point α(t) of a space-like curve of a n-dimensional Minkowski
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space Rn
1 . This system spannes at the point α(t) ∈ Rn

1 a k-dimensional
subspace of a tangent space TRn

1
(α(t)). This subspace is denoted by Ek(t)

and is given by
Ek(t) =

{
e1(t), e2(t), . . . , ek(t)

}
.

If the subspace Ek(t) moves along the curve α we obtain a (k + 1)-
dimensional surface in Rn

1 . This surface is called a (k + 1)-dimensional
generalized space-like ruled surface of the n-dimensional Minkowski space
Rn

1 and is denoted by M . The subspace Ek(t) and the space-like curve α
are called the generating space and the base curve respectively. For this
ruled surface we can give the following parametrization:

(2.1) φ(t, u1, u2, . . . , uk) = α(t) +
k∑

i=1

uiei(t).

If we take the derivate of φ with respect to t and ui, 1 ≤ i ≤ k, we get

φt = α̇(t) +
k∑

i=1

uiėi(t),

φui = ei(t), 1 ≤ i ≤ k.

Throughout the paper we assume that the system

(2.2)
{

α̇(t) +
k∑

i=1

uiėi(t), e1(t), e2(t), . . . , ek(t)
}

is linear independent and that the subspace Ek(t) is a space-like subspace.
The vector subspace

Sp
{

e1, e2, . . . , ek, ė1, ė2, . . . , ėk

}

is called the asymptotic bundle of M with respect to Ek(t) and it is denoted
by A(t). We have

(2.3) dim (A(t)) = k + m, 0 ≤ m ≤ k.

There exists an orthonormal basis of A(t) which we denote as follows

{
e1(t), e2(t), . . . , ek(t), ak+1(t), ak+2(t), . . . , ak+m(t)

}
.
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Now there are two possibilities for the asymptotic bundle A(t):
(i) A(t) is a space-like subspace of Rn

1

(ii) A(t) is a time-like subspace of Rn
1 .

Consider a fixed point P of M . If P is given by P = φ(t, u1, u2, . . . , uk)
then a bases of the tangent space in P is given by

{
α̇ +

k∑

i=1

uiėi, e1, e2, . . . , ek

}
.

We can define any point P of Ek(t) by changing ui, 1 ≤ i ≤ k for a fixed
value of t. The space

(2.4) Sp
{

α̇, e1, e2, . . . , ek, ė1, ė2, . . . , ėk

}

includes the union of all the tangent spaces of Ek(t) at a point P . This
space is denoted by T (t) and called the tangential bundle of M in Ek(t).
It can be easily seen that

(2.5) k + m ≤ dim T (t) ≤ k + m + 1, 0 ≤ m ≤ k.

In what follow we study seperately the properties of the asymptotic
bundle A(t) and of the tangential bundle which depend on their dimension.

We assume that the asymptotic bundle is a space-like subspace. If
dim (T (t)) = k + m, then

{
e1, e2, . . . , ek, ak+1, ak+2, . . . , ak+m

}
is an or-

thonormal base of A(t) as well as of T (t). Consequently the tangential
bundle is space-like subspace. If the dimension of T (t) is equal to k+m+1
we find that

α̇ 6∈ Sp
{
e1, e2, . . . , ek, ak+1, ak+2, . . . , ak+m

}
.

In this case,

(2.6)
{
e1, e2, . . . , ek, ak+1, ak+2, . . . , ak+m, ak+m+1

}

is an orthonormal bases of T (t). Since α is a space-like curve we find again
that T (t) is a space-like subspace.

Therefore we can give the following result:

Lemma 2.1. If the asymptotic bundle A(t) of M is a space-like subspace,
then the tangential bundle T (t) is also a space-like subspace.
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Now we assume that the asymptotic bundle A(t) is a time-like subspace.
If the dimension of T (t) is equal to k+m, we get

{
e1, e2, . . . , ek, ak+1, ak+2,

. . . , ak+m

}
as the tangential bundle of A(t) as well as of T (t). That means

that T (t) is a time-like subspace.
If the dimension of T (t) is equal to k+m+1, then we find an orthnormal

base of T (t) by

{
e1, e2, . . . , ek, ak+1, ak+2, . . . , ak+m, ak+m+1

}
.

And hence T (t) is a time-like subspace and we can give the result below:

Lemma 2.2. If the asymptotic bundle A(t) of M is a time-like subspace,
then allways the tangential bundle T (t) is a time-like subspace.

Theorem 2.3. Let M be a (k + 1)-dimensional space-like ruled surface
in Rn

1 and Ek(t) the generating space of M . We can find an intervall
J , such that t0 ∈ J ⊂ I and that then exist a unique orthonormal bases{
e1(t0), e2(t0), . . . , ek(t0)

}
of Ek(t) which satisfies:

〈ėj , ei〉 = 0, 1 ≤ i, j ≤ k.

Proof. Because Ek(t) is a space-like subspace of the Minkowski space Rn
1 ,

we have for the base
{
ei(t)

}
, 1 ≤ i ≤ k,

〈ei, ej〉 = δij , 1 ≤ i, j ≤ k.

Let ajh, 1 ≤ j, h ≤ k be the functions which are defined as solutions of
the system of differential equations

(2.7) ȧjh +
k∑

i=1

aji〈ėi, eh〉 = 0

and

ej =
k∑

i=1

ajiei.

In this case

ėj =
k∑

i=1

ȧjiei +
k∑

i=1

ajiėi,
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and therefore we get

〈
ėj , eh

〉
=

k∑

i=1

ȧji〈ei, eh〉+
k∑

i=1

aji

〈
ėi, eh

〉
= ȧjh +

k∑

i=1

aji

〈
ėi, eh

〉
= 0,

〈
ėj , es

〉
=

〈
ėj ,

k∑

h=1

asheh

〉
=

k∑

h=1

ash

〈
ėj , eh

〉
= 0.

As conclusion we find
〈
ej , ei

〉· =
〈
ėj , ei

〉
+

〈
ej , ėi

〉
= 0.

If we compute the values of the solutions of (2.7) for we get an orthonor-
mal matrix

[
ajh(t0)

]
and the base

{
ei(t0)

}
, 1 ≤ i ≤ k, is orthogonal too.

Therefore, for each point t it will be orthogonal, that is the condition

〈ej , ei〉 =
〈 k∑

i=1

ajiei,

k∑
t=1

astet

〉
=

k∑

i=1

ajiast = δjs

is satiesfied. This yields an orthonormal base with
〈
ėj , es

〉
= 0, 1 ≤ i, j ≤ k.

Theorem 2.4. Let M be a (k + 1)-dimensional space-like ruled surface,
Ek(t) its generating space and A(t) the asymptotic bundle of M . If A(t)
is a time-like subspace, then we can find an open interval J such that for
the system

{
e1(t), e2(t), . . . , em(t)

}
of an orthonormal bases of Ek(t) the

following relations hold:

〈◦
ei(t),

◦
ej(t)

〉
= 0, 1 ≤ i, j ≤ m, i 6= j,

〈◦
e1(t),

◦
e1(t)

〉
> · · · > 〈◦

es−1(t),
◦
es−1(t)

〉
>

〈◦
es+1(t),

◦
es+1(t)

〉

> · · · > 〈◦
em(t),

◦
em(t)

〉
> 0,

〈◦
es(t),

◦
es(t)

〉
< 0, 1 ≤ s ≤ m,

where
◦
ei(t) is defined by:

◦
ei(t) = ėi(t)−

m∑

i=1

〈
ė(t), es(t)

〉
es(t).
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Proof. Let

(2.8) e(t) =
m∑

i=1

γi(t)ei(t), ‖e(t)‖ = 1

be the constant unit vector and

(2.9)
◦
e(t) = ė(t)−

m∑
s=1

〈
ė(t), es(t)

〉
es(t)

an arbitrary space-like vector. With (2.8) and (2.9) we find

(2.10)
◦
ei(t) = ėi(t)−

m∑
s=1

〈
ėi(t), es(t)

〉
es(t)

and

(2.11)
◦
e(t) =

m∑

i=1

γi(t)
◦
ei(t).

From this equations we also get

(2.12) e2(t) =
m∑

i,j=1

γi(t)γj(t)
〈◦
ei(t),

◦
ej(t)

〉
, t ∈ J.

Since the A(t) is a time-like subspace we obtain from (2.10) a bases{
e1, e2, . . . , ek,

◦
e1,

◦
e2, . . . ,

◦
em

}
of the asymptotic bundle A(t). Because

A(t) is a time-like subspace, one of the vectors
◦
e1,

◦
e2, . . . ,

◦
em is a time-like

vector. Let
◦
es, 1 ≤ s ≤ m be these time-like vectors. Every generating

space Ek(t) determines in Sn−1
1 ⊂ Rn

1 a Sk−1(t) unit subsphere. Suppose
that for all t ∈ J , the functions

◦
e2(t) has an extremum on Sk−1(t). In

this case
〈◦
ei,

◦
ei

〉
= εi, 1 ≤ i ≤ m, γi and εiλ

2 and with the help of the
Lagrange product we get

(2.13) F (t, γi) =
◦
e2(t, γi)− εiλ

2
[
e2(t, γi)− 1

]
.

If we replace (2.8) and (2.12) in this last equation and take the partial
derivate of F according to γi, then we get

(2.14) Fγi(t) =
m∑

j=1

γj

〈◦
ei,

◦
ej

〉− εiλ
2γi(t) = 0, 1 ≤ i ≤ m.
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For this homogenous linear system of equations, in γ1, γ2, . . . , γm, we can
find at least a value λ2 ∈ R such that its coefficident matrix is sym-
metric and singular. Therefore, there exists for all t ∈ J a nontriv-
ial solution (γ1, γ2, . . . , γm). Suppose now that for all t0 ∈ Im ⊂ J
the base vector em(t0) of the generating space Ek(t) is a solution of

e(t) =
m∑

i=1

γi(t)ei(t) and that in this base vector,
◦
e2(t, γi) has an abso-

lute minimum on Sk−1(t0). Hence

γ1(t0) = · · · = γm−1(t0) = 0, γm(t0) = 1,

and we get

〈◦
e1,

◦
em

〉
= · · · = 〈◦

es,
◦
em

〉
= · · · = 〈◦

em−1,
◦
em

〉
= 0,

(2.15) 〈◦
em,

◦
em

〉
= λ2

m(t0) = 0.

In a similar way we can do this for em−1(t0) and find

γ1(t0) = · · · = γm(t0) = 0, γm−1(t0) = 1,

and 〈◦
e1,

◦
em−1

〉
= · · · = 〈◦

es,
◦
em−1

〉
= · · · = 〈◦

em,
◦
em−1

〉
= 0,

〈◦
em−1,

◦
em−1

〉
= λ2

m−1(t0) > 0.

Because λ2
m(t0) is the absolute minimum on Sk−1(t) of

◦
e2(t, γi) in an

intervall Im ⊂ J of the covering of I, we get

〈◦
em−1,

◦
em−1

〉
>

〈◦
em,

◦
em

〉
> 0.

The above method can be applied to all space-like base vectors ei(t0) such
that on a covering of the intervall J ⊂ I we get

〈◦
e1,

◦
e1

〉
> · · · > 〈◦

es−1,
◦
es−1

〉
>

〈◦
es+1,

◦
es+1

〉
> · · · > 〈◦

em,
◦
em

〉
> 0.

Now let es(t0) in Is ⊂ J ⊂ I a solution vector of e(t) and in the base
vector es(t0) the functions

◦
e2(t, γi) has an absolute minimum on Sk−1(t).

In this case we find t0 ∈ Is such that

(2.16) γ1(t0) = · · · = γs−1(t0) = γs+1(t0) = · · · = γm(t0) = 0,

γs(t0) = 1.
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This last equation and (2.12) yield

〈◦
e1,

◦
es

〉
= · · · = 〈◦

es−1,
◦
es

〉
= · · · = 〈◦

em,
◦
es

〉
= 0,

〈◦
es,

◦
es

〉
= −λ2

s(t0) = 0.

Consequently, we have, in a covering of the interval J ⊂ I,

〈◦
ei,

◦
ej

〉
= 0, 1 ≤ i, j ≤ k, i 6= j

and

〈◦
e1,

◦
e1

〉
> · · · > 〈◦

es−1,
◦
es−1

〉
>

〈◦
es+1,

◦
es+1

〉
> · · · > 〈◦

em,
◦
em

〉
> 0,

〈◦
es,

◦
es

〉
< 0.

This completes the proof.

Theorem 2.5. Let M be a (k + 1)-dimensional space-like ruled surface
and A(t) the asymptotic bundle of M . Let A(t) be a space-like subspace
and

{
e1(t), e2(t), . . . , ek(t)

}
an orthonormal bases of Ek(t). We can find

an open interval J such that for the system
{
e1(t), e2(t), . . . , em(t)

}
the

following relations hold:

〈◦
ei(t),

◦
ej(t)

〉
= 0, 1 ≤ i, j ≤ m, i 6= j,

〈◦
e1(t),

◦
e1(t)

〉
>

〈◦
e2(t),

◦
e2(t)

〉
> · · · > 〈◦

em(t),
◦
em(t)

〉
> 0,

where
◦
ei(t) is given by

◦
ei(t) = ėi(t)−

m∑
s=1

〈
ė(t), es(t)

〉
es(t).

Proof. Let

(2.17) e(t) =
m∑

i=1

γi(t)ei(t), ‖e(t)‖ = 1
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be the constant unit vector and

(2.18)
◦
e(t) = ė(t)−

m∑
s=1

〈
ė(t), es(t)

〉
es(t)

an arbitrary space-like vector. With (2.17) and (2.18) we find

(2.19)
◦
ei(t) = ėi(t)−

m∑
s=1

〈
ėi(t), es(t)

〉
es(t)

and

(2.20)
◦
e(t) =

m∑

i=1

γi(t)
◦
ei(t).

From this equations we also get

(2.21) e2(t) =
0 m∑

i,j=1

γi(t)γj(t)
〈◦
ei(t),

◦
ej(t)

〉
, t ∈ J.

Since the A(t) is a space-like subspace we obtain from (2.19) a bases{
e1, e2, . . . , ek,

◦
e1,

◦
e2, . . . ,

◦
em

}
of A(t), the asymptotic bundle. Each gen-

erating space Ek(t) determines a unit subsphere Sk−1(t) on Sn−1
1 ⊂ Rn

1 .
Let the functions

◦
e2(t) have an extremum on Sk−1(t) for all t ∈ J . In this

case, with γi, 1 ≤ i ≤ m, and λ2 and with help of the Lagrange product
we obtain the following functions

(2.22) F (t, γi) =
◦
e2(t, γi)− λ2

[
e2(t, γi)− 1

]
.

If we use (2.17) and (2.21) and take the partial derivate of F according to
γi, 1 ≤ i ≤ m, we get

Fγi(t) =
m∑

j=1

γj

〈◦
ei,

◦
ej

〉− λ2γi(t) = 0, 1 ≤ i ≤ m.

Now, following the proof of Theorem 2.4 we can complete the proof.

Because of Theorem 2.5 and Theorem 2.6 we can give the following
corollary:



72 MURAT TOSUN ET AL.

Corolary 2.6. For the asymptotic bundle

A(t) = Sp
{
α, e1, e2, . . . , ek, e1, e2, . . . , ek

}

we can find an orthonormal bases in the following form:

(2.23)
{

e1, e2, . . . , ek,
◦
e1,

◦
e2, . . . ,

◦
em

}
, 0 ≤ m ≤ k.

Theorem 2.7. Let M be a (k + 1)-dimensional space-like ruled surface
in Rn

1 with generating space Ek(t) and asymptotic bundle A(t). We can
choose an orthonormal bases

{
e1(t), e2(t), . . . , ek(t)

}
of Ek(t) such that

the following relations are held:

ėi =
k∑

j=1

αijej + κiak+1, 1 ≤ i ≤ m,

ės =
k∑

j=1

αsjej , m + 1 ≤ s ≤ k,

where αij = −αji and κ1 > κ2 > · · · > κm > 0.

Proof. Because of Corollary 2.6 we can find an orthonormal bases of A(t)
in the form:

{
e1, e2, . . . , ek,

◦
e1,

◦
e2, . . . ,

◦
em

}
, 0 ≤ m ≤ k.

If we define

(2.24) ak+1 =
◦
ei

‖◦ei‖
, 1 ≤ i ≤ m,

we can find an orthonormal bases of the asymptotic bundle A(t) in the
following form:

{
e1, e2, . . . , ek, ak+1, ak+2, . . . , ak+m, ak+m+1

}
.

Moreover, we can write

(2.25) ėi =
k∑

j=1

αijej +
m∑

v=1

σivak+v, 1 ≤ i ≤ m,
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because ėi ∈ Sp
{
e1, e2, . . . , ek, ak+1, ak+2, . . . , ak+m

}
. Since 〈ei, ej〉 = δij ,

1 ≤ i, j ≤ k, we get

(2.26)
〈
ėi, ej

〉
= −〈

ei, ėj

〉
.

Therefore we see that αij = −αji using (2.25) and (2.26).
From the relations (2.25) we evalute σiv. Two cases could be appeared:
(i) Let A(t) be a time-like subspace. Then

σiv = εv

〈
ėi, ak+v

〉
, εv = 〈ak+v, ak+v〉 = ±1.

If we replace ėi(t) by its vector value we get

σiv = εv

〈◦
ei, ak+v

〉
.

Using equation (2.24) in this last equation we obtain

σiv =
εv∥∥◦ev

∥∥
〈◦
ei,

◦
ev

〉
.

Now we denote
∥∥◦ev

∥∥ by κv. From Theorem 2.4 we get σii = κi and
κ1 > κ2 > · · · > κm > 0.
Therefore, the equation (2.25) yields

ėi =
k∑

j=1

αijej + κiak+i, 1 ≤ i ≤ m

(ii) Let A(t) be a space-like subspace. In this case,

σiv = εv

〈
ėi, ak+v

〉
.

Therefore, if we follow the method of (i) we obtain κ1 > κ2 > · · · > κm > 0
and

ėi =
k∑

j=1

αijej + κiak+1, 1 ≤ i ≤ m.

This proves the first part of the theorem.
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In both cases, if A(t) is a time-like subspace or a space-like subspace,
we get for s 6= v, that σsv = 0 if we write m + 1 ≤ s ≤ k in the equation
(2.25). But this is sufficient for

ės(t) =
k∑

j=1

αsjej , m + 1 ≤ s ≤ k.
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dimensionele familie van m-dimensionele lineaire suimten, Med. Konink. Acad.
Wetensch. Lett, Schone Kunst. Belgie, Jaargang, No. 4 (1974), 76-80.

* Sakarya University, Department of Mathematics
Faculty of Arts and Sciences
54100, Sakarya Turkey
** Ondokuz Mayis University, Department of Mathematics
Faculty of Education
Samsun Turkey


