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ON (k + 1)-DIMENSIONAL SPACE-LIKE RULED
SURFACE IN THE MINKOWSKI SPACE

MURAT TOSUN*, ISMAIL AYDEMIR** AND NURI KURUOGLU™**

ABSTRACT. In this paper, we introduce the (k+1)-dimensional space-
like ruled surfaces in Minkowski space R} and obtain interesting results
related to asymptotic and tangential bundle of these spaces. Further, we
give derivatives equations of these space-like ruled surfaces.

1. INTRODUCTION

We shall assume throughout the paper that all manifolds, maps, vector
fields, etc... are differentiable of class C°°. Let R™ be the n-dimensional
vector space. The following symmetric, bilinear and non-degenerate metric
tensor is called the Lorentz metric on R™:

n—1
(X,Y) =D @i — T, X = (@1,22,..,2n), Y = 1,02, Un)-
=1

R"™ together with the Lorentz metric is called the n-dimensional Minkowski
space, denoted by R}. Let M be a surface on the n-dimensional Minkowski
space RT. If the induced metric on M is positive defined, then M is called
the space-like surface. A curve a in R} is space-like curve if (&, &) > 0,
where ¢ is the velocity vector of a. Further, the basic definitions and
theorems related to the Minkowski space R have been found in [3]. The
generalized ruled surface in n-dimensional Euclidean space has been stud-
ied by H. Frank and O. Giering [1], M. Juzza [2] and C. Thas [4], [5].

The aim of this paper is to define the (k + 1)-dimensional generalized
ruled surface in Minkowski space R} and to obtain the derivatives equation
of this space.

2. SPACE-LIKE RULED SURFACES

Let {e1(t),e2(t), ..., ex(t)} be an orthonormal vector field, which is de-
fined at each point a(t) of a space-like curve of a n-dimensional Minkowski
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space R}. This system spannes at the point «(t) € R} a k-dimensional
subspace of a tangent space Try (a(t)). This subspace is denoted by Ej(t)

and is given by
Ei(t) = {e1(t), ea(t), ..., ex(t)}.

If the subspace Eji(t) moves along the curve a we obtain a (k + 1)-
dimensional surface in R}. This surface is called a (k + 1)-dimensional
generalized space-like ruled surface of the n-dimensional Minkowski space
R} and is denoted by M. The subspace Ej(t) and the space-like curve «
are called the generating space and the base curve respectively. For this
ruled surface we can give the following parametrization:

k
(2.1) Ot ur, uz, . .., uk) :a(t)+Zuiei(t).

If we take the derivate of ¢ with respect to t and u;, 1 <1 < k, we get

k

b= a(t) + ) uiéq(t),
i=1

Ou; = €i(t), 1<i<k.

Throughout the paper we assume that the system

(2.2) {d(t) Y wida(t),ex(t).ea(t). .. ,ek(t)}

is linear independent and that the subspace Ej(t) is a space-like subspace.
The vector subspace

Sp{el,eg,...,€k,é1,é2,...,ék}

is called the asymptotic bundle of M with respect to Fy(t) and it is denoted
by A(t). We have

(2.3) dim (A(t) =k+m, 0<m<k.

There exists an orthonormal basis of A(¢) which we denote as follows

{el(t),eg(t), coven (D), apn (8), anpa(t), ... ,ak+m(t)}.
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Now there are two possibilities for the asymptotic bundle A(t):

(i) A(t) is a space-like subspace of R}

(ii) A(t) is a time-like subspace of RY.

Consider a fixed point P of M. If P is given by P = ¢(t, u,us, ..., ux)
then a bases of the tangent space in P is given by

k
{CY"— E uiéi7elae27"'7ek}-

=1

We can define any point P of Ey(t) by changing u;, 1 <1i < k for a fixed
value of t. The space

(2.4) Sp{d,el,eg,...,ek,él,ég,...,ék}

includes the union of all the tangent spaces of Fj(t) at a point P. This
space is denoted by T'(¢) and called the tangential bundle of M in Ej(t).
It can be easily seen that

(2.5) E+m<dmT(t) <k+m+1, 0<m<k.

In what follow we study seperately the properties of the asymptotic
bundle A(t) and of the tangential bundle which depend on their dimension.

We assume that the asymptotic bundle is a space-like subspace. If
dim (T'(t)) = k + m, then {61, €2y v ey Chy Qft1y At 2y - - - ,aker} is an or-
thonormal base of A(t) as well as of T'(t). Consequently the tangential
bundle is space-like subspace. If the dimension of T'(¢) is equal to k+m+1
we find that

& ¢ SP{€1,€2; ey Ry Akt 1, Q425 - - - ,ak:+m}.
In this case,
(2.6) {61, €2,y Chy k41, Ak42; - - -, Aktms ak+m+1}

is an orthonormal bases of T'(¢). Since « is a space-like curve we find again
that T'(t) is a space-like subspace.
Therefore we can give the following result:

Lemma 2.1. If the asymptotic bundle A(t) of M is a space-like subspace,
then the tangential bundle T'(t) is also a space-like subspace.
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Now we assume that the asymptotic bundle A(t) is a time-like subspace.
If the dimension of T'() is equal to k+m, we get {el, €2y vy Chy Ukt1, ki,
..., k4m } as the tangential bundle of A(t) as well as of T'(¢). That means
that T'(t) is a time-like subspace.

If the dimension of T'(¢) is equal to k+m+1, then we find an orthnormal
base of T'(t) by

{613 €2, €Ck; k41, k425 - -+, Ak+m, ak+m+1}-
And hence T'(t) is a time-like subspace and we can give the result below:

Lemma 2.2. If the asymptotic bundle A(t) of M is a time-like subspace,
then allways the tangential bundle T'(t) is a time-like subspace.

Theorem 2.3. Let M be a (k + 1)-dimensional space-like ruled surface
in R} and Ey(t) the generating space of M. We can find an intervall
J, such that to € J C I and that then exist a unique orthonormal bases

{e1(to), e2(to), ... ex(to)} of Ex(t) which satisfies:
(€j,&)=0, 1<i,j<k.

Proof. Because Fy(t) is a space-like subspace of the Minkowski space RY,
we have for the base {ei(t)}, 1<i<k,

(e ej) = 0ij, 1<i,j <k

Let ajn, 1 < j,h < k be the functions which are defined as solutions of
the system of differential equations

k
(27) ajh + Z (Iji<éi, €h> =0
i=1
and
k
éj = Zajiei.
i=1

In this case

k k
e; = E dj¢€i+ g ajiéi,
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and therefore we get

k k k
(€j,en) = Z ajifei, en) + Z aji{€i,en) = ajn + Zaji<éia en) =0,
i=1 i=1 i=1

k k
<éj7és> = <éj, Zasheh> = Zash<éj7€h> =0.
h=1 h=1
As conclusion we find
(ej,&) = (¢j,e) + (g,&) = 0.

If we compute the values of the solutions of (2.7) for we get an orthonor-
mal matrix [aj;(to)] and the base {€;(to)}, 1 < i < k, is orthogonal too.
Therefore, for each point ¢ it will be orthogonal, that is the condition

k k k
<Ejvé’i> = <Zajiez'; Z ast€t> = Zajiast = 5js
=1 t=1 i=1
is satiesfied. This yields an orthonormal base with
(€,€s) =0, 1<i,j<k

Theorem 2.4. Let M be a (k + 1)-dimensional space-like ruled surface,
Ey(t) its generating space and A(t) the asymptotic bundle of M. If A(t)
18 a time-like subspace, then we can find an open interval J such that for
the system {e1(t),ea(t),...,em(t)} of an orthonormal bases of Ex(t) the
following relations hold:

[e] [e]

(e;(t),e;(t)) =0, 1<i,j<m, i#]j

[e] (e}

(er(t),er(t)) > -+ > (es—1(t), es—1(t)) > (€st1(t), esi1(t))
> > (e (t), em(t)) >0,
(es(t),es(t)) <0, 1<s<m,
where ¢;(t) is defined by:

ei(t) = é;(t) — Z (é(t), es(t))es(t).

=1
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Proof. Let
(2.8) e(t) = Z%(b‘)ei(t), le@)[] =1

be the constant unit vector and

m

(2.9) e(t) = é(t) = > (é(t), es(t))es(t)

s=1

an arbitrary space-like vector. With (2.8) and (2.9) we find

o

(2.10) eit) = éi(t) — Y (€i(t), es(t))es(t)

and
.11 B0 = > (0o,
i=1
From this equations we also get
(2.12) e%(t) = i Yi(t)v; () ei(t), e;(t)), teJ.
i,j=1

Since the A(t) is a time-like subspace we obtain from (2.10) a bases

{el, €2,y Cly€1,€2, ... ,gm} of the asymptotic bundle A(t). Because
A(t) is a time-like subspace, one of the vectors 21, 82, e ,gm is a time-like

vector. Let €5, 1 < s < m be these time-like vectors. Every generating
space Ej(t) determines in S?~" C R? a S¥~1(t) unit subsphere. Suppose

that for all ¢ € J, the functions €2(¢) has an extremum on S*~1(¢). In
this case <g¢,g¢> =¢g;, 1 <i<m, and ;A% and with the help of the
Lagrange product we get

(2.13) F(t, ) = €2 (t,v) — e\ [e2(t,v:) — 1].

If we replace (2.8) and (2.12) in this last equation and take the partial
derivate of F' according to v;, then we get

(214) F%. (t) = Z’}/j<gi,8j> - 61')\2’}/2'@) = 0, 1 S 1 S m.
j=1
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For this homogenous linear system of equations, in v1,7v2, ..., Ym, We can
find at least a value A\ € R such that its coefficident matrix is sym-
metric and singular. Therefore, there exists for all ¢ € J a nontriv-
ial solution (v1,72,...,7%m). Suppose now that for all ¢, € I,, C J
the base vector e,,(tp) of the generating space Ei(t) is a solution of

e(t) = 3 ~(t)e;(t) and that in this base vector, e2(t,;) has an abso-
i=1
lute minimum on S*~1(¢y). Hence
M(to) = =vm-1(to) =0, ym(to) =1,
and we get

<glagm> == <2578m> == <8m7172m> =0,

[e] [e]

(€m,em) = A2 (to) = 0.

(2.15)

In a similar way we can do this for e,,_1(¢9) and find

Y1(to) =+ =vm(to) =0, ym-1(to) =1,

and o o o o o o
<el7€m—1> == <€576m—1> == <6m;em—1> = 07

<2m—1,gm—1> = )\371—1@0) > 0.

Because A2, (fg) is the absolute minimum on S*~1(t) of €2(t,v;) in an
intervall I,,, C J of the covering of I, we get

<‘gm—17gm—1> > <gm72m> > 0.

The above method can be applied to all space-like base vectors e;(t) such
that on a covering of the intervall J C I we get

<21,g1> > > <gs—17gs—1> > <gs+1vgs+1> > > <gm7gm> > 0.

Now let es(tg) in Iy C J C I a solution vector of e(t) and in the base

vector e, (to) the functions €2(¢,7;) has an absolute minimum on S¥~1(¢).
In this case we find tg € I, such that

(216) ’71(150) == 'Ys—l(tO) = ’75+1(t0) == IYM(tO) =0,

’)/s(to) =1.
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This last equation and (2.12) yield
<21;28> == <gs—17gs> == <gmvgs> - 07
(es,e5) = —A2(to) = 0.
Consequently, we have, in a covering of the interval J C I,
o o) . . . .
<eiaej>:07 1§Z7]§k7 27&]
and
(e 1) > > (e 1,e5-1) > (g1, €501) > - > (€myem) > 0,
(es,65) < 0.
This completes the proof.

Theorem 2.5. Let M be a (k + 1)-dimensional space-like ruled surface
and A(t) the asymptotic bundle of M. Let A(t) be a space-like subspace
and {e1(t), ea(t), ..., ex(t)} an orthonormal bases of Ey(t). We can find
an open interval J such that for the system {ei(t),e2(t),...,em(t)} the
following relations hold:

o

<6Z(t>7gj(t)>:()7 1<i4,5 <m, Z#J;
{er(t),er(t)) > (ea(t),ea(t)) > -+ > (em(t),em(t)) >0,

where ¢;(t) is given by

Proof. Let

(2.17) e(t) = Z%(t)ei(t% le(®)]] =1
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be the constant unit vector and

m

(2.18) 1) = é(t) = D0 (el eal))es(t)

s=1

an arbitrary space-like vector. With (2.17) and (2.18) we find

(2.19) eit) = ¢éi(t) — > (€i(t), es(t))es(t)
and
(2.20) e(t) = Z vi(t)ei(t).

From this equations we also get
0m

(2.21) (1) = Y wmt)y ) et), es(t)), ted.
i,j=1

Since the A(t) is a space-like subspace we obtain from (2.19) a bases
{el, €2,y Cly€1,00, ... ,gm} of A(t), the asymptotic bundle. Each gen-
erating space Ej(t) determines a unit subsphere S¥~1(¢) on S7~' c RY.
Let the functions e2(¢) have an extremum on S¥~1(¢) for all t € J. In this
case, with 7;, 1 < i < m, and A\? and with help of the Lagrange product
we obtain the following functions

(222) F(t771) = 22(t771> - )‘2 [62(t771') - 1] :

If we use (2.17) and (2.21) and take the partial derivate of F' according to
Yi, 1 <1< m, we get

Fo(t) = v(ene) =A%) =0, 1<i<m.
j=1
Now, following the proof of Theorem 2.4 we can complete the proof.

Because of Theorem 2.5 and Theorem 2.6 we can give the following
corollary:
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Corolary 2.6. For the asymptotic bundle
A(t) = Sp{a,el,eg, e €k, €1,E9, ... ,ek}

we can find an orthonormal bases in the following form:

(223) {61,62,...,ek,21,gg,...,ém}, Ogmgk

Theorem 2.7. Let M be a (k + 1)-dimensional space-like ruled surface
in R} with generating space Ey(t) and asymptotic bundle A(t). We can
choose an orthonormal bases {e1(t),ea(t),...,ex(t)} of Ex(t) such that
the following relations are held:

k
€; = Za’ijej + Kiagy1, 1 <1<m,
j=1
k
és:Zasjej, m+1<s<k,
j=1
where o;; = —ay; and kK1 > Ko > - > Ky, > 0.

Proof. Because of Corollary 2.6 we can find an orthonormal bases of A(t)
in the form:

{61,62,...,ek,21,22,...,gm}, Ogmgk
If we define
o
6.
(2.24) g1 = ”01” , 1<i<m,
€;

we can find an orthonormal bases of the asymptotic bundle A(¢) in the
following form:

{61, €o,... ,ek,ak+1,ak+2, RN ,ak+m,ak+m+1}.

Moreover, we can write

k m
(225) 61 = Z Q€4 + ZO’I'UCL]H_U, 1 S 1 S m,
j=1 v=1
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because ¢; € Sp{el,eg, e €l Aty At 2y - - - ,ak+m}. Since (e;, ;) = dij,
1<4,5 <k, we get

(2.26) (€ires) = —(ei éj)-

Therefore we see that o;; = —a;; using (2.25) and (2.26).
From the relations (2.25) we evalute o;,. Two cases could be appeared:
(i) Let A(¢) be a time-like subspace. Then

Oiv = 5v<éi7ak‘+v>a v = (Ahtv, Qo) = £1.

If we replace ¢é;(t) by its vector value we get

Oiv = €’U<g’ia ak+v>-

Using equation (2.24) in this last equation we obtain

Oiv = i—v <gi>gv>'
leo|

Now we denote ng” by k,. From Theorem 2.4 we get o;; = k; and
K1 > Ko > > Ky > 0.
Therefore, the equation (2.25) yields

k
€ = E ajjej + Kiag4i, 1<1<m
=1

(ii) Let A(t) be a space-like subspace. In this case,
O = €v<éia ak+v>-

Therefore, if we follow the method of (i) we obtain k1 > kg >+« > Ky, > 0

and
k

éz‘ = E Qi €5 + RiQk+1, 1 S 1 S m.
J=1

This proves the first part of the theorem.
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In both cases, if A(t) is a time-like subspace or a space-like subspace,
we get for s # v, that o, = 0 if we write m 4+ 1 < s < k in the equation
(2.25). But this is sufficient for

k
és(t) = Zasjej, m+1<s<k.
j=1
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