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ON THE REGULARITY OF RANDOM MAPPINGS

DANG HUNG THANG

Abstract. In this paper, some regular properties of random mappings
such as the stochastical continuity, the sample continuity and the mea-
surability are investigated. The relation between the regularity and the
problem of substituting the argument of a random mapping by a random
variable is discussed.

1. Introduction

Let (Ω,F , P ) be a complete probability space, (X, d) a separable metric
space and Y a separable Banach space. By a random mapping Φ from
X into Y we mean a rule that assigns to each element x ∈ X a unique
Y -valued random variable ξ. We call ξ the image of Φ under x and write
ξ = Φx.

It is clear that the notion of random mappings is a natural generaliza-
tion of the well-known notion of stochastic processes. Random operators
and stochastic integrals which have been studied by many authors (see [1],
[2], [3], [5]) can be regarded as special cases of random mappings.

Mathematically, we can speak of a random mapping Φ from X into
Y as a mapping Φ : X × Ω → Y such that for each x ∈ X the mapping
Φ(x, .) from (Ω,F) into (Y,B(Y )) is measurable. If u is a X-valued random
variable, then the mapping Φu from (Ω,F) into (Y,B(Y )) defined by

Φu(ω) = Φ(u(ω), ω)

is called a substitution of the argument by the random variable u. In
general, Φu need not to be measurable (i.e. it may not a Y -valued r.v.).
If Φu is measurable, we say that u is Φ-admissible.

In this paper we are concerned with several regular properties of ran-
dom mappings such as the stochastical continuity, the sample continuity
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and the measurability and determine conditions for a X-valued random
variable to be Φ-admissible. Many other results on the sample continuity
of random mappings were presented in [4], [6].

2. Regularity of random mappings

Definition 2.1. (i) A mapping Φ : X × Ω → Y is called a random
mapping from X into Y if for each x ∈ X the mapping Φx from (Ω,F)
into (Y,B(Y )) defined by

Φx(ω) = Φ(x, ω)

is measurable.
(ii) For each ω ∈ Ω the mapping Φω : x → Φ(x, ω) is called a sample path
of Φ.
(iii) Two random mappings Φ and Ψ from X into Y are said to be equiv-
alent if

P{Φx = Ψx} = 1, ∀x ∈ X.

In this case we say that Ψ is a modification of Φ.
We now give several definitions of regularity for a random mappings.

Definition 2.2. (i) Φ is measurable if the mapping Φ : X × Ω → Y is
measurable w.r.t. the product σ-algebra B(X)⊗F .
(ii) Φ is stochastically continuous at x0 ∈ X, if ∀t > 0, ∀ε > 0, there exists
δ > 0 such that

P
{
‖Φx− Φx0‖ > t

}
≤ ε,

whenever d(x, x0) < δ. If Φ is stochastically continuous at every point of
X, then we say that Φ is stochastically continuous in X.
(iii) Φ is stochastically uniformly continuous in X, if ∀t > 0, ∀ε > 0, there
exists δ > 0 such that

P
{
‖Φx1 − Φx2‖ ≥ t

}
≤ ε,

whenever d(x1, x2) < δ.
(iv) Φ is continuous if for almost all ω ∈ Ω, the sample path Φω is a
continuous mapping from X into Y .
(v) Φ is sample-continuous if Φ has a continuous modification.

It is plain that if Φ is sample continuous, then it is stochastically con-
tinuous in X.

By a standard argument it is easy to prove the following.
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Proposition 2.3. A stochastically continuous random mapping Φ on a
compact space X is uniformly stochastically continuous.

A random mapping Φ is called simple if there exists a measurable par-
tition

(
Ai

)∞
i=1

of X and a sequence (ξi) of Y -valued r.v.’s such that

Φx = ξi

if x ∈ Ai.

Proposition 2.4. A simple random mapping Φ is measurable.

Proof. For each B ∈ B(Y ) we have

{
(x, ω) : Φ(x, ω) ∈ B

}
=

∞⋃

i=1

Ai ×
{

ω : ξi(ω) ∈ B
}
∈ B(X)×F

Theorem 2.5. A continuous random mapping is measurable.

Proof. Let
(
si

)∞
i=1

be the countable set dense in X. For each n define

B
(n)
i =

{
x ∈ X : d(x, si) <

1
n

}

and set

A
(n)
1 = B

(n)
1 ,

A
(n)
i = B

(n)
i \

i−1⋃

j=1

B
(n)
j (i > 1).

Then
(
A

(n)
i

)∞
i=1

constitutes a measurable partition of X. Define a simple
random mappings Φn by

Φnx = Φsi for x ∈ A
(n)
i .

By Proposition 2.4, Φn is measurable. Let µ be certain probability mea-
sure on (X,B(X)) and µ × P the complete product measure on (X ×
Ω,B(X)× F). Let Ω1 be the set of ω for which the sample paths Φω are
continuous. If we can prove that

(2.1) lim
n→∞

Φn(x, ω) = Φ(x, ω)
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for each (x, ω) ∈ X×Ω1, the conclusion will follow since Φn are measurable
and (µ × P )(X × Ω1) = 1. Fix (x0, ω0) ∈ X × Ω1. Given ε > 0, there
exists δ > 0 such that ‖Φ(x, ω0) − Φ(x0, ω0)‖ < ε whenever d(x, x0) < ε.

Taking n ≥ 1
δ
. Since x0 ∈ A

(n)
i for some i and d(x0, si) <

1
n

< δ it follows
that

‖Φn(x0, ω0)− Φ(x0, ω0)‖ = ‖Φ(si, ω)− Φ(x0, ω0)‖ < ε

which proves (2.1) as desired.

Theorem 2.6. Let Φ be a uniformly stochastically continuous random
mapping. Then Φ has a measurable modification.

Proof. By the assumption, for each n there exists δn > 0 such that

P
{
‖Φx1 − Φx2‖ >

1
n

}
< 2−n,

whenever d(x1, x2) < δn. Let
(
si

)∞
i=1

be the countable set dense in X. For
each n define

B
(n)
i =

{
x ∈ X : d(x, si) < δn

}

and set

A
(n)
1 = B

(n)
1 ,

A
(n)
i = B

(n)
i \

i−1⋃

j=1

B
(n)
j (i > 1).

Then
(
A

(n)
i

)∞
i=1

constitutes a countable partition of X. Define a simple
random mapping Φn by

Φnx = Φsi for x ∈ A
(n)
i

Fix x ∈ X. We shall show that

(2.2) P
{

limΦnx = Φx
}

= 1

Indeed, for each n there exists i such that x ∈ A
(n)
i . Then

P
{
‖Φnx− Φx‖ >

1
n

}
= P

{
‖Φsi − Φx‖ >

1
n

}
< 2−n



ON THE REGULARITY OF RANDOM MAPPINGS 19

(since d(si, x) < δn). Then (2.2) follows from the Borel-Cantelli Lemma.
Set S =

{
(x, ω) : limΦn(x, ω) exists

}
. The random mapping Ψ defined

as

Ψ(x, ω) =
{

limΦn(x, ω) if (x, ω) ∈ S,

0 otherwise.

is measurable. Now we shall show that Ψ is the required modification.
Indeed, by using (2.2) we get

P
{

Φx = Ψx
}
≥ P

{
limΦnx = Φx

}
= 1.

Example 1. Take Ω = X, F = B(X) and assume that P is a non-atom
probability measure. Let a, b be two different elements of Y and D a
non-Borel subset of X. Define a random mapping Φ from X into Y as
follows.

If x ∈ D, then

Φ(x, ω) =
{

a if ω = x,

b if ω 6= x,

and, if x 6∈ D, then Φ(x, ω) = b for all ω ∈ Ω.
Now we shall show that Φ is sample continuous, uniformly stochasti-

cally continuous and non-measurable.
Let Ψ be the random mapping given by Ψ(x, ω) = b for all x ∈ X,

ω ∈ Ω. Then Ψ is continuous and

P
{

Φx 6= Ψx
}

=

{
P{∅} = 0 if x 6∈ D,

P
{

ω : ω = x
}

= 0 if x ∈ D.

which proves that Φ is sample continuous.
Φ is not measurable since

{
(x, ω) : Φ(x, ω) = a

}
= D ×D 6∈ B(X)×F .

Now we shall show that ∀x1, x2 ∈ X,

P
{

Φx1 = Φx2

}
= 1.

which implies that Φ is uniformly stochastically continuous. Indeed, if
x1, x2 6∈ D, then Φx1(ω) = Φx2(ω) for all ω. If x1 6∈ D, x2 ∈ D, then

P
{

Φx1 = Φx2

}
= P

{
Φx2 = b

}
= P

{
ω : ω 6= x2

}
= 1.
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If x1, x2 ∈ D, then

P
{

Φx1 = Φx2

}
≥ P

{
ω : ω 6= x1, x2

}
= 1.

Example 2. In this example we construct a random mapping which is
measurable, uniformly stochastically continuous and not sample-continuous.

Let H be a separable Hilbert space with the orthogonal basis (en) and
(αn) be the canonical Gaussian sequence of i.i.d. N(0, 1) r.v.’s. Let µ be
the Gaussian symmetric probability measure on (H,B(H)). For each n
define

Sn(x, ω) =
n∑

i=1

αi(ω)(x, ei)ei.

Clearly, Sn is a measurable random mapping on H. We have
∫

H

∫

Ω

∥∥Sn+m(x, ω)− Sn(x, ω)
∥∥2

dPdµ =
∫

H

E‖Sn+m − Sn‖2dµ

=
∫

H

n+m∑
n+1

|(x, ei)|2dµ(x) ≤
∫

H

∞∑
n+1

|(x, ei)|2dµ(x).

Since
∞∑

n+1
|(x, ei)|2 ≤ ‖x‖|2 and

∫
H

‖x‖2dµ < ∞, by the dominated conver-

gence theorem we conclude that {Sn(x, ω)} is a Cauchy sequence. Hence
limSn(x, ω) exists (µ× P )-a.s. Put

Φ(x, ω) =

{
lim

n→∞
Sn(x, ω) if the limit exists,

0 otherwise.

Then Φ(x, ω) is the measurable random mapping. For each fixed x ∈ X,

the series
∞∑

i=1

αi(ω)(x, ei)ei converges a.s. So

Φx =
∞∑

i=1

αi(ω)(x, ei)ei a.s. .

From this it follows that

E‖Φx1 − Φx2‖2 = ‖x1 − x2‖2,
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which prove the uniform stochastical continuity of Φ. Finally, it is easy to
see that Φ is stochastically linear. Since

sup
n
‖Φen‖ = sup

n
‖αnen‖ = sup

n
|αn| = ∞,

by theorem 3.2 [6], Φ is not sample continuous.

3. Substitution of the argument by a random variable

Let u be a X-valued random variable. The mapping Φu : Ω → Y given
by Φu(ω) = Φ(u(ω), ω) is called a substitution of the argument by u.

The following simple example shows that Φu may not be a Y -valued
r.v.

Example 3. Let Φ be the random mapping constructed in Example 1.
Define a random variable u : Ω → X by u(ω) = ω. Then

{
ω : Φu(ω) = a

}
=

{
ω : Φ(ω, ω) = a

}
= D 6∈ F .

Hence Φu is not measurable.

Definition 3.1. An X-valued random variable u is said to be Φ-admissible
if Φu is a Y -valued r.v.

Proposition 3.2. If u is a countably-valued r.v. then u is Φ-admissible
for all random mappings Φ.

Proof. Assume that u = xi on the set Ei (i = 1, 2, . . . ). Then, for each
B ∈ B(Y ),

{
ω : Φu ∈ B

}
=

∞⋃

i=1

{
ω : Φxi ∈ B

}
∩ Ei ∈ F .

Proposition 3.3. If Φ is measurable (in particular, if Φ is continuous)
then each X-valued random variable u is Φ-admissible.

Proof. Indeed, Φu can be represented as the composition of two measur-
able mappings

Φu = Φ ◦ S
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where S is a measurable mapping from Ω into X × Ω given by

S(ω) = (u(ω), ω).

It is sometimes useful to think of a random mapping Φ from X into
Y as a mapping from X into the space LY

0 (Ω) of Y -valued random vari-
ables. From this point of view, two random mappings Φ and Ψ which are
equivalent should be considered to be identical. However, as we will see
in the following example, it may occur that for certain X-valued random
variable u,

P
{
Φu 6= Ψu

}
= 1,

even though Φ and Ψ are equivalent.

Example 4. Let Ω = X = [0, 1], F = B(X) and P the Lebesgue measure
on [0, 1]. Taking two different elements a, b in Y we define two random
mappings Φ and Ψ as follows:

Φ(x, ω) = b ∀(x, ω) ∈ X × Ω

and

Ψ(x, ω) =
{

a if ω = x,

b if ω 6= x.

It is easily seen that Φ, Ψ are equivalent. Consider the X-valued random
variable u given by u(ω) = ω. Then Φu(ω) = b and Ψu(ω) = a for all
ω ∈ Ω.

Now our goal is to examine random variables u for which the above
“paradox” does not occur.

Proposition 3.4. Suppose that u is a X-valued countable random vari-
able. Then Φu = Ψu a.s. provided that Φ and Ψ are equivalent.

Proof. Assume that u(Ω) =
{
xi

}∞
i=1

. Since Φxi = Ψxi a.s., we can find a
set D of probability one such that Φ(xi, ω) = Ψ(xi, ω) for all i and every
ω ∈ D. Now, for each ω ∈ D, if u(ω) = xi then

Φu(ω) = Φ(xi, ω) = Ψ(xi, ω) = Ψu(ω).

Hence Φu = Ψu a.s.

Theorem 3.5. Suppose that Φ and Ψ are continuous and equivalent.
Then, for each X-valued r.v. u, we have Φu = Ψu a.s.
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Proof. Let
(
si

)∞
i=1

be the countable set dense in X. For each n define

B
(n)
i =

{
x ∈ X : d(x, si) <

1
n

}

and set

A
(n)
1 = B

(n)
1 ,

A
(n)
i = B

(n)
i \

i−1⋃

j=1

B
(n)
j (i > 1).

and
Ω(n)

i = u−1
(
A

(n)
i

)
.

Then
(
Ω(n)

i

)∞
i=1

constitutes a measurable partition of Ω. Define countably
valued random variables un by

un(ω) = si, if ω ∈ Ω(n)
i .

At first we show that un(ω) → u(ω) for all ω ∈ Ω. Indeed, let ω ∈ Ω.
For each n there exists i = i(n) such that ω ∈ Ω(n)

i . Then

d(un(ω), u(ω)) = d(si, u(ω)) <
1
n
→ 0, as n →∞.

By the assumption there exists a set Ω0 with P (Ω0) = 1 such that the
sample path Φω is continuous for every ω ∈ Ω. Therefore

lim
n

Φ(un(ω), ω) = Φ(u(ω), ω),

for every ω ∈ D, i.e.
lim
n

Φun = Φu a.s. .

Similarly, lim Ψun = Ψu a.s.
Since Φun = Ψun a.s. (Proposition 3.4), we infer that Φu = Ψu a.s.
For each random mapping Φ, F(Φ) denotes the σ-algebra generated by

the family
{
Φx

}
x∈X

. The random variable u is said to be independent
with respect to Φ if the σ-algebra F(u) generated by u and F(Φ) are
independent.
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Theorem 3.6. Suppose that Φ is uniformly stochastically continuous and
independent of u. If Ψ is a modification of Φ, then

Φu = Ψu a.s.

provided that u is Φ-admissible and Ψ-admissible as well.

Proof. Let un be the sequence of countably valued random variables de-
fined in the proof of Theorem 3.5.

Let t > 0, ε > 0. Since Φ is uniformly stochastically continuous, there
exists δ > 0 such that

(3.1) P
{
‖Φx1 − Φx2‖ > t

}
< ε,

whenever d(x1, x2) < δ.
Using the independence of u and Φ we get

(3.2) P
{
‖Φun − Φu‖ > t, u ∈ A

(n)
i

}
=

∫

A
(n)
i

P
{
‖Φsi − Φx‖ > t

}
dµ(x),

where µ is the distribution of u. Taking n >
1
δ
. Since d(x, si) <

1
n

< δ

for each x ∈ A
(n)
i , from (3.1) and (3.2) we get

P
{
‖Φun − Φu‖ > t, u ∈ A

(n)
i

}
< εµ(A(n)

i ).

Consequently, for n >
1
δ

we have

P
{
‖Φun − Φu‖ > t

}
=

∞∑

i=1

P
{
‖Φun − Φu‖ > t, u ∈ A

(n)
i

}

≤ ε

∞∑

i=1

µ(A(n)
i ) = ε.

This proves that P − limΦun = Φu.
Evidently, if Ψ is a modification of Φ, then Ψ is also uniformly stochas-

tically continuous and independent of u. Hence P − limΨun = Ψu. Now
the assertion of Theorem 3.6 follows from Proposition 3.4
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