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APPROXIMATION ORDERS IN THE
CONDITIONAL CENTRAL LIMIT THEOREM

FOR WEAKLY DEPENDENT RANDOM VARIABLES

BUI KHOI DAM

Abstract. Let (Xn)n≥1 be a stationary, strong mixing sequence of ran-
dom variables with EXn=0, EX2

n=1 and let B∈σ(X1,X2,...,Xn,...) with
P (B)>0. In this note we establish an estimation for the quantity

∆n(B)=sup
t∈R

|P (Sn.(ES2
n)−1/2<t|B)−Φ(t)|,

where Φ(t) is a standard normal distribution function and Sn=
n∑

i=1
Xi.

1. Introduction

Let (Xn)n≥1 be a sequence of random variables with EXn = 0 and
EX2

n = 1. The sequence Xn is said to be strong mixing (in the sense of
Rosenblatt) if

(1.1) sup |P (E1 ∩ E2)− P (E1)P (E2)| = %(n) ↓ 0 as n →∞,

where the supremum in (1.1) is taken over all E1 ∈ σ(X1, ..., Xk), E2 ∈
σ(Xk+n, Xk+n+1, ...) and over all k = 1, 2, .... The function %(n) of (1.1)
is called the mixing coefficient. The sequence Xn is said to be φ-mixing
(in the sense of Ibragimov) if

(1.2) |P (E1 ∩ E2)− P (E1)P (E2)| ≤ φ(n)P (E2)

for all E1 ∈ σ(X1, ..., Xk) and E2 ∈ σ(Xk+n, Xk+n+1, ...). For i.i.d. se-
quences of random variabless, the classical theorem of Berry-Esseen gives
an estimation of the rate of convergence to the normal law as follows:

∆n(Ω) = sup
t∈R

|P (Sn.(S2
n)−1/2 < t)− Φ(t)| = 0(n−1/2),
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where Φ(t) is a standard normal distribution function.
A. Renyi [6] firstly showed that ∆n(B) → 0 as n → ∞ for arbitrary

subset B. This theorem (which is called conditional central limmit the-
orem) plays an important role in the theory of random summation, in
problems of random walk, in the sequential estimation ...

Landers, D. and Rogge, L. [5] proved that

∆n(B) = O(n−1/2)

if E|X1|p < ∞ for some p > 3 and

d(B, σ(X1, X2, ..., Xn)) = inf{P (B∆A) : A ∈ σ(X1, X2, ..., Xn)}
= 0

( 1
n1/2(log n)3/2

)
·

For an unconditional central limit theorem (that means when B = Ω)
Stein [7] showed that if (Xn) is stationary, φ-mixing with E(X8

1 ) < ∞,
then

∆n(Ω) = O(n−1/2).

In an earlier paper [2] the author extended the result of D. Landers and L.
Rogge to the case of stationary, φ-mixing sequences of random variables
as follows.

Theorem 1.1 [2]. Let B ∈ σ(X1, X2, ...) with P (B) > 0 and let (Xn)n≥1

be a stationary, φ-mixing sequence of random variables such that

(i) E|X1|p+ε < ∞ for some p > 8, ε > 0,

(ii) φ(n) ≤ C.n−θ, C > 0, θ > 0,

(iii) d(B, σ(X1, ..., Xn)) = inf{P (B∆A) : A ∈ σ(X1, ..., Xn)}
= O(n−( 1

2+δ)(log n)−r), r > 1, δ > 0.
Then

∆n(B) = O(n−( 1
2−ε(p,δ))),

where
ε(p, δ) =

1
p

= ε +
1

p + 4δp
·

However, condition (i) is very strong even when we can obtain such an
approximation order as in the unconditional case.

In this note, we investigate approximation order of ∆n(B) for the class
of stationary, strong mixing process (which is wider than the class of



APPROXIMATION ORDERS 349

φ-mixing processes) and under assumption that the stationary sequence
(Xn) has only s-th order finite moment for 2 < s < 3.

Our main result is the following theorem

Theorem 1.2. Let (Xn)n≥1 be a strictly stationary, strong mixing
sequence of random variables with mixing coefficient

%(n) < K.n−θ,

where K > 0, θ >
3
2

, and EX1 = 0, EX2
1 = 1, E|X1|s < ∞,

2 < s < min
{5

2
, s0(θ)

}
, s0(θ) =

θ − 1
θ

+

√(θ − 1
θ

)2

+
4 + 2θ

θ
·

Assume that
ES2

n ≥ µnEX2
1 , µ > 0.

Let B ∈ σ(X1, X2, ..., Xn, ...) with P (B) > 0 such that

d(B, σ(X1, X2, ..., Xn)) = inf{P (A∆B) : A ∈ σ(X1, ..., Xn)}
= O(

1
n

1
2+δ(log n)r

), δ >
s− 2

s(4− s)
·

Then

∆n(B) = sup
t∈R

|P (Sn.(ES2
n)−1/2 < t|B)− Φ(t)| = O

( log n

n
s−2
2

)

2. Proof of Theorem 1.2

We need some auxiliary results.

Lemma 2.1 (see [3], Lemma 5.4, page 528). Let X and Y be random
variables with |X| ≤ 1 and EX = 0. Then

|E(XY )| ≤ 4E|Y | %(σ(X), σ(Y )),

where
%(σ(X), σ(Y )) = sup |P (A ∩B)− P (A)P (B)|,

the supremum being taken over all sets A ∈ σ(X), B ∈ σ(Y ).
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Lemma 2.2 (see [8], page 636). Let (Xn)n≥1 be a stationary, strong
mixing sequence of random variables with mixing coefficient

%(n) < K.n−θ, θ > 0, K > 0,

and
EX1 = 0, E|X1|s < ∞,

(2.1) 2 < s < s0(θ) =
θ − 1

θ
+

√(θ − 1
θ

)2

+
4 + 2θ

θ
·

If
ES2

n ≥ µnEX2
1 , µ > 0,

there exists a constant C(s, θ, K, µ) depending only on s, θ, K, and µ such
that

(2.2) ∆n(Ω) = sup
t∈R

|P (Sn.n−1/2 < t)− Φ(t)| ≤ C(s, θ,K, µ)
βs

ns−2/2
,

where βs =
E|X1|s

(EX2
1 )s/2

·

Proof of Theorem 1.2. By [1, page 170-172] we have ES2
n ∼ σ.n, where

σ2 = EX2
1 + 2

∞∑

k=2

EX1Xk < ∞.

So, without lost of generality we may assume that ES2
n = n. We put

Si,j =
j∑

k=i+1

Xk for i < j and N1 = {2i : i ≥ 1}.

Consider the following sets:

Ak
n = (Sn < t

√
n) =

( S2k,n√
n− 2k

<
t
√

n√
n− 2k

− S2k√
n− 2k

)
,

Bk
n =

( S2k,n√
n− 2k

<
t
√

n√
n− 2k

+
C(k)√
n− 2k

)
,

Ck
n =

( S2k,n√
n− 2k

<
t
√

n√
n− 2k

− C(k)√
n− 2k

)
,

Dk = (|S2k| ≥ C(k)) ,

Dc
k = (|S2k| < C(k)) ,
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where C(k) is a constant depending on k. On one hand, we have

(2.3) Ak
n = (Ak

nDk ∪Ak
nDc

k) ⊆ Dk ∪Bk
n.

On the other hand, we have

(2.4) Ck
n = Ck

nDk ∪ Ck
nDc

k ⊆ Ak
nDk ∪Ak

nDc
k ⊆ Dk ∪Ak

n.

These relations imply

(2.5) 1Ak
n
≤ 1Dk

+ 1Bk
n
,

(2.6) 1Ak
n
≥ 1Ck

n
− 1Dk

,

where 1. denotes the indicater function of the given event. Combining
(2.5) and (2.6) we finaly obtain

(2.7) 1Ck
n
− 1Dk

− Φ(t) ≤ 1Ak
n
− Φ(t) ≤ 1Bk

n
+ 1Dk

− Φ(t).

Now we choose Bk ∈ σ(X1, ..., Xk) such that

P (B∆Bk) ≤ C

k
1
2+δ(log n)r

,

where C is a constant. Then

|P (B).∆n(B)| = |P (Ak
nB)− Φ(t)P (B)|

= |E[1Ak
n
− Φ(t)]1B |

≤ |E[1Ak
n
− Φ(t)][1B − 1Bn0

]|
+

∑
n1≤k≤n0

k∈N1

|E[1Ak
n
− Φ(t)][1Bk

− 1B k
2
]|

+ |E[1Ak
n
− Φ(t)]1Bn1

| = I1 + I2 + I3,(2.8)

where n0, n1 ∈ N1, n1 < n0, will be choosen later.
The term I2 will be estimative as follows. By (2.7) we get

E[1Ck
n
− Φ(t)]1Bk

− E(1Dk
1Bk

) ≤ E[1Ak
n
− Φ(t)]1Bk

≤ E[1Bk
n
− Φ(t)]1Bk

+ E(1Dk
1Bk

),(2.9)
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E[1Ck
n
− Φ(t)]1Bk/2 − E(1Dk

1Bk/2) ≤ E[1Ak
n
− Φ(t)]1Bk/2

≤ E[1Bk
n
− Φ(t)]1Bk/2 + E(1Dk

1Bk/2).(2.10)

These relations imply

E[1Ck
n
− Φ(t)]1Bk

− 2P (Dk)− E[1Bk
n
− Φ(t)]1Bk/2

≤ E[1Ak
n
− Φ(t)][1Bk

− 1Bk/2 ]

≤ E[1Bk
n
− Φ(t)]1Bk

+ 2P (Dk)− E[1Ck
n
− Φ(t)]1Bk/2 .(2.11)

It follows from (2.11) that

E[1Ck
n
− Φ(t)][1Bk

− 1Bk/2 ]− 2P (Dk)− E[1Bk
n
− 1Ck

n
]1Bk/2

≤ E[1Ak
n
− Φ(t)][1Bk

− 1Bk/2 ]

≤ E[1Bk
n
− Φ(t)][1Bk

− 1Bk/2 ]

+ 2P (Dk) + E[1Bk
n
− 1Ck

n
]1Bk/2 .(2.12)

Finally we get

|E[1Ak
n
− Φ(t)][1Bk

− 1Bk/2 ]| ≤ |E[1Bk
n
− Φ(t)][1Bk

− 1Bk/2 ]|+
+ |E[1Ck

n
− Φ(t)][1Bk

− 1Bk/2 ]|
+ E[1Bk

n
− 1Ck

n
]1Bk/2 + 2P (Dk).(2.13)

From (2.8) and (2.13) we have

I2 ≤
∑

k∈N1
n1≤k≤n0

|E[1Bk
n
− Φ(t)][1Bk

− 1B k
2
]| +

+
∑

k∈N1
n1≤k≤n0

|E[1Ck
n
− Φ(t)][1Bk

− 1B k
2
]|+

+
∑

k∈N1
n1≤k≤n0

E[1Bk
n
− 1Ck

n
]1B k

2
+

∑
k∈N1

n1≤k≤n0

2P (Dk)

= T1 + T2 + T3 + T4.(2.14)

We shall estimate each term of the right-hand side of (2.14) as follows.
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For the first term T1 we have

T1 ≤
∑

k∈N1
n1≤k≤n0

|E[1Bk
n
− Φ(t)][1Bk

− 1Bk/2 ]|

≤
∑

k∈N1
n1≤k≤n0

|E[(1Bk
n
− Φ(t))− (P (Bk)− Φ(t))][1Bk

− 1Bk/2 ]

+
∑

k∈N1
n1≤k≤n0

|[P (Bk
n)− Φ(t)]E[1Bk

− 1Bk/2 ]|.

Using Lemma 2.1 and noting that X = (1Bk
n
−Φ(t))− (P (Bk)−Φ(t)) and

Y = 1Bk
− 1Bk/2 we get

T1 ≤
∑

k∈N1
n1≤k≤n0

4%(k)E|1Bk
− 1Bk/2 |

+
∑

k∈N1
n1≤k≤n0

|[P (Bk
n)− Φ(t)]E[1Bk

− 1Bk/2 ]|

=
∑

k∈N1
n1≤k≤n0

4%(k)E|1Bk
− 1Bk/2 |

+
∑

k∈N1
n1≤k≤n0

|[P
( S2k,n√

n− 2k
<

t
√

n√
n− 2k

− C(k)√
n− 2k

)

− Φ
( t

√
n√

n− 2k
− C(k)√

n− 2k

)
+ Φ

( t
√

n√
n− 2k

− C(k)√
n− 2k

)

− Φ(t)]E[1Bk
− 1Bk/2 ]|.

(2.15)

In view of Lemma 2.2, (2.15) and the following inequalities

|Φ(x)− Φ(y)| ≤ |x− y|√
2π

,(2.16)

|Φ(
t
√

n√
n− 2k

)− Φ(t)| ≤ 1√
8πe

· 2k

n− 2k
,(2.17)

we have

T1 ≤
∑

k∈N1
n1≤k≤n0

[
4%(k) +

C1

(n− 2k)
s−2
2

+
1√
2π

C(k)√
n− 2k

+
1√
8eπ

2k

n− 2k

]
E|1Bk

− 1Bk/2 |.(2.18)
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Applying the same procedures as in estimating T1 we obtain that

T2 =
∑

k∈N1
n1≤k≤n0

|E[1Ck
n
− Φ(t)][1Bk

− 1B k
2
]|

≤
∑

k∈N1
n1≤k≤n0

[4%(k) +
C1

(n− 2k)
s−2
2

+
1√
2π

C(k)√
n− 2k

+

+
1√
8eπ

2k

n− 2k
]E|1Bk

− 1Bk/2 |.(2.19)

Since 1Bk
n
≥ 1Ck

n
and using Lemma 2.2 we obtain

T3 =
∑

k∈N1
n1≤k≤n0

E[1Bk
n
− 1Ck

n
]1B k

2
≤

∑
k∈N1

n1≤k≤n0

E[1Bk
n
− 1Ck

n
]

=
∑

k∈N1
n1≤k≤n0

[P (Bk
n)− Φ

( t
√

n√
n− 2k

+
C(k)√
n− 2k

)

+ Φ
( t

√
n√

n− 2k
+

C(k)√
n− 2k

)
− Φ

( t
√

n√
n− 2k

− C(k)√
n− 2k

)

+ Φ
( t

√
n√

n− 2k
− C(k)√

n− 2k

)
− P (Ck

n)]

≤
∑

k∈N1
n1≤k≤n0

2C1

(n− 2k)
s−2
2

+
∑

k∈N1
n1≤k≤n0

2√
2π

C(k)√
n− 2k

·
(2.20)

Finally, from (2.14) and (2.20) we get

I2 ≤
∑

k∈N1
n1≤k≤n0

4%(k)E|1Bk
− 1Bk/2 |

+
∑

k∈N1
n1≤k≤n0

C1

(n− 2k)
s−2
2

E|1Bk
− 1Bk/2 |

+
1√
2π

∑
k∈N1

n1≤k≤n0

C(k)√
n− 2k

E|1Bk
− 1Bk/2 |
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+
1√
8eπ

∑
k∈N1

n1≤k≤n0

2k

n− 2k
E|1Bk

− 1Bk/2 |

+
∑

k∈N1
n1≤k≤n0

2C1

(n− 2k)
s−2
2

+
∑

k∈N1
n1≤k≤n0

2√
2π

C(k)√
n− 2k

+
∑

k∈N1
n1≤k≤n0

P (|S2k| ≥ C(k)).

(2.21)

Each term of the right-hand side of (2.21) will be estimated as follows.
First, we have

∑
k∈N1

n1≤k≤n0

4%(k)E|1Bk
− 1Bk/2 | ≤

∑
k∈N1

n1≤k≤n0

4C
1
kθ
· 1
k

1
2+δ

· 1
(log k)r

≤ C2

n
1+2θ+2δ

2
1

≤ C2

n
s−2
2

,(2.22)

if we choose

(2.22a) n1 ≤ n
s−2

1+2θ+2δ ,

where C2 = 4C
∑

k∈N1
n1≤k≤n0

1
(log k)r

. Since k ≤ n0 ≤ n

4
we obtain

∑
k∈N1

n1≤k≤n0

C1

(n− 2k)
s−2
2

E|1Bk
− 1Bk/2 |

=
∑

k∈N1
n1≤k≤n0

C1

(n− 2k)
s−2
2

· 1
k

1
2+δ

· 1
(log k)r

≤ 1

n
s−2
2

·
∑

k∈N1
n1≤k≤n0

2
s−2
2 C1

(log k)r
=

C3

n
s−2
2

·(2.23)

Choosing C(k) = (2k)
1
2+δ we have
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1√
2π

∑
k∈N1

n1≤k≤n0

C(k)√
n− 2k

E|1Bk
− 1Bk/2 |

=
2

1
2+δ

√
2π

∑
k∈N1

n1≤k≤n0

1√
n− 2k

1
(log k)r

≤ C4

n
1
2

,(2.24)

1√
8eπ

∑
k∈N1

n1≤k≤n0

2k

n− 2k
E|1Bk

− 1Bk/2 |

≤ 1√
8eπ

∑

k∈N1
n1≤k≤n0

2k
1
2−δ

n− 2k
· 1
(log k)r

≤ C5

n
1
2
·(2.25)

For the three last term of the right-hand side of (2.21) we have
∑

k∈N1
n1≤k≤n0

2C1

(n− 2k)
s−2
2

≤ C6.log n

n
s−2
2

,(2.26)

∑
k∈N1

n1≤k≤n0

2√
2π

C(k)√
n− 2k

=
∑

k∈N1
n1≤k≤n0

2√
2π

(2k)
1
2+δ

√
n− 2k

≤ 2
1
2+δ.n

1
2+δ
0 .log n
n
2

1
2

≤ C7.log n

n
s−2
2

,(2.27)

if we choose n0 such that n0 ≤ n
3−s
1+2δ .

By Markov inequality we obtain
∑

k∈N1
n1≤k≤n0

P (|S2k| ≥ C(k)) ≤ log n · max
k∈N1

n1≤k≤n0

P (|S2k| ≥ (2k)
1
2+δ)

≤ log n · max
k∈N1

n1≤k≤n0

E|S2k|s
[(2k)

1
2+δ]s

= log n · max
k∈N1

n1≤k≤n0

E|S2k|s
(2k)

s
2 .(2k)s.δ

≤ C7 · logn · 1
ns.δ

1

≤ C7 · logn

n
s−2
2

,(2.28)

if we choose n1 ≥ n
s−2
2s.δ .
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Using (2.9) we estimate the term I3 as follows:

I3 ≤ 8%(n1) +
2C8

(n− 2n1)
s−2
2

+
2√
2π

C(n1)√
n− 2k

+
1√
8πe

· 2n1

n− 2n1
+ P (|Sn1 | ≥ C(n1))

= S1 + S2 + S3 + S4 + S5 .(2.29)

Note that θ ≥ 3
2
, δ ≤ 1

2
, and s < 3. Then we have

(2.30) S1 ≤ 8
nθ

1

≤ 8

n
s−2
2

if we take

(2.30a) 2n
s−2
2s.δ ≥ n1 ≥ n

s−2
2s.δ .

Since n1 ≤ n

4
, δ ≥ s− 2

s(4− s)
and (2.30a), it is easy to see that

S2 ≤ 2C7

n
s−2
2

,(2.31)

S4 ≤ C.n
s−2
2s.δ

n

2

≤ 2C

n
s−2
2

·(2.32)

Now we choose the constant C(n1) such that

(2.33) n
1
2
1 .n

s−2
2s ≤ n

1
2− s−2

2 .

Then we obtain

S3 ≤ 2√
2π

· 1

n
s−2
2

,(2.34)

S5 ≤ c

n
s−2
2

·(2.35)

To complete the proof of Theorem 1.2, we only need to show that

(2.36) I1 ≤ P (B∆Bn0) ≤
C

n
1
2+δ
0

· 1
(log n)r

≤ C

n
s−2
2

·

But this is obvious because

n0 ≤ n
3−s
1+2δ and 2 < s ≤ 5

2
·
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