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FRECHET-VALUED MEROMORPHIC FUNCTIONS
ON COMPACT SETS IN ¢”

NGUYEN VAN DONG

ABSTRACT. Let F' be a Frechet space. The main aim of this paper is

to prove that [Fl;ko’l“]* S (LBOO) if and only if M(X, [Fb*or]*) =

M, (X, [Fb*or]*> for every compact uniqueness subset X of C". We also
prove that a compact set X in C"is pluripolar if and only if X is unique

and M(X, F) = M, (X, F) for every Frechet space F' € (DN)

1. INTRODUCTION

Let X be a subset of €™ and F a sequentially complete locally convex
space. A function f defined on a dense open subset Xy of X with values
in I is called meromorphic on X if it can be extended to a meromorphic
function on a neighbourhood of X in €". This means that there exist
a neighbourhood U of X and a meromorphic function j?on U such that
X\ P(f) is dense in X and f(z) = f(z) for z € X, \ P(f). If this holds
for * f, where x* is an arbitrary element of the dual space F* of F, we
say that f is weakly meromorphic on X. Write M (X, F') and M, (X, F)
for vector spaces of meromorphic and weakly meromorphic functions on
X with values in F, respectively. The main aim of the present paper is to
find necessary and sufficient conditions for which

(w) M(X,F)= M,(X,F).

The case where F' is a Banach space and X either is open or compact
was proved in [3]. In [2] the authors proved that a Frechet space F' has a
continuous norm (resp. F' € (DN)) if and only if (w) holds for every open
subset (resp. z—regular compact set) X of C".

The main results of this paper are the following theorems.

Theorem A. Let F' be a Frechet space. Then [F} |* € (LBs) if and
only if M (X, [F,.]*) = My(X, [Fg,]*) for every compact uniqueness set

X of €". Here F} . denotes the space F* equipped with the bornological
topology.
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Theorem B. Let X be a compact set of C". The following are equivalent:
i) X is not pluripolar;
i) ()] € (LB);
iii) X is unique and M (X, F) = M, (X, F) for every Frechet space F
with F € (DN).

2. PRELIMINARIES

For a Frechet space E we always assume that its locally convex struc-
ture is generated by an increasing system {| Hn}zo:l of semi-norms.

If M is an absolutely convex subset of E, we define |.[|3;, : £ —
[0, +-00] by

lull3; = sup {|u(z)| : = € M},

where E’ denotes the topological dual of E. Instead of [[ul|; ~we write
ullf, where Uy = {z € E: ||z, < 1}.

We say that E has the property:

(DN) There exists p € N such that for every ¢ € N and every d > 0
there exist k € N and C > 0 with

lellg™ < Cllzle ]

for all x € E.

(LB+,) For every positive increasing unbounded sequence (p N) NeN there
exists p € N such that for all ¢ € N there exist Ny € N and C' > 0 such

that for all x € E there exists £k € N with ¢ < k < Ny with

Iz llg"s < Cllalle I l5x.

(LB®°) For every positive increasing unbounded sequence (p N) NeEN and
every p € N there exists ¢ € N such that for all ng € N there exist Ny € N
and C' > 0 such that for all w € E’ there exists k € N with ng < k < N,
with
* 1 * *
fully ™ < Cllully Tully™.

Note that ||.||, is a continuous norm on E if F € (LBy).

These properties were introduced and investigated by Vogt (see [8], [9]).
We remark that

(LBx) &= (DN),



FRECHET-VALUED MEROMORPHIC FUNCTIONS 305

(LB*>®) &= (Q).
Let a be an increasing sequence of positive real numbers with lim «,, =

oo (a will be called an exponent sequence). For 0 < R < 0o we define the

power series space by
Ar(a) = {x e N ||z, = Z |z, |7 < oo for any 0 < r < R} :

Then Ar(«) is a Frechet space under the natural topology induced by the
seminorms {|| ||, : 0 < r < R}. We call Agr(a) a power series space of
finite type if R < oo or of infinite type if R = oo.

Well-known examples of nuclear power series spaces are

I

s 2\ (log(n + 1)nenN) ,
H(CH) 2 o (), )
HDM) = ((0h), o)

112

where D stands for the open unit disk in € and H(£2) denotes the space of
all holomorphic functions on €2 endowed with the compact-open topology.

For locally convex spaces E and F' we denote by L(FE,F') the space
of all continuous linear mappings, while LB(FE, F) denotes the set of all
A € L(E,F) for which there exists a zero neighbourhood U in E such
that A(U) is bounded.

We recall three following results of [§]

Lemma 2.1. For a Frechet space F' the following assertions are equiva-
lent:

(i) LOA(0),F)=LB(Ao(B), F) for all exponent sequences [3;
(ii) F has property (LBs).

Lemma 2.2. For a Frechet space E the following assertions are equiva-
lent:

(i) L(E,AZ(a)) =LB(E, () for all exponent sequences o
(ii) E has property (LB*).

Lemma 2.3. Let E, F be Frechet spaces with E € (LB*>) and ' € (DN).
Then

L(E,F)=LB(E,F).
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Unless otherwise specified, we shall write, throughout this paper, Z(h)
and Z(g, o) for h=1(0) and g~ (0) No~1(0), respectively, and F* for the
bornological space associated to F'™*, where F'* is the strong dual of Frechet
space F'.

3. PROOF OF THEOREM A

To prove Theorem A we first prove the following results:

Lemma 3.1 [2]. Let X be a pseudoconver domain in C" and f a mero-
morphic function on X with values in a locally convex space F'. Then, for
every relatively compact domain'Y in X, there exist holomorphic functions
h and o on X such that

f= g and codimy Z(h,o) > 2 fory €Y.

Lemma 3.2 [2]. Let F be a locally convex space. Let o and (3 be holomor-
phic functions on an open subset X C C" and g : X — F a holomorphic

function. Assume that by is holomorphic on X and codim Z(g,0) > 2.
o

Then é s holomorphic on X.
o

Lemma 3.3. There exists a polar compact uniqueness set X in C.

Proof. a) First we prove that a compact set X in € is unique if and only if
X is perfect. Indeed, let f € H (U), f‘X = 0, where U is a neighbourhood
of X in €. Then f ‘ , = 0 for every connected component Z of U meeting
X and hence f =0onV =|J{Z : Z is a connected component of U with
ZNX #0}.

Conversely, if X is not perfect, then X has an isolated point and hence
X is not unique.

b) Given a sequence ¢ = (¢,,) | 0, £,, < 27™. Define a family of closed

intervals (Jn:j)n>0,1<j<2n with

Jos =10,1] for s >1,
Jn+1,2j—1 = [mln ij,min ij —|—£n ],

Jn+1,2j = [max ij - En,max ij ],
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27L

Co(0)=J Jn.j
j=1

C(0) =[] Cnl0).

n>0
2n
c) For each n > 0 define p,, to be the uniform measure on |J J,,;
j=1
giving weight 27" to each J, ;, i.e.
dpin () = — d
n\T) = n xZ.
2 on ln XZU s

Define a probability measure on C(¢) by
pw= lim p,.
n—oo
Note that this limit exists. Put

o(z) = / loglz — z|du(z).
C

d) We shall prove that with £, = e2" and u defined as above, C' (=
C(¢)) is a polar compact uniqueness set.

Clearly, C is perfect because C' is a set of the Cantor type. We prove
C = ¢! (—00). Obviously p(z) > —oo for 2 ¢ C. Now assume that
g € Candzg € Jy,j, Y > 0. Since Jy j,,., C Jyn, j, we have

[rotte—wolanr =3 [ tonfe— wolantz)

n>0
(E =" Jn, J'n\']n;jn+1

[e.e]
1
—non—1
S Z ]'Og(gn)l’b(‘]'nq jn \ Jnyjn-ﬁ-l) = - Z 2 n2n = - Z 5 = —00.
n>0 n>0 n>0
Finally, it remains to check that ¢ is subharmonic on C.

Let zg ¢ C. Then dist(C, z9) > 0 and hence log|z — 2| is bounded on
a neighbourhood of zy5. By Lebesgue dominated convergence theorem,
is continuous at zg. Let zg € C'. Given A > 0. Choose € > 0 such that

/ log|z — zo| du(z) < —2A,
C\A(20,6)
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with
AN(zp,e) ={z€ C: |z — 2| < e}
Since

log|lx — z| — log|z — 29| as z — 2o

uniformly on €\ A(zg,¢), we have

/log]a: —z| dp(z) < / log|lx — z| du(z) < —A
C C\A (20,¢)

for |[z—z0| < n with n > 0 sufficiently small. Thus ¢ is upper-semicontinuous.
Hence, from the inequality

= [ e / | sl — 2l duta)

A(a,r) A(a,r)

> /log|a — x| du(r) = p(a)
C

it follows that ¢ is subharmonic.

Remark. The author thanks P. Thomas, who showed us the construction
of the set ' as in Lemma 3.3.

Now we are able to prove Theorem A.

Let F be a Frechet space with [Fb"‘or}* € (LBw) and f € M, (X, [Fg‘or]*))

Y

where X is a compact uniqueness set in C". First note that F} =
lim ind F};, where {]].|[,} is a fundamental system of semi-norms of I and
F, denotes the Banach space associated to ||.||, for each p > 1. Hence
[Fb*or}* = lim proj F;*. Since [Fj,]" € (LBu), we may assume with-

]*. By [3], for each
p > 1, there exist a nelghbourhood Up, of X in C" and a meromorphic

function fp : Up — F;™ such that f,

out loss of generality that |.||* 0o is a norm on [Fy,

ey = “rflxyp,) where

[F g‘m,] * — F,* is the canonical map.
The meromorphlc function f, is extended uniquely to a meromorphlc

function fp on Up, the envelope of holomorphy of U,. By Lemma 3.1, fp
and hence f, can be written in the form f, = a—, where hy, : Up — FJ*,

P
op : U, — @ are holomorphic functions and o, # 0 such that

codim Z(hy,, op) > 2.
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Since H”Eg is anorm on [Fy, | ", WP is injective, where w? : Fy* — I

is the canonical map. Since w; = w].w, and by the uniqueness of X,
shrinking U, we get

hy

01

P
_ wy-hyp

U, op
From the injectivity of w} we have
Z(wihp,0p) = Z(hp, 0p),

and hence
codim Z(wlhy, 0p,) = codim Z(hy, 0p,) > 2.

Indeed, we have

hq ~wiihy
o lx\pr,) a—p‘X\Pm)
or
i x\p(s,) = 101\,

Since X \ P(fp) is dense in X,

— 4P
O-phl‘X —wl.alhp‘x.

By Lemma 3.2, it follows that o is holomorphic for p > 1. Again by
op U,

the uniqueness of X we can define a linear map

h : Fy,. — H(X)

by

h e = (ﬂ) i~Lp for p > 1,

P O-p

where ?Lp(x*)(z) = z" (hy(2)) for 2 € Uy and x* € F;. Obviously I has a
closed graph. The open mapping theorem of Grothendieck [6] yields the
continuity of h.

By [5], [H(X)]* is isomorphic to a quotient space of H(C") = A\, (j%>
and hence by [8]:

LB(F, [H(X)]) = L (F", [H(X)]).
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It follows that we can find a neighbourhood W of 0 € F;  such that
R(W) is bounded in H(X). This yields p for which i(W) is contained and
bounded in H>(U,), the Banach space of bounded holomorphic functions
on Up. Thus, the form

E(z)(m*) = h(z")(z) forzeU,, z*e€lky,

= * h
defines a holomorphic function A from U, into [F - } such that — } =1
01

bor
Hence f € M (X, [Fy,]*).

Conversely, by Lemma 3.3 we can choose a compact polar uniqueness
set X in €. It is known that [H(X)]* =& H(C\ X) = H(C). Here the first
isomorphism follows from the dual Grothendieck theorem and the second
one was proved by Zaharjuta [10].

By Vogt [8] it suffices to show that

EB ([H (X)]*7 [Fb*or]*) = E ([H (X)]*7 [Fb*or]*)'

Given T' € L([H (X)]*, [F},]*). Consider T* : [Fy, ]** — [H (X)]**.

Since [H(X)]** = H(X), we can define a map f: X — [F}: |* by
f()(x*) = (T*z*)(2) for z* € [F},,.]™", 2z € X.

By the o[(Fy,.]*, [Fy,]")-continuity of f(2), f(z2) € [F},,.]*. Moreover,
f € My(X,[F;, ]"). By the hypothesis we can find a neighbourhood U

of X in C" and a [F}

o ) *-valued meromorphic function f on U such that

e = ey

Hence we have

~

G(2)(T"2")(2) = 3(2) [ () (") = h(=) ("),

where h @ U — [Fy

w)and ¢ : U — (€ are bounded holomorphic

functions and & # 0 such that f = 2 and Z(h,5) = 0.
o

We have that o7*(BY) is contained and bounded in H>(U), where
B = h(U). It follows that T*(B°) is contained and bounded in H(U\
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~

Z(0)). Shrinking U we may assume that P(f) = Z(¢) C X and has only
finite many points.

Since X is unique, X does not have an isolated point. On the other
hand, from the continuity of f on X it follows that Z(c) = () and hence

~

f is holomorphic on U. Choose a relatively compact neighbourhood V' of
X in U. We have
ir‘}f la| > 0.

Hence T is bounded on B°.

Put W = T*(B°). Then V = W?° is a neighbourhood of O € [H(X)]*
and T'(V) C B°° is bounded in [F} ]*. Hence [F} |* € (LBs). The
theorem is now proved.

4. PROOF OF THEOREM B

We need the following results.

Lemma 4.1. Let K be a compact set in C" such that [H(K)]" € (LB>).
Then K is a unique set.

Proof. Given f € H(K) with f’K = 0. Let (Ug) be a neighbourhood
basis of K in C". For each k > 1, put

ek = [[fllo, = sup{|f(2)] : x € Uy}

Then ¢ | 0. By applying (LB*>) to py = v/—logen T +oo we have for
p > 1, f € H*®(U,), there exists ¢ € N such that for all N € N there

exist N € N and Cn > 0 such that for all n € N there exists k,, € N with
N <k, <N and

1+ n n
1l < On L™ e £ 112"

This yields
1+p,, % n
1£lla ™ < O Ik IFNR

Choose N < k < N such that #A = oo, where A ={n:k, = k}.
Then

Pkp

. i 1+1 Tt
Iflly < lim Cg LA, Ll

1 Pl

= 1™ Il ™™

= ()T (&) T —0
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as k — oo because

| B log ey,
0gefp = —F/——= — — 0

1
14+ pi 1+ +/—logeg

as k — oo and o

kh_)ngo (p) TFF =gy

Hence f = 0 on V. This means that K is a uniqueness set.

Lemma 4.2 [2]. Let F be a Frechet space with F € (DN). Then [Fy'
(DN).

Now we are able to prove Theorem B.

(i) = (ii). By Vogt [8], to prove [H(X)]" € (LB*) it suffices to show

that every continuous linear map 7" : [H(X )] — (C) is bounded on some
neighbourhood of 0 € [H(X)]".

Define the function

]« e

fr(x,\) =T(5:)(\) forze X, X e C,
where J, is the Dirac functional defined by x:

0z(p) = p(x) for ¢ e H(X).

Let {V,} be a neighbourhood basis of X in €". For each p > 1, put

Ay ={re C: e HW): IRy, <p}.

where
fr(@) = fr(z, ).

Then A, is closed in € for p > 1 because H(V}) is Montel. Moreover,

C = |J A,. The Baire Theorem yields py such that Int 4,, # 0.
p=1
Consider the separate holomorphic function

fr:(XxCuU((VxIntd,) — C
given by

~ fr(z, ) if (z,A) € X x C,
{ 2 (x) if (z,\) € V x Int A,
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where V = V), . By Nguyen T. Van and Zeriahi [7], there exists a holo-
morphic extension fT of fT to a neighbourhood V' x € of X x €. Since

H(V,H(T)) = H(V)®-H(C) 2= L([H(V)]', H(T)),

the form

S(8.)(A) = fr(z)(\) forz€V, A€ C

defines a continuous linear map from [H(V)]" into H(C). By the unique-
ness of X, from the relations

T(YAd.,) = Z A T(6s,) Z N fr(z;)
J
—E:ASZ]: CSA@J

it follows that T' = S. Hence T is compact.

(ii) = (iii). Let F € (DN) and f € M, (X, F'), where X is a compact
set in C" with [H(X)]" € (LB*°). By Lemma 4.1, X is a unique set. As
in the proof of Theorem A, we can define a linear continuous mapping

h : Fk;kor - H(X)

Since [H(X)]" € (LB*) and [F}, ]* € (DN) (Lemma 4.2), by Vogt [8] we
have

L (Fb*orvH(X)) =LB (Fb*or7H(X))'

By an argument analogous to that used in the proof of Theorem A, we
can find a neighbourhood W of 0 € Fy = and a neighbourhood U, of W

. bor
such that h(W) is contained and bounded in H>*(U,), the Banach space
of bounded holomorphic functions on U,. Thus, the form

h(z)(z*) = h(z*)(z) for z € Uy, z* € F*

defines a holomorphic function 1 from U, into F'. From this it follows that
f e M(X,F).

(iii) = (i) Assume that X is pluripolar. Consider a plurisubharmonic
function ¢ on C" for which gp| x — 00, ¢ # —o0 and the Hartogs domain

Q, = {(z,)\) eC"xC: |)\< e*"p(z)}.
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Let f be holomorphic function with €, being a domain of existence of f
[4]. Since X x € C €, f induces f € H,, (X, H(C)), where H,, (X, H(C))
is the space of weakly holomorphic functions on X with values in H(C).

Indeed, let u € [H(C)]’. Choose r > 0 such that u can be considered
as a contiuous linear functional on H(rA). Let V' be a neighbourhood of

X for which V' x rA is a compact subset of €,,. Then f:v— H(rA)

is a holomorphic and hence ,uf is holomorphic on V. By the hypothesis
there exist a neighbourhood W of X in C" and a meromorphic function
g on W with values in H(C) such that

flxvei) = 8lxp:
h ~
Write g = =, where h € H(W,H(C)), 0 € H(W), ¢ # 0, such that
o

codim Z (E, o) 2. Tt follows that f : W x € — C is meromorphic and
P(f)=P(g) x C, where f is induced by g. Moreover,

v

f‘[X\P@)}x(D - f|[X\P<§>]x(E'

Write the Hartogs expansion of f on (), as

f(za )‘) = Z fn(z)/\na

n>0
where . 2
2y
[A=e—5%

1
Since the sequence {—log| fn(z)|} is locally bounded from above, for each
n

m > 1 we can define

Y (2) = sup {%10g|fn(z)| in > m},
Y (2) = limsup ¥, (27).

2zl —z

By Bedford-Taylor [1] ¥}, is plurisubharmonic and the set {T/Jm < gZJ;'fn} is
pluripolar.
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Let

= lim .

Since (), is the domain of existence of f, 7:/}\ is not equal to —oo on every
non-empty open set in C". Indeed, if ¥y = —oco on a non-empty open
subset U of €C", then the Hartogs lemma implies that the series > f,,(2)\"™
n
converges to a holomorphic function on U x €. This yields that Ux € C €,
and hence g0| i = —0o. It follows that ;Z is plurisubharmonic and {w < @Z }

is pluripolar, where ¢ = W}gnoo Y- Choose a neighbourhood V' of X\ P(f)

in W such that V x A C Q. Consider the Hartogs expansion of fon
V x A with

F2) =" fal2)A™
n>0
Then .
falsne(s) = Flxypig) fornz0,

and hence N
f”|V = f"‘v for n > 0.

This yields

1 — 1
—oo = limsup —log|f,(z)| = limsup —log| f,,(2)|
n n
=9(2)
for z € V'\ <¢ < ;Z), which is impossible.
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