FRECHET-VALUED MEROMORPHIC FUNCTIONS ON COMPACT SETS IN \mathbb{C}^n

NGUYEN VAN DONG

ABSTRACT. Let F be a Frechet space. The main aim of this paper is to prove that $[F_{bor}^*]^* \in (LB_{\infty})$ if and only if $M(X, [F_{bor}^*]^*) = M_w(X, [F_{bor}^*]^*)$ for every compact uniqueness subset X of \mathbb{C}^n . We also prove that a compact set X in \mathbb{C}^n is pluripolar if and only if X is unique and $M(X, F) = M_w(X, F)$ for every Frechet space $F \in (DN)$.

1. INTRODUCTION

Let X be a subset of \mathbb{C}^n and F a sequentially complete locally convex space. A function f defined on a dense open subset X_0 of X with values in F is called meromorphic on X if it can be extended to a meromorphic function on a neighbourhood of X in \mathbb{C}^n . This means that there exist a neighbourhood U of X and a meromorphic function \hat{f} on U such that $X \setminus P(\hat{f})$ is dense in X and $f(z) = \hat{f}(z)$ for $z \in X_0 \setminus P(\hat{f})$. If this holds for x^*f , where x^* is an arbitrary element of the dual space F^* of F, we say that f is weakly meromorphic on X. Write M(X, F) and $M_w(X, F)$ for vector spaces of meromorphic and weakly meromorphic functions on X with values in F, respectively. The main aim of the present paper is to find necessary and sufficient conditions for which

$$(\omega) \qquad M(X,F) = M_w(X,F).$$

The case where F is a Banach space and X either is open or compact was proved in [3]. In [2] the authors proved that a Frechet space F has a continuous norm (resp. $F \in (DN)$) if and only if (ω) holds for every open subset (resp. \widetilde{L} -regular compact set) X of \mathbb{C}^n .

The main results of this paper are the following theorems.

Theorem A. Let F be a Frechet space. Then $[F_{bor}^*]^* \in (LB_{\infty})$ if and only if $M(X, [F_{bor}^*]^*) = M_w(X, [F_{bor}^*]^*)$ for every compact uniqueness set X of \mathbb{C}^n . Here F_{bor}^* denotes the space F^* equipped with the bornological topology.

Received December 31, 1996; in revised form May 8, 1997.

Theorem B. Let X be a compact set of \mathbb{C}^n . The following are equivalent:

- i) X is not pluripolar;
- ii) $\left[\mathcal{H}(X)\right]' \in \left(LB^{\infty}\right);$

iii) X is unique and $M(X, F) = M_w(X, F)$ for every Frechet space F with $F \in (DN)$.

2. Preliminaries

For a Frechet space E we always assume that its locally convex structure is generated by an increasing system $\{\| \|_n\}_{n=1}^{\infty}$ of semi-norms.

If M is an absolutely convex subset of E, we define $\|.\|_M^* : E \longrightarrow [0, +\infty]$ by

$$||u||_{M}^{*} = \sup\{|u(x)| : x \in M\},\$$

where E' denotes the topological dual of E. Instead of $||u||_{U_k}^*$ we write $||u||_k^*$, where $U_k = \{x \in E : ||x||_k \le 1\}$.

We say that E has the property:

(DN) There exists $p \in \mathbf{N}$ such that for every $q \in \mathbf{N}$ and every d > 0 there exist $k \in \mathbf{N}$ and C > 0 with

$$\|x\|_{q}^{1+d} \le C \|x\|_{k} \|x\|_{p}^{d}$$

for all $x \in E$.

 (LB_{∞}) For every positive increasing unbounded sequence $(\rho_N)_{N \in \mathbf{N}}$ there exists $p \in \mathbf{N}$ such that for all $q \in \mathbf{N}$ there exist $N_0 \in \mathbf{N}$ and C > 0 such that for all $x \in E$ there exists $k \in \mathbf{N}$ with $q \leq k \leq N_0$ with

$$||x||_q^{1+\rho_k} \le C ||x||_k ||x||_p^{\rho_k}.$$

 (LB^{∞}) For every positive increasing unbounded sequence $(\rho_N)_{N \in \mathbb{N}}$ and every $p \in \mathbb{N}$ there exists $q \in \mathbb{N}$ such that for all $n_0 \in \mathbb{N}$ there exist $N_0 \in \mathbb{N}$ and C > 0 such that for all $u \in E'$ there exists $k \in \mathbb{N}$ with $n_0 \leq k \leq N_0$ with

$$|| u ||_q^{* 1 + \rho_k} \le C || u ||_k^* || u ||_p^{* \rho_k}$$

Note that $\|.\|_p$ is a continuous norm on E if $E \in (LB_{\infty})$.

These properties were introduced and investigated by Vogt (see [8], [9]). We remark that

$$(LB_{\infty}) \iff (DN),$$

$$(LB^{\infty}) \quad \overleftarrow{\leftarrow} \quad (\Omega).$$

Let α be an increasing sequence of positive real numbers with $\lim_{n \to \infty} \alpha_n = \infty$ (α will be called an exponent sequence). For $0 < R \leq \infty$ we define the power series space by

$$\lambda_R(\alpha) = \left\{ x \in \mathbb{C}^N : \|x\|_r = \sum |x_n| r^{\alpha_n} < \infty \text{ for any } 0 < r < R \right\}$$

Then $\lambda_R(\alpha)$ is a Frechet space under the natural topology induced by the seminorms $\{\| \|_r : 0 < r < R\}$. We call $\lambda_R(\alpha)$ a power series space of finite type if $R < \infty$ or of infinite type if $R = \infty$.

Well-known examples of nuclear power series spaces are

$$s \cong \lambda_{\infty} \left(\log(n+1)_{n \in \mathbf{N}} \right),$$
$$\mathcal{H}(\mathbb{C}^{k}) \cong \lambda_{\infty} \left(\left(n^{\frac{1}{k}} \right)_{n \in \mathbf{N}} \right),$$
$$\mathcal{H}(D^{k}) \cong \lambda_{1} \left(\left(n^{\frac{1}{k}} \right)_{n \in \mathbf{N}} \right),$$

where D stands for the open unit disk in \mathbb{C} and $\mathcal{H}(\Omega)$ denotes the space of all holomorphic functions on Ω endowed with the compact-open topology.

For locally convex spaces E and F we denote by $\mathcal{L}(E, F)$ the space of all continuous linear mappings, while $\mathcal{LB}(E, F)$ denotes the set of all $A \in \mathcal{L}(E, F)$ for which there exists a zero neighbourhood U in E such that A(U) is bounded.

We recall three following results of [8]

Lemma 2.1. For a Frechet space F the following assertions are equivalent:

- (i) $\mathcal{L}(\lambda_{\infty}(\beta), F) = \mathcal{L}\mathcal{B}(\lambda_{\infty}(\beta), F)$ for all exponent sequences β ;
- (ii) F has property (LB_{∞}) .

Lemma 2.2. For a Frechet space E the following assertions are equivalent:

- (i) $\mathcal{L}(E, \lambda_{\infty}^{\infty}(\alpha)) = \mathcal{LB}(E, \lambda_{\infty}^{\infty}(\alpha))$ for all exponent sequences α ;
- (ii) E has property (LB^{∞}) .

Lemma 2.3. Let E, F be Frechet spaces with $E \in (LB^{\infty})$ and $F \in (DN)$. Then

$$\mathcal{L}(E,F) = \mathcal{L}\mathcal{B}(E,F).$$

Unless otherwise specified, we shall write, throughout this paper, Z(h) and $Z(g, \sigma)$ for $h^{-1}(0)$ and $g^{-1}(0) \cap \sigma^{-1}(0)$, respectively, and F_{bor}^* for the bornological space associated to F^* , where F^* is the strong dual of Frechet space F.

3. Proof of Theorem A

To prove Theorem A we first prove the following results:

Lemma 3.1 [2]. Let X be a pseudoconvex domain in \mathbb{C}^n and f a meromorphic function on X with values in a locally convex space F. Then, for every relatively compact domain Y in X, there exist holomorphic functions h and σ on X such that

$$f = \frac{h}{\sigma}$$
 and $\operatorname{codim}_y Z(h, \sigma) \ge 2$ for $y \in Y$.

Lemma 3.2 [2]. Let F be a locally convex space. Let σ and β be holomorphic functions on an open subset $X \subset \mathbb{C}^n$ and $g: X \longrightarrow F$ a holomorphic function. Assume that $\frac{\beta g}{\sigma}$ is holomorphic on X and $\operatorname{codim} Z(g, \sigma) \geq 2$. Then $\frac{\beta}{\sigma}$ is holomorphic on X.

Lemma 3.3. There exists a polar compact uniqueness set X in \mathbb{C} .

Proof. a) First we prove that a compact set X in \mathbb{C} is unique if and only if X is perfect. Indeed, let $f \in \mathcal{H}(U)$, $f|_X = 0$, where U is a neighbourhood of X in \mathbb{C} . Then $f|_Z = 0$ for every connected component Z of U meeting X and hence f = 0 on $V = \bigcup \{ Z : Z \text{ is a connected component of } U \text{ with } Z \cap X \neq \emptyset \}$.

Conversely, if X is not perfect, then X has an isolated point and hence X is not unique.

b) Given a sequence $\ell = (\ell_n) \downarrow 0$, $\ell_n < 2^{-n}$. Define a family of closed intervals $(J_{n,j})_{n>0,1< j<2^n}$ with

$$J_{0,s} = [0,1] \text{ for } s \ge 1,$$

$$J_{n+1,2j-1} = [\min \ J_{n,j}, \min \ J_{n,j} + \ell_n],$$

$$J_{n+1,2j} = [\max \ J_{n,j} - \ell_n, \max \ J_{n,j}],$$

$$C_n(\ell) = \bigcup_{j=1}^{2^n} J_{n,j},$$
$$C(\ell) = \bigcap_{n \ge 0} C_n(\ell)$$

c) For each $n \ge 0$ define μ_n to be the uniform measure on $\bigcup_{j=1}^{2^n} J_{n,j}$ giving weight 2^{-n} to each $J_{n,j}$, i.e.

$$d\mu_n(x) = \frac{1}{2^n l_n} \chi_{\bigcup_{j=1}^{2^n} J_{n,j}} dx.$$

Define a probability measure on $C(\ell)$ by

$$\mu = \lim_{n \to \infty} \mu_n.$$

Note that this limit exists. Put

$$\varphi(z) = \int_{\mathbb{C}} \log |x - z| d\mu(x).$$

d) We shall prove that with $\ell_n = e^{-2^n}$ and μ defined as above, $C (= C(\ell))$ is a polar compact uniqueness set.

Clearly, C is perfect because C is a set of the Cantor type. We prove $C = \varphi^{-1} (-\infty)$. Obviously $\varphi(z) > -\infty$ for $z \notin C$. Now assume that $x_0 \in C$ and $x_0 \in J_{n,j_n} \forall n \ge 0$. Since $J_{n,j_{n+1}} \subset J_{n,j_n}$ we have

$$\int_{\mathbb{C}} \log|x - x_0| d\mu(x) = \sum_{n \ge 0}^{\infty} \int_{J_{n, j_n} \setminus J_{n, j_{n+1}}} \log|x - x_0| d\mu(x)$$
$$\leq \sum_{n \ge 0}^{\infty} \log(\ell_n) \mu(J_{n, j_n} \setminus J_{n, j_{n+1}}) = -\sum_{n \ge 0} 2^{-n} 2^{n-1} = -\sum_{n \ge 0} \frac{1}{2} = -\infty.$$

Finally, it remains to check that φ is subharmonic on \mathbb{C} .

Let $z_0 \notin C$. Then dist $(C, z_0) > 0$ and hence $\log |z - z_0|$ is bounded on a neighbourhood of z_0 . By Lebesgue dominated convergence theorem, φ is continuous at z_0 . Let $z_0 \in C$. Given A > 0. Choose $\varepsilon > 0$ such that

$$\int_{\mathbb{C}\setminus\triangle(z_0,\varepsilon)}\log|x-x_0|\ d\mu(x)<-2A,$$

with

$$\triangle(z_0,\varepsilon) = \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}.$$

Since

$$\log|x-z| \longrightarrow \log|x-z_0|$$
 as $z \longrightarrow z_0$

uniformly on $\mathbb{C} \setminus \triangle(z_0, \varepsilon)$, we have

$$\int_{\mathbb{C}} \log|x-z| \ d\mu(x) \leq \int_{\mathbb{C} \setminus \triangle(z_0,\varepsilon)} \log|x-z| \ d\mu(x) \leq -A$$

for $|z-z_0| < \eta$ with $\eta > 0$ sufficiently small. Thus φ is upper-semicontinuous. Hence, from the inequality

$$\frac{1}{\pi r^2} \int_{\Delta(a,r)} \varphi(z) \ d\lambda(z) = \int_{\mathbb{C}} \frac{1}{\pi r^2} \int_{\Delta(a,r)} \log|x-z| \ d\mu(x)$$
$$\geq \int_{\mathbb{C}} \log|a-x| \ d\mu(x) = \varphi(a)$$

it follows that φ is subharmonic.

Remark. The author thanks P. Thomas, who showed us the construction of the set C as in Lemma 3.3.

Now we are able to prove Theorem A.

Let F be a Frechet space with $[F_{bor}^*]^* \in (LB_{\infty})$ and $f \in M_w(X, [F_{bor}^*]^*))$, where X is a compact uniqueness set in \mathbb{C}^n . First note that $F_{bor}^* \cong$ lim ind F_p^* , where $\{\|.\|_p\}$ is a fundamental system of semi-norms of F and F_p denotes the Banach space associated to $\|.\|_p$ for each $p \ge 1$. Hence $[F_{bor}^*]^* \cong \lim \operatorname{proj} F_p^{**}$. Since $[F_{bor}^*]^* \in (LB_{\infty})$, we may assume without loss of generality that $\|.\|_{U_1^0}^*$ is a norm on $[F_{bor}^*]^*$. By [3], for each $p \ge 1$, there exist a neighbourhood U_p of X in \mathbb{C}^n and a meromorphic function $\widehat{f_p} : U_p \longrightarrow F_p^{**}$ such that $f_p|_{X \setminus P(\widehat{f_p})} = \omega_p f|_{X \setminus P(\widehat{f_p})}$, where $\omega_p : [F_{bor}^*]^* \longrightarrow F_p^{**}$ is the canonical map. The meromorphic function f_p is extended uniquely to a meromorphic

The meromorphic function f_p is extended uniquely to a meromorphic function \hat{f}_p on \hat{U}_p , the envelope of holomorphy of U_p . By Lemma 3.1, \hat{f}_p and hence f_p can be written in the form $f_p = \frac{h_p}{\sigma_p}$, where $h_p : U_p \longrightarrow F_p^{**}$, $\sigma_p : U_p \longrightarrow \mathbb{C}$ are holomorphic functions and $\sigma_p \neq 0$ such that

$$\operatorname{codim} Z(h_p, \sigma_p) \ge 2.$$

Since $\|.\|_{U_1^0}^*$ is a norm on $[F_{bor}^*]^*$, ω_1^p is injective, where $\omega_1^p: F_p^{**} \longrightarrow F_1^{**}$ is the canonical map. Since $\omega_1 = \omega_1^p . \omega_p$ and by the uniqueness of X, shrinking U_p we get

$$\left.\frac{h_1}{\sigma_1}\right|_{U_p} = \frac{\omega_1^p . h_p}{\sigma_p}$$

From the injectivity of ω_1^p we have

$$Z(\omega_1^p h_p, \sigma_p) = Z(h_p, \sigma_p),$$

and hence

$$\operatorname{codim} Z(\omega_1^p h_p, \sigma_p) = \operatorname{codim} Z(h_p, \sigma_p) \ge 2.$$

Indeed, we have

$$\frac{h_1}{\sigma_1}\Big|_{X \setminus P(f_p)} = \frac{\omega_1^p h_p}{\sigma_p}\Big|_{X \setminus P(f_p)}$$

or

$$\sigma_p h_1 \big|_{X \setminus P(f_p)} = \omega_1^p . \sigma_1 h_p \big|_{X \setminus P(f_p)}$$

Since $X \setminus P(f_p)$ is dense in X,

$$\sigma_p h_1 \big|_X = \omega_1^p . \sigma_1 h_p \big|_X$$

By Lemma 3.2, it follows that $\frac{\sigma_1}{\sigma_p}\Big|_{U_p}$ is holomorphic for $p \ge 1$. Again by the uniqueness of X we can define a linear map

$$\widetilde{h} : F_{bor}^* \longrightarrow \mathcal{H}(X)$$

by

$$\widetilde{h}\big|_{F_p^{**}} = \left(\frac{\sigma_1}{\sigma_p}\right) \widetilde{h}_p \quad \text{for } p \ge 1,$$

where $\tilde{h}_p(x^*)(z) = x^* (h_p(z))$ for $z \in U_p$ and $x^* \in F_p^*$. Obviously \tilde{h} has a closed graph. The open mapping theorem of Grothendieck [6] yields the continuity of \tilde{h} .

By [5], $[\mathcal{H}(X)]^*$ is isomorphic to a quotient space of $\mathcal{H}(\mathbb{C}^n) \cong \lambda_{\infty}\left(j^{\frac{1}{n}}\right)$ and hence by [8]:

$$\mathcal{LB}(F^*, [\mathcal{H}(X)]) = \mathcal{L}(F^*, [\mathcal{H}(X)]).$$

It follows that we can find a neighbourhood W of $0 \in F^*_{bor}$ such that $\tilde{h}(W)$ is bounded in $\mathcal{H}(X)$. This yields p for which $\tilde{h}(W)$ is contained and bounded in $\mathcal{H}^{\infty}(U_p)$, the Banach space of bounded holomorphic functions on U_p . Thus, the form

$$\widehat{h}(z)(x^*) = \widetilde{h}(x^*)(z) \text{ for } z \in U_p, \quad x^* \in F_{bor}^*$$

defines a holomorphic function \hat{h} from U_p into $[F_{bor}^*]^*$ such that $\frac{h}{\sigma_1}|_X = f$.

Hence $f \in M(X, [F_{bor}^*]^*)$.

Conversely, by Lemma 3.3 we can choose a compact polar uniqueness set X in \mathbb{C} . It is known that $[\mathcal{H}(X)]^* \cong \mathcal{H}(\mathbb{C} \setminus X) \cong \mathcal{H}(\mathbb{C})$. Here the first isomorphism follows from the dual Grothendieck theorem and the second one was proved by Zaharjuta [10].

By Vogt [8] it suffices to show that

$$\mathcal{LB}\left([\mathcal{H}(X)]^*, [F_{bor}^*]^*\right) = \mathcal{L}\left([\mathcal{H}(X)]^*, [F_{bor}^*]^*\right).$$

Given $T \in \mathcal{L}([\mathcal{H}(X)]^*, [F_{bor}^*]^*)$. Consider $T^* : [F_{bor}^*]^{**} \longrightarrow [\mathcal{H}(X)]^{**}$. Since $[\mathcal{H}(X)]^{**} = \mathcal{H}(X)$, we can define a map $f : X \longrightarrow [F_{bor}^*]^*$ by

$$f(z)(x^*) = (T^*x^*)(z) \text{ for } x^* \in [F_{bor}^*]^{**}, \ z \in X.$$

By the $\sigma[(F_{bor}^*]^{**}, [F_{bor}^*]^*)$ -continuity of $f(z), f(z) \in [F_{bor}^*]^*$. Moreover, $f \in M_w(X, [F_{bor}^*]^*)$. By the hypothesis we can find a neighbourhood Uof X in \mathbb{C}^n and a $[F_{bor}^*]^*$ -valued meromorphic function \widehat{f} on U such that

$$\widehat{f}\big|_{X \setminus P(\widehat{f})} = f\big|_{X \setminus P(\widehat{f})}.$$

Hence we have

$$\widehat{\sigma}(z)(T^*x^*)(z) = \widehat{\sigma}(z)\widehat{f}(z)(x^*) = \widehat{h}(z)(x^*),$$

where $\hat{h} : U \longrightarrow [F_{bor}^*]^*$ and $\hat{\sigma} : U \longrightarrow \mathbb{C}$ are bounded holomorphic functions and $\hat{\sigma} \neq 0$ such that $\hat{f} = \frac{\hat{h}}{\hat{\sigma}}$ and $Z(\hat{h}, \hat{\sigma}) = \emptyset$.

We have that $\widehat{\sigma}T^*(B^0)$ is contained and bounded in $\mathcal{H}^{\infty}(U)$, where $B = \widehat{h}(U)$. It follows that $T^*(B^0)$ is contained and bounded in $\mathcal{H}(U \setminus V)$

 $Z(\widehat{\sigma})$). Shrinking U we may assume that $P(\widehat{f}) = Z(\widehat{\sigma}) \subset X$ and has only finite many points.

Since X is unique, X does not have an isolated point. On the other hand, from the continuity of f on X it follows that $Z(\hat{\sigma}) = \emptyset$ and hence \hat{f} is holomorphic on U. Choose a relatively compact neighbourhood V of X in U. We have

$$\inf_{V} |\widehat{\sigma}| > 0.$$

Hence T^* is bounded on B° .

Put $W = T^*(B^\circ)$. Then $V = W^\circ$ is a neighbourhood of $O \in [\mathcal{H}(X)]^*$ and $T(V) \subset B^{\circ\circ}$ is bounded in $[F_{bor}^*]^*$. Hence $[F_{bor}^*]^* \in (LB_\infty)$. The theorem is now proved.

4. Proof of Theorem B

We need the following results.

Lemma 4.1. Let K be a compact set in \mathbb{C}^n such that $[\mathcal{H}(K)]' \in (LB^{\infty})$. Then K is a unique set.

Proof. Given $f \in \mathcal{H}(K)$ with $f|_{K} = 0$. Let (U_k) be a neighbourhood basis of K in \mathbb{C}^n . For each $k \geq 1$, put

$$\varepsilon_k = \|f\|_{U_k} = \sup\{|f(x)| : x \in U_k\}.$$

Then $\varepsilon_k \downarrow 0$. By applying (LB^{∞}) to $\rho_N = \sqrt{-\log \varepsilon_N} \uparrow +\infty$ we have for $p \ge 1, f \in \mathcal{H}^{\infty}(U_p)$, there exists $q \in \mathbf{N}$ such that for all $N \in \mathbf{N}$ there exist $\widetilde{N} \in \mathbf{N}$ and $C_N > 0$ such that for all $n \in \mathbf{N}$ there exists $k_n \in \mathbf{N}$ with $N \le k_n \le \widetilde{N}$ and

$$||f^n||_q^{1+\rho_{k_n}} \leq C_N ||f^n||_{k_n} ||f^n||_p^{\rho_{k_n}}.$$

This yields

$$\|f\|_q^{1+\rho_{k_n}} \leq C_N^{\frac{1}{n}} \|f\|_{k_n} \|f\|_{p^{n_k}}.$$

Choose $N \leq k \leq \widetilde{N}$ such that $\#A = \infty$, where $A = \{n : k_n = k\}$. Then

$$\|f\|_{q} \leq \lim_{n \in A} C_{N}^{\frac{1}{n}} \|f\|_{k_{n}}^{\frac{1}{1+\rho_{k_{n}}}} \|f\|_{p}^{\frac{\nu_{k_{n}}}{1+\rho_{k_{n}}}}$$
$$= \|f\|_{k}^{\frac{1}{1+\rho_{k}}} \|f\|_{p}^{\frac{\rho_{k}}{1+\rho_{k}}}$$
$$= (\varepsilon_{k})^{\frac{1}{1+\rho_{k}}} (\varepsilon_{p})^{\frac{\rho_{k}}{1+\rho_{k}}} \longrightarrow 0$$

as $k \longrightarrow \infty$ because

$$\frac{1}{1+\rho_k}\log\varepsilon_k = \frac{\log\varepsilon_k}{1+\sqrt{-\log\varepsilon_k}} \longrightarrow -\infty$$

as $k \longrightarrow \infty$ and

$$\lim_{k \to \infty} \left(\varepsilon_p \right)^{\frac{\rho_k}{1 + \rho_k}} = \varepsilon_p.$$

Hence f = 0 on V_q . This means that K is a uniqueness set.

Lemma 4.2 [2]. Let F be a Frechet space with $F \in (DN)$. Then $[F_{bor}^*] * \in (DN)$.

Now we are able to prove Theorem B.

(i) \Rightarrow (ii). By Vogt [8], to prove $[\mathcal{H}(X)]' \in (LB^{\infty})$ it suffices to show that every continuous linear map $T : [\mathcal{H}(X)]' \longrightarrow (\mathbb{C})$ is bounded on some neighbourhood of $0 \in [\mathcal{H}(X)]'$.

Define the function

$$f_T(x,\lambda) = T(\delta_x)(\lambda)$$
 for $x \in X, \ \lambda \in \mathbb{C}$,

where δ_x is the Dirac functional defined by x:

$$\delta_x(\varphi) = \varphi(x) \quad \text{for} \quad \varphi \in \mathcal{H}(X).$$

Let $\{V_p\}$ be a neighbourhood basis of X in \mathbb{C}^n . For each $p \ge 1$, put

$$A_p = \Big\{ \lambda \in \mathbb{C} : f_T^\lambda \in \mathcal{H}(V_p); \ \|f_T^\lambda\|_{V_p} \le p \Big\},\$$

where

$$f_T^{\lambda}(x) = f_T(x,\lambda).$$

Then A_p is closed in \mathbb{C} for $p \geq 1$ because $\mathcal{H}(V_p)$ is Montel. Moreover, $\mathbb{C} = \bigcup_{p \geq 1} A_p$. The Baire Theorem yields p_0 such that $\operatorname{Int} A_{p_0} \neq \emptyset$.

Consider the separate holomorphic function

$$\widetilde{f}_T: (X \times \mathbb{C}) \cup (V \times \operatorname{Int} A_{p_0}) \longrightarrow \mathbb{C}$$

given by

$$\widetilde{f}_T(x,\lambda) = \begin{cases} f_T(x,\lambda) & \text{if } (x,\lambda) \in X \times \mathbb{C}, \\ f_T^{\lambda}(x) & \text{if } (x,\lambda) \in V \times \operatorname{Int} A_{p_0}, \end{cases}$$

where $V = V_{p_0}$. By Nguyen T. Van and Zeriahi [7], there exists a holomorphic extension \hat{f}_T of \tilde{f}_T to a neighbourhood $V \times \mathbb{C}$ of $X \times \mathbb{C}$. Since

$$\mathcal{H}(V,\mathcal{H}(\mathbb{C})) \cong \mathcal{H}(V)\widehat{\otimes}_{\pi}\mathcal{H}(\mathbb{C}) \cong \mathcal{L}\left([\mathcal{H}(V)]',\mathcal{H}(\mathbb{C})\right),$$

the form

$$S(\delta_z)(\lambda) = \widehat{f}_T(z)(\lambda) \text{ for } z \in V, \ \lambda \in \mathbb{C}$$

defines a continuous linear map from $[\mathcal{H}(V)]'$ into $\mathcal{H}(\mathbb{C})$. By the uniqueness of X, from the relations

$$T\left(\sum_{j} \lambda_{j} \,\delta_{z_{j}}\right) = \sum_{j} \lambda_{j} \,T(\delta_{z_{j}}) = \sum_{j} \lambda_{j} \,f_{T}(z_{j})$$
$$= \sum_{j} \lambda_{j} \,S(\delta_{z_{j}}) = S\left(\sum_{j} \lambda_{j} \,\delta_{z_{j}}\right)$$

it follows that T = S. Hence T is compact.

(ii) \Rightarrow (iii). Let $F \in (DN)$ and $f \in M_w(X, F)$, where X is a compact set in \mathbb{C}^n with $[\mathcal{H}(X)]' \in (LB^{\infty})$. By Lemma 4.1, X is a unique set. As in the proof of Theorem A, we can define a linear continuous mapping

$$\widetilde{h} : F^*_{\mathrm{bor}} \longrightarrow \mathcal{H}(X).$$

Since $[\mathcal{H}(X)]' \in (LB^{\infty})$ and $[F_{bor}^*]^* \in (DN)$ (Lemma 4.2), by Vogt [8] we have

$$\mathcal{L}\left(F_{bor}^{*}, \mathcal{H}(X)\right) = \mathcal{L}\mathcal{B}\left(F_{bor}^{*}, \mathcal{H}(X)\right).$$

By an argument analogous to that used in the proof of Theorem A, we can find a neighbourhood W of $0 \in F_{bor}^*$ and a neighbourhood U_p of Wsuch that $\tilde{h}(W)$ is contained and bounded in $\mathcal{H}^{\infty}(U_p)$, the Banach space of bounded holomorphic functions on U_p . Thus, the form

$$\widehat{h}(z)(x^*) = \widetilde{h}(x^*)(z) \text{ for } z \in U_p, \ x^* \in F$$

defines a holomorphic function \hat{h} from U_p into F. From this it follows that $f \in M(X, F)$.

(iii) \Rightarrow (i) Assume that X is pluripolar. Consider a plurisubharmonic function φ on \mathbb{C}^n for which $\varphi|_X - \infty$, $\varphi \not\equiv -\infty$ and the Hartogs domain

$$\Omega_{\varphi} = \Big\{ (z, \lambda) \in \mathbb{C}^n \times \mathbb{C} : |\lambda| < e^{-\varphi(z)} \Big\}.$$

Let f be holomorphic function with Ω_{φ} being a domain of existence of f[4]. Since $X \times \mathbb{C} \subset \Omega_{\varphi}$, f induces $\widehat{f} \in \mathcal{H}_w(X, \mathcal{H}(\mathbb{C}))$, where $\mathcal{H}_w(X, \mathcal{H}(\mathbb{C}))$ is the space of weakly holomorphic functions on X with values in $\mathcal{H}(\mathbb{C})$.

Indeed, let $\mu \in [\mathcal{H}(\mathbb{C})]'$. Choose r > 0 such that μ can be considered as a continuous linear functional on $\mathcal{H}(r\Delta)$. Let V be a neighbourhood of X for which $V \times r\Delta$ is a compact subset of Ω_{φ} . Then $\widehat{f} : V \longrightarrow \mathcal{H}(r\Delta)$ is a holomorphic and hence $\mu \widehat{f}$ is holomorphic on V. By the hypothesis there exist a neighbourhood W of X in \mathbb{C}^n and a meromorphic function \widehat{g} on W with values in $\mathcal{H}(\mathbb{C})$ such that

$$\widehat{f}\big|_{X \setminus P(\widehat{g}\,)} = \widehat{g}\big|_{X \setminus P(\widehat{g}\,)}.$$

Write $\hat{g} = \frac{h}{\hat{\sigma}}$, where $\hat{h} \in \mathcal{H}(W, \mathcal{H}(\mathbb{C}))$, $\hat{\sigma} \in \mathcal{H}(W)$, $\hat{\sigma} \neq 0$, such that $\operatorname{codim} Z(\hat{h}, \hat{\sigma}) \geq 2$. It follows that $\tilde{f}: W \times \mathbb{C} \to \mathbb{C}$ is meromorphic and $P(\tilde{f}) = P(\hat{g}) \times \mathbb{C}$, where \tilde{f} is induced by \hat{g} . Moreover,

$$\widetilde{f}\big|_{[X\setminus P(\widehat{g})]\times\mathbb{C}} = f\big|_{[X\setminus P(\widehat{g})]\times\mathbb{C}}.$$

Write the Hartogs expansion of f on Ω_{φ} as

$$f(z,\lambda) = \sum_{n\geq 0} f_n(z)\lambda^n$$

where

$$f_n(z) = \frac{1}{2\pi i} \int_{|\lambda| = e^{-\delta\varphi}} \frac{f(z,\lambda)}{\lambda^{n+1}} d\lambda \quad (\delta > 1).$$

Since the sequence $\left\{\frac{1}{n}\log|f_n(z)|\right\}$ is locally bounded from above, for each $m \ge 1$ we can define

$$\psi_m(z) = \sup\left\{\frac{1}{n}\log|f_n(z)| : n \ge m\right\},\$$

$$\psi_m^*(z) = \limsup_{z' \to z} \psi_m(z').$$

By Bedford-Taylor [1] ψ_m^* is plurisubharmonic and the set $\left\{\psi_m < \psi_m^*\right\}$ is pluripolar.

$$\widehat{\psi} = \lim_{m \to \infty} \psi_m^*$$

Since Ω_{φ} is the domain of existence of f, $\widehat{\psi}$ is not equal to $-\infty$ on every non-empty open set in \mathbb{C}^n . Indeed, if $\widehat{\psi} = -\infty$ on a non-empty open subset U of \mathbb{C}^n , then the Hartogs lemma implies that the series $\sum_{n} f_n(z)\lambda^n$ converges to a holomorphic function on $U \times \mathbb{C}$. This yields that $U \times \mathbb{C} \subset \Omega_{\varphi}$ and hence $\varphi|_U = -\infty$. It follows that $\widehat{\psi}$ is plurisubharmonic and $\{\psi < \widehat{\psi}\}$ is pluripolar, where $\psi = \lim_{m \to \infty} \psi_m$. Choose a neighbourhood V of $X \setminus P(\widetilde{f})$ in W such that $V \times \Delta \subset \Omega_{\varphi}$. Consider the Hartogs expansion of \widetilde{f} on $V \times \Delta$ with

$$\widetilde{f}(z,\lambda) = \sum_{n\geq 0} \widetilde{f_n}(z)\lambda^n.$$

Then

$$\widetilde{f_n}|_{X \setminus P(\widehat{g})} = \widehat{f}|_{X \setminus P(\widehat{g})} \text{ for } n \ge 0,$$

and hence

$$\widetilde{f_n}\Big|_V = f_n\Big|_V \quad \text{for } n \ge 0.$$

This yields

$$-\infty = \limsup \frac{1}{n} \log |\widetilde{f_n}(z)| = \limsup \frac{1}{n} \log |f_n(z)|$$
$$= \widehat{\psi}(z)$$

for $z \in V \setminus (\psi < \widehat{\psi})$, which is impossible.

Acknowledgements

The author thanks Professor Nguyen Van Khue and the referee for helpful suggestions.

References

- E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- Nguyen Van Dong and Le Mau Hai, Meromorphic functions with values in a Fréchet space and linear topological invariant (DN), Vietnam J. Math. 25 (1997), 319-330.
- Le Mau Hai, Nguyen Van Khue and Nguyen Thu Nga, Weak meromorphic extension, Colloq. Math. 64 (1993), 65-70.

- 4. L. Hormander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
- 5. R. Meise and D. Vogt, *Holomorphic functions of uniformly bounded type on nuclear Frechet spaces*, Studia Math. **83** (1986), 147-166.
- 6. A. P. Robertson and W. Robertson, Topological Vector Spaces, Cambridge, 1964.
- T. V. Nguyen and A. Zeriahi, Familles de polynomes presque partout bornées, Bull. Sci. Math. 2^{eme} série 107 (1983), 81-91.
- D. Vogt, Frechetraume zwischen deren jede stetige linear Abbildung beschrankt ist, J. Rein. Angew. Math. 345 (1983), 182-200.
- 9. D. Vogt, On two classes of F-spaces, Arch. Math. 45 (1985), 255-266.
- V. P. Zaharjuta, Spaces of functions of one variable, analytic in open sets and on compacta, Math. USSR Sbornik 7 (1970), 75-88 (in Russian).

DEPARTMENT OF MATHEMATICS HO CHI MINH CITY UNIVERSITY OF EDUCATION 280 AN DUONG VUONG, DISTRICT 5.