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FRECHET-VALUED MEROMORPHIC FUNCTIONS
ON COMPACT SETS IN lCn

NGUYEN VAN DONG

Abstract. Let F be a Frechet space. The main aim of this paper is

to prove that [F ∗bor]
∗ ∈ (LB∞) if and only if M(X, [F ∗bor]

∗) =
Mw(X, [F ∗bor]

∗) for every compact uniqueness subset X of lCn
. We also

prove that a compact set X in lCn
is pluripolar if and only if X is unique

and M(X, F ) = Mw(X, F ) for every Frechet space F ∈ (DN).

1. Introduction

Let X be a subset of lCn and F a sequentially complete locally convex
space. A function f defined on a dense open subset X0 of X with values
in F is called meromorphic on X if it can be extended to a meromorphic
function on a neighbourhood of X in lCn. This means that there exist
a neighbourhood U of X and a meromorphic function f̂ on U such that
X \ P (f̂) is dense in X and f(z) = f̂(z) for z ∈ X0 \ P (f̂). If this holds
for x∗f , where x∗ is an arbitrary element of the dual space F ∗ of F , we
say that f is weakly meromorphic on X. Write M(X,F ) and Mw(X,F )
for vector spaces of meromorphic and weakly meromorphic functions on
X with values in F , respectively. The main aim of the present paper is to
find necessary and sufficient conditions for which

(ω) M(X, F ) = Mw(X, F ).

The case where F is a Banach space and X either is open or compact
was proved in [3]. In [2] the authors proved that a Frechet space F has a
continuous norm (resp. F ∈ (DN)) if and only if (ω) holds for every open
subset (resp. L̃-regular compact set) X of lCn.

The main results of this paper are the following theorems.

Theorem A. Let F be a Frechet space. Then [F ∗bor]
∗ ∈ (LB∞) if and

only if M(X, [F ∗bor]
∗) = Mw(X, [F ∗bor]

∗) for every compact uniqueness set
X of lCn. Here F ∗bor denotes the space F ∗ equipped with the bornological
topology.
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Theorem B. Let X be a compact set of lCn. The following are equivalent:
i) X is not pluripolar;
ii)

[H(X)
]′ ∈ (

LB∞)
;

iii) X is unique and M(X,F ) = Mw(X,F ) for every Frechet space F
with F ∈ (DN).

2. Preliminaries

For a Frechet space E we always assume that its locally convex struc-
ture is generated by an increasing system

{‖ ‖n

}∞
n=1

of semi-norms.
If M is an absolutely convex subset of E, we define ‖.‖∗M : E −→

[0,+∞] by
‖u‖∗M = sup

{|u(x)| : x ∈ M
}
,

where E′ denotes the topological dual of E. Instead of ‖u‖∗Uk
we write

‖u‖∗k, where Uk =
{
x ∈ E : ‖x‖k ≤ 1

}
.

We say that E has the property:

(DN) There exists p ∈ N such that for every q ∈ N and every d > 0
there exist k ∈ N and C > 0 with

‖x ‖1+d
q ≤ C ‖x ‖k ‖x ‖d

p

for all x ∈ E.

(LB∞) For every positive increasing unbounded sequence
(
ρN

)
N∈N

there
exists p ∈ N such that for all q ∈ N there exist N0 ∈ N and C > 0 such
that for all x ∈ E there exists k ∈ N with q ≤ k ≤ N0 with

‖x ‖1+ρk
q ≤ C ‖x ‖k ‖x ‖ρk

p .

(LB∞) For every positive increasing unbounded sequence
(
ρN

)
N∈N

and
every p ∈ N there exists q ∈ N such that for all n0 ∈ N there exist N0 ∈ N
and C > 0 such that for all u ∈ E′ there exists k ∈ N with n0 ≤ k ≤ N0

with
‖u ‖∗ 1+ρk

q ≤ C ‖u ‖∗k ‖u ‖∗ ρk
p .

Note that ‖.‖p is a continuous norm on E if E ∈ (LB∞).

These properties were introduced and investigated by Vogt (see [8], [9]).
We remark that

(LB∞) −→×←− (DN),
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(LB∞) −→×←− (Ω).

Let α be an increasing sequence of positive real numbers with lim
n→∞

αn =

∞ (α will be called an exponent sequence). For 0 < R ≤ ∞ we define the
power series space by

λR(α) =
{

x ∈ lCN : ‖x‖r =
∑

|xn|rαn < ∞ for any 0 < r < R
}

.

Then λR(α) is a Frechet space under the natural topology induced by the
seminorms {‖ ‖r : 0 < r < R}. We call λR(α) a power series space of
finite type if R < ∞ or of infinite type if R = ∞.

Well-known examples of nuclear power series spaces are

s ∼= λ∞ (log(n + 1)n∈N) ,

H( lCk) ∼= λ∞
((

n
1
k

)
n∈N

)
,

H(Dk) ∼= λ1

((
n

1
k

)
n∈N

)
,

where D stands for the open unit disk in lC and H(Ω) denotes the space of
all holomorphic functions on Ω endowed with the compact-open topology.

For locally convex spaces E and F we denote by L(E,F ) the space
of all continuous linear mappings, while LB(E, F ) denotes the set of all
A ∈ L(E,F ) for which there exists a zero neighbourhood U in E such
that A(U) is bounded.

We recall three following results of [8]

Lemma 2.1. For a Frechet space F the following assertions are equiva-
lent:

(i) L(λ∞(β), F ) = LB (λ∞(β), F ) for all exponent sequences β;

(ii) F has property (LB∞).

Lemma 2.2. For a Frechet space E the following assertions are equiva-
lent:

(i) L (E, λ∞∞(α)) = LB (E, λ∞∞(α)) for all exponent sequences α;

(ii) E has property (LB∞).

Lemma 2.3. Let E, F be Frechet spaces with E ∈ (LB∞) and F ∈ (DN).
Then

L (E,F ) = LB (E,F ).
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Unless otherwise specified, we shall write, throughout this paper, Z(h)
and Z(g, σ) for h−1(0) and g−1(0)∩σ−1(0), respectively, and F ∗bor for the
bornological space associated to F ∗, where F ∗ is the strong dual of Frechet
space F .

3. Proof of Theorem A

To prove Theorem A we first prove the following results:

Lemma 3.1 [2]. Let X be a pseudoconvex domain in lCn and f a mero-
morphic function on X with values in a locally convex space F . Then, for
every relatively compact domain Y in X, there exist holomorphic functions
h and σ on X such that

f =
h

σ
and codimyZ(h, σ) ≥ 2 for y ∈ Y.

Lemma 3.2 [2]. Let F be a locally convex space. Let σ and β be holomor-
phic functions on an open subset X ⊂ lCn and g : X −→ F a holomorphic

function. Assume that
βg

σ
is holomorphic on X and codimZ(g, σ) ≥ 2.

Then
β

σ
is holomorphic on X.

Lemma 3.3. There exists a polar compact uniqueness set X in lC.

Proof. a) First we prove that a compact set X in lC is unique if and only if
X is perfect. Indeed, let f ∈ H (U), f

∣∣
X

= 0, where U is a neighbourhood
of X in lC. Then f

∣∣
Z

= 0 for every connected component Z of U meeting
X and hence f = 0 on V =

⋃{Z : Z is a connected component of U with
Z ∩X 6= ∅}.

Conversely, if X is not perfect, then X has an isolated point and hence
X is not unique.

b) Given a sequence ` = (`n) ↓ 0, `n < 2−n. Define a family of closed
intervals

(
Jn, j

)
n≥0,1≤j≤2n with

J0,s = [0, 1] for s ≥ 1,

Jn+1,2j−1 = [min Jn, j ,min Jn, j + `n ],

Jn+1,2j = [max Jn, j − `n, max Jn, j ],
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Cn(`) =
2n⋃

j=1

Jn, j ,

C(`) =
⋂

n≥0

Cn(`).

c) For each n ≥ 0 define µn to be the uniform measure on
2n⋃

j=1

Jn, j

giving weight 2−n to each Jn, j , i.e.

dµn(x) =
1

2n ln
χ 2n⋃

j=1
Jn,j

dx.

Define a probability measure on C(`) by

µ = lim
n→∞

µn.

Note that this limit exists. Put

ϕ(z) =
∫

lC

log|x− z|dµ(x).

d) We shall prove that with `n = e−2n

and µ defined as above, C (=
C(`)) is a polar compact uniqueness set.

Clearly, C is perfect because C is a set of the Cantor type. We prove
C = ϕ−1 (−∞). Obviously ϕ(z) > −∞ for z 6∈ C. Now assume that
x0 ∈ C and x0 ∈ Jn, jn ∀ n ≥ 0. Since Jn, jn+1 ⊂ Jn, jn we have

∫

lC

log|x− x0|dµ(x) =
∞∑

n≥0

∫

Jn, jn\Jn, jn+1

log|x− x0|dµ(x)

≤
∞∑

n≥0

log(`n)µ(Jn, jn \ Jn, jn+1) = −
∑

n≥0

2−n2n−1 = −
∑

n≥0

1
2

= −∞.

Finally, it remains to check that ϕ is subharmonic on lC.

Let z0 6∈ C. Then dist(C, z0) > 0 and hence log|z − z0| is bounded on
a neighbourhood of z0. By Lebesgue dominated convergence theorem, ϕ
is continuous at z0. Let z0 ∈ C. Given A > 0. Choose ε > 0 such that

∫

lC\4(z0,ε)

log|x− x0| dµ(x) < −2A,
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with
4(z0, ε) = {z ∈ lC : |z − z0| < ε}.

Since
log|x− z| −→ log|x− z0| as z −→ z0

uniformly on lC \ 4(z0, ε), we have
∫

lC

log|x− z| dµ(x) ≤
∫

lC\4(z0,ε)

log|x− z| dµ(x) ≤ −A

for |z−z0| < η with η > 0 sufficiently small. Thus ϕ is upper-semicontinuous.
Hence, from the inequality

1
πr2

∫

4(a,r)

ϕ(z) dλ(z) =
∫

lC

1
πr2

∫

4(a,r)

log|x− z| dµ(x)

≥
∫

lC

log|a− x| dµ(x) = ϕ(a)

it follows that ϕ is subharmonic.

Remark. The author thanks P. Thomas, who showed us the construction
of the set C as in Lemma 3.3.

Now we are able to prove Theorem A.

Let F be a Frechet space with
[
F ∗bor

]∗ ∈ (LB∞) and f ∈ Mw

(
X,

[
F ∗bor

]∗)),
where X is a compact uniqueness set in lCn. First note that F ∗bor

∼=
lim ind F ∗p , where {‖.‖p} is a fundamental system of semi-norms of F and
Fp denotes the Banach space associated to ‖.‖p for each p ≥ 1. Hence[
F ∗bor

]∗ ∼= lim proj F ∗∗p . Since
[
F ∗bor

]∗ ∈ (LB∞), we may assume with-
out loss of generality that ‖.‖∗

U0
1

is a norm on
[
F ∗bor

]∗. By [3], for each
p ≥ 1, there exist a neighbourhood Up of X in lCn and a meromorphic
function f̂p : Up −→ F ∗∗p such that fp

∣∣
X\P (f̂p)

= ωpf
∣∣
X\P (f̂p)

, where

ωp :
[
F ∗bor

]∗ −→ F ∗∗p is the canonical map.
The meromorphic function fp is extended uniquely to a meromorphic

function f̂p on Ûp, the envelope of holomorphy of Up. By Lemma 3.1, f̂p

and hence fp can be written in the form fp =
hp

σp
, where hp : Up −→ F ∗∗p ,

σp : Up −→ lC are holomorphic functions and σp 6= 0 such that

codim Z(hp, σp) ≥ 2.
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Since ‖.‖∗
U0

1
is a norm on

[
F ∗bor

]∗, ωp
1 is injective, where ωp

1 : F ∗∗p −→ F ∗∗1

is the canonical map. Since ω1 = ωp
1 .ωp and by the uniqueness of X,

shrinking Up we get
h1

σ1

∣∣∣
Up

=
ωp

1 .hp

σp
·

From the injectivity of ωp
1 we have

Z(ωp
1hp, σp) = Z(hp, σp),

and hence
codim Z(ωp

1hp, σp) = codimZ(hp, σp) ≥ 2.

Indeed, we have
h1

σ1

∣∣∣
X\P (fp)

=
ωp

1 .hp

σp

∣∣∣
X\P (fp)

or
σph1

∣∣
X\P (fp)

= ωp
1 .σ1hp

∣∣
X\P (fp)

.

Since X \ P (fp) is dense in X,

σph1

∣∣
X

= ωp
1 .σ1hp

∣∣
X

.

By Lemma 3.2, it follows that
σ1

σp

∣∣∣
Up

is holomorphic for p ≥ 1. Again by

the uniqueness of X we can define a linear map

h̃ : F ∗bor −→ H(X)

by

h̃
∣∣
F∗∗p

=
(

σ1

σp

)
h̃p for p ≥ 1,

where h̃p(x∗)(z) = x∗ (hp(z)) for z ∈ Up and x∗ ∈ F ∗p . Obviously h̃ has a
closed graph. The open mapping theorem of Grothendieck [6] yields the
continuity of h̃.

By [5], [H(X)]∗ is isomorphic to a quotient space of H( lCn) ∼= λ∞
(
j

1
n

)

and hence by [8]:

LB (F ∗, [H(X)]) = L (F ∗, [H(X)]).
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It follows that we can find a neighbourhood W of 0 ∈ F ∗bor such that
h̃(W ) is bounded in H(X). This yields p for which h̃(W ) is contained and
bounded in H∞(Up), the Banach space of bounded holomorphic functions
on Up. Thus, the form

ĥ(z)(x∗) = h̃(x∗)(z) for z ∈ Up, x∗ ∈ F ∗bor

defines a holomorphic function ĥ from Up into
[
F ∗bor

]∗ such that
ĥ

σ1

∣∣
X

= f .

Hence f ∈ M
(
X, [F ∗bor]

∗).
Conversely, by Lemma 3.3 we can choose a compact polar uniqueness

set X in lC. It is known that [H(X)]∗ ∼= H( lC \X) ∼= H( lC). Here the first
isomorphism follows from the dual Grothendieck theorem and the second
one was proved by Zaharjuta [10].

By Vogt [8] it suffices to show that

LB (
[H (X)]∗, [F ∗bor]

∗) = L (
[H (X)]∗, [F ∗bor]

∗).

Given T ∈ L(
[H (X)]∗, [F ∗bor]

∗). Consider T ∗ : [F ∗bor]
∗∗ −→ [H (X)]∗∗.

Since [H(X)]∗∗ = H(X), we can define a map f : X −→ [F ∗bor]
∗ by

f(z)(x∗) = (T ∗x∗)(z) for x∗ ∈ [F ∗bor]
∗∗, z ∈ X.

By the σ[(F ∗bor]
∗∗, [F ∗bor]

∗)-continuity of f(z), f(z) ∈ [F ∗bor]
∗. Moreover,

f ∈ Mw(X, [F ∗bor]
∗). By the hypothesis we can find a neighbourhood U

of X in lCn and a [F ∗bor]
∗-valued meromorphic function f̂ on U such that

f̂
∣∣
X\P (f̂)

= f
∣∣
X\P (f̂)

.

Hence we have

σ̂(z)(T ∗x∗)(z) = σ̂(z)f̂(z)(x∗) = ĥ(z)(x∗),

where ĥ : U −→ [F ∗bor]
∗ and σ̂ : U −→ lC are bounded holomorphic

functions and σ̂ 6= 0 such that f̂ =
ĥ

σ̂
and Z(ĥ, σ̂) = ∅.

We have that σ̂T ∗(B0) is contained and bounded in H∞(U), where
B = ĥ(U). It follows that T ∗(B0) is contained and bounded in H(U\
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Z(σ̂)). Shrinking U we may assume that P (f̂) = Z(σ̂) ⊂ X and has only
finite many points.

Since X is unique, X does not have an isolated point. On the other
hand, from the continuity of f on X it follows that Z(σ̂) = ∅ and hence
f̂ is holomorphic on U . Choose a relatively compact neighbourhood V of
X in U . We have

inf
V
|σ̂| > 0.

Hence T ∗ is bounded on B◦.
Put W = T ∗(B◦). Then V = W ◦ is a neighbourhood of O ∈ [H(X)]∗

and T (V ) ⊂ B◦◦ is bounded in [F ∗bor]
∗. Hence [F ∗bor]

∗ ∈ (LB∞). The
theorem is now proved.

4. Proof of Theorem B

We need the following results.

Lemma 4.1. Let K be a compact set in lCn such that [H(K)]′ ∈ (LB∞).
Then K is a unique set.

Proof. Given f ∈ H(K) with f
∣∣
K

= 0. Let (Uk) be a neighbourhood
basis of K in lCn. For each k ≥ 1, put

εk = ‖f‖Uk
= sup{|f(x)| : x ∈ Uk}.

Then εk ↓ 0. By applying (LB∞) to ρN =
√−log εN ↑ +∞ we have for

p ≥ 1, f ∈ H∞(Up), there exists q ∈ N such that for all N ∈ N there
exist Ñ ∈ N and CN > 0 such that for all n ∈ N there exists kn ∈ N with
N ≤ kn ≤ Ñ and

‖fn‖1+ρkn
q ≤ CN ‖fn‖kn ‖fn‖ρkn

p .

This yields
‖f‖1+ρkn

q ≤ C
1
n

N ‖f‖kn ‖f‖ρkn
p .

Choose N ≤ k ≤ Ñ such that #A = ∞, where A = {n : kn = k}.
Then

‖f‖q ≤ lim
n∈A

C
1
n

N ‖f‖
1

1+ρkn

kn
‖f‖

ρkn
1+ρkn
p

= ‖f‖
1

1+ρk

k ‖f‖
ρk

1+ρk
p

=
(
εk

) 1
1+ρk

(
εp

) ρk
1+ρk −→ 0
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as k −→∞ because

1
1 + ρk

log εk =
log εk

1 +
√−log εk

−→ −∞

as k −→∞ and
lim

k→∞
(
εp

) ρk
1+ρk = εp.

Hence f = 0 on Vq. This means that K is a uniqueness set.

Lemma 4.2 [2]. Let F be a Frechet space with F ∈ (DN). Then
[
F ∗bor

]∗ ∈
(DN).

Now we are able to prove Theorem B.

(i) ⇒ (ii). By Vogt [8], to prove [H(X)]′ ∈ (LB∞) it suffices to show
that every continuous linear map T : [H(X)]′ −→ (C) is bounded on some
neighbourhood of 0 ∈ [H(X)]′.

Define the function

fT (x, λ) = T (δx)(λ) for x ∈ X, λ ∈ lC,

where δx is the Dirac functional defined by x:

δx(ϕ) = ϕ(x) for ϕ ∈ H(X).

Let {Vp} be a neighbourhood basis of X in lCn. For each p ≥ 1, put

Ap =
{

λ ∈ lC : fλ
T ∈ H(Vp); ‖fλ

T ‖Vp ≤ p
}

,

where
fλ

T (x) = fT (x, λ).

Then Ap is closed in lC for p ≥ 1 because H(Vp) is Montel. Moreover,
lC =

⋃
p≥1

Ap. The Baire Theorem yields p0 such that IntAp0 6= ∅.
Consider the separate holomorphic function

f̃T : (X × lC) ∪ (V × IntAp0) −→ lC

given by

f̃T (x, λ) =
{

fT (x, λ) if (x, λ) ∈ X × lC,

fλ
T (x) if (x, λ) ∈ V × IntAp0 ,
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where V = Vp0 . By Nguyen T. Van and Zeriahi [7], there exists a holo-
morphic extension f̂T of f̃T to a neighbourhood V × lC of X × lC. Since

H(V,H( lC)) ∼= H(V )⊗̂πH( lC) ∼= L ([H(V )]′,H( lC)),

the form
S(δz)(λ) = f̂T (z)(λ) for z ∈ V, λ ∈ lC

defines a continuous linear map from [H(V )]′ into H( lC). By the unique-
ness of X, from the relations

T
( ∑

j

λj δzj

)
=

∑

j

λj T (δzj ) =
∑

j

λj fT (zj)

=
∑

j

λj S(δzj ) = S
( ∑

j

λj δzj )

it follows that T = S. Hence T is compact.

(ii) ⇒ (iii). Let F ∈ (DN) and f ∈ Mw(X, F ), where X is a compact
set in lCn with [H(X)]′ ∈ (LB∞). By Lemma 4.1, X is a unique set. As
in the proof of Theorem A, we can define a linear continuous mapping

h̃ : F ∗bor −→ H(X).

Since [H(X)]′ ∈ (LB∞) and [F ∗bor]
∗ ∈ (DN) (Lemma 4.2), by Vogt [8] we

have
L (F ∗bor,H(X)) = LB (F ∗bor,H(X)).

By an argument analogous to that used in the proof of Theorem A, we
can find a neighbourhood W of 0 ∈ F ∗bor and a neighbourhood Up of W

such that h̃(W ) is contained and bounded in H∞(Up), the Banach space
of bounded holomorphic functions on Up. Thus, the form

ĥ(z)(x∗) = h̃(x∗)(z) for z ∈ Up, x∗ ∈ F ∗

defines a holomorphic function ĥ from Up into F . From this it follows that
f ∈ M(X,F ).

(iii) ⇒ (i) Assume that X is pluripolar. Consider a plurisubharmonic
function ϕ on lCn for which ϕ

∣∣
X
−∞, ϕ 6≡ −∞ and the Hartogs domain

Ωϕ =
{

(z, λ) ∈ lCn × lC : |λ| < e−ϕ(z)
}

.
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Let f be holomorphic function with Ωϕ being a domain of existence of f

[4]. Since X× lC ⊂ Ωϕ, f induces f̂ ∈ Hw(X,H( lC)), where Hw(X,H( lC))
is the space of weakly holomorphic functions on X with values in H( lC).

Indeed, let µ ∈ [H( lC)]′. Choose r > 0 such that µ can be considered
as a contiuous linear functional on H(r4). Let V be a neighbourhood of
X for which V × r4 is a compact subset of Ωϕ. Then f̂ : V −→ H(r4)
is a holomorphic and hence µf̂ is holomorphic on V . By the hypothesis
there exist a neighbourhood W of X in lCn and a meromorphic function
ĝ on W with values in H( lC) such that

f̂
∣∣
X\P ( ĝ )

= ĝ
∣∣
X\P ( ĝ )

.

Write ĝ =
ĥ

σ̂
, where ĥ ∈ H(W,H( lC)), σ̂ ∈ H(W ), σ̂ 6= 0, such that

codim Z(ĥ, σ̂) ≥ 2. It follows that f̃ : W × lC → lC is meromorphic and
P (f̃) = P ( ĝ )× lC, where f̃ is induced by ĝ. Moreover,

f̃
∣∣
[X\P (ĝ )]× lC = f

∣∣
[X\P ( ĝ )]× lC.

Write the Hartogs expansion of f on Ωϕ as

f(z, λ) =
∑

n≥0

fn(z)λn,

where

fn(z) =
1

2πi

∫

|λ|=e−δϕ

f(z, λ)
λn+1

dλ (δ > 1).

Since the sequence
{ 1

n
log|fn(z)|

}
is locally bounded from above, for each

m ≥ 1 we can define

ψm(z) = sup
{ 1

n
log|fn(z)| : n ≥ m

}
,

ψ∗m(z) = lim sup
z′→z

ψm(z′).

By Bedford-Taylor [1] ψ∗m is plurisubharmonic and the set
{

ψm < ψ∗m
}

is
pluripolar.
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Let
ψ̂ = lim

m→∞
ψ∗m.

Since Ωϕ is the domain of existence of f , ψ̂ is not equal to −∞ on every
non-empty open set in lCn. Indeed, if ψ̂ = −∞ on a non-empty open
subset U of lCn, then the Hartogs lemma implies that the series

∑
n

fn(z)λn

converges to a holomorphic function on U× lC. This yields that U× lC ⊂ Ωϕ

and hence ϕ
∣∣
U

= −∞. It follows that ψ̂ is plurisubharmonic and
{

ψ < ψ̂
}

is pluripolar, where ψ = lim
m→∞

ψm. Choose a neighbourhood V of X \P (f̃)

in W such that V × 4 ⊂ Ωϕ. Consider the Hartogs expansion of f̃ on
V ×4 with

f̃(z, λ) =
∑

n≥0

f̃n(z)λn.

Then
f̃n

∣∣
X\P ( ĝ )

= f̂
∣∣
X\P ( ĝ )

for n ≥ 0,

and hence
f̃n

∣∣
V

= fn

∣∣
V

for n ≥ 0.

This yields

−∞ = lim sup
1
n

log|f̃n(z)| = lim sup
1
n

log|fn(z)|
= ψ̂(z)

for z ∈ V \
(
ψ < ψ̂

)
, which is impossible.
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