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A CLASSIFICATION OF CONTRACTIVE MAPPINGS
IN PROBABILISTIC METRIC SPACES

DO HONG TAN

Abstract. In this work we define some classes of contractive mappings in
probabilistic metric spaces, establish the relation between them and prove
a fixed point theorem.

1. Introduction

In 1922 S. Banach established an important result which is called now
the contraction principle. Since then this principle has been generalised
by many authors. The main results in this direction can be formulated as
follows:

Theorem. Let (X, d) be a complete metric space, T a mapping of X into
itself. Then T has a fixed point (i.e. Tx∗ = x∗) if one of the following
conditions is satisfied:

1) There is a constant k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y)

for every x, y ∈ X (Banach [1]).
2) There is a non-increasing function k : (0,∞) → [0, 1) such that

(1) d(Tx, Ty) ≤ k(d(x, y))d(x, y)

for every x, y ∈ X (Rakotch [6]).
3) There is an upper semicontinuous from the right function k : (0,∞) →

[0, 1) such that (1) holds for every x, y ∈ X (Boyd-Wong [2]).
4) There is a function k : (0,∞) → [0, 1) satisfying the condition
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(2) sup {k(t) : a ≤ t ≤ b} < 1

for 0 < a ≤ b < ∞ such that (1) holds for every x, y ∈ X (Sadovskij [7]).
5) There is a function k : (0,∞)2 → [0, 1) such that

d(Tx, Ty) ≤ k(α, β)d(x, y)

for every x, y ∈ X satisfying 0 < α ≤ d(x, y) ≤ β < ∞ (Krasnoselskij [4]).
6) For each ε > 0 there is a δ > 0 such that

(3) ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε (Meir-Keeler [5]).

Moreover, the fixed point x∗ is unique and Tnx0 → x∗ as n → ∞ for
every x0 ∈ X.

Remark. In [10] we have remarked that Condition (3) is equivalent to the
condition that

d(x, y) < ε + δ implies d(Tx, Ty) < ε.

The results mentioned above suggest us to introduce the corresponding
classes of contractive mappings in probabilistic metric spaces.

2. Classification of contractive mappings

Let us recall the definition of probabilistic metric spaces.

Definition 1. A mapping F : (−∞,∞) → [0, 1] is called a distribu-
tion function if it is non-decreasing and left-continuous with inf F = 0,
sup F = 1. The set of all distribution functions is denoted by D.

Definition 2. A probabilistic metric space (briefly, a PM-space) is a pair
(X,F), where X is a nonempty set and F is a mapping from X ×X into
D. We denote the distribution F(x, y) by Fxy and Fxy(t) stands for the
value of Fxy at t. The function Fxy is assumed to verify the following
conditions: for all x, y, z ∈ X,

(PM.1) Fxy(t) = 1 for all t > 0 if and only if x = y,
(PM.2) Fxy(0) = 0,
(PM.3) Fxy = Fyx,
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(PM.4) If Fxy(t1) = 1 and Fyz(t2) = 1 then Fxz(t1 + t2) = 1.

Definition 3. A mapping ∆ : [0, 1]× [0, 1] → [0, 1] is called a t-norm if it
satisfies the following conditions for all a, b, c, d ∈ [0, 1]:

(T.1) ∆(a, 1) = a,
(T.2) ∆(a, b) = ∆(b, a),
(T.3) ∆(c, d) ≥ ∆(a, b) for c ≥ a, d ≥ b,
(T.4) ∆(∆(a, b), c) = ∆(a,∆(b, c)).

Definition 4. A Menger space is a triplet (X,F , ∆), where (X,F) is a
PM-space and ∆ is a t-norm such that

Fxz(t1 + t2) ≥ ∆(Fxy(t1), Fyz(t2))

for all x, y, z ∈ X and t1, t2 ≥ 0.
More information on PM-spaces can be found in [8].

Remark 1. Some authors consider a special t-norm satisfying the addi-
tional condition that for all t ∈ [0, 1],

(4) ∆(t, t) ≥ t.

In this case ∆ has a very simple form: ∆(a, b) = min{a, b}. Indeed,
suppose a ≥ b. Then by (T.3) and (4),

(5) ∆(a, b) ≥ ∆(b, b) ≥ b.

Further, by (T.1),(T.2),(T.3) and (5) we get

b = ∆(b, 1) = ∆(1, b) ≥ ∆(a, b) ≥ b.

So ∆(a, b) = b = min{a, b}, as asserted above.
In what follows we only consider the case ∆ = min.

Definition 5. Let (X,F , min) be a Menger space.
(i) A sequence {xn} is said to be convergent to x0 ∈ X (we write

xn → x) if for given ε > 0 and λ > 0 there is a positive integer N such
that Fxxn(ε) > 1− λ whenever n ≥ N .

(ii) A sequence {xn} in X is called a Cauchy sequence if for given ε > 0
and λ > 0 there exists a positive integer N such that Fxnxm(ε) > 1 − λ
whenever n,m ≥ N .
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(iii) A Menger space X is said to be complete if each Cauchy sequence
in X converges to some point of X.

Now we are going to introduce six classes of contractive mappings some
of which have been considered in the fixed point theory in PM-spaces.

Definition 6. A mapping T from a Menger space (X,F , min) into itself
is said to belong to the class [B] if there is a constant k ∈ (0, 1) such that

FTxTy(t) ≥ Fxy(t/k)

for every x, y ∈ X.

Definition 7. A mapping T : X → X is said to belong to the class [R] if
there is a non-increasing function k : (0,∞) → (0, 1) such that

(6) FTxTy(t) ≥ Fxy(t/k(t))

for every x, y ∈ X and t > 0.

Remark 2. Condition (6) implies the inequality

FTxTy(t) ≥ Fxy(t/k(α))

for all x, y ∈ X and 0 < α ≤ t.

Definition 8. A mapping T : X → X is said to belong to the class [K] if
there is a function k : (0,∞)2 → (0, 1) such that

(7) FTxTy(t) ≥ Fxy(t/k(α, β))

for every x, y ∈ X and 0 < α ≤ t ≤ β < ∞.

Remark 3. The function k in Definition 8 may be assumed to be non-
increasing in α and non-decreasing in β. Indeed, one can replace it by the
function

h(α, β) = inf{k(α′, β′) : α′ ≤ α, β′ ≥ β}
for all α, β ∈ (0,∞).

Definition 9. A mapping T : X → X is said to belong to the class [S] if
there is a function k : (0,∞) → (0, 1) satisfying the condition

sup {k(t) : a ≤ t ≤ b} < 1
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for 0 < a ≤ b < ∞ such that

(8) FTxTy(t) ≥ Fxy(t/k(t))

for every x, y ∈ X and t > 0.

Definition 10. A mapping T : X → X is said to belong to the class
[BW] if there exists a function k : (0,∞) → (0, 1) upper semicontinuous
from the right such that (8) holds for every x, y ∈ X and t > 0.

Definition 11. A mapping T : X → X is said to belong to the class
[MK] if for each ε > 0 there is a δ > 0 such that

(9) FTxTy(ε) ≥ Fxy(ε + δ)

for every x, y ∈ X.
The main result of this note establishes a relation between the above

mentioned classes of mappings.

Theorem 1. The following inclusions hold:

[B] ⊂ [R] ⊂ [K] ⊂ [S] ⊂ [BW ] ⊂ [MK].

Proof.
1) It is clear that [B] ⊂ [R].
2) To show that [R] ⊂ [K] using Remark 2 one put h(α, β) = k(α) for

all α, β ∈ (0,∞), where k is the function mentioned in the definition of
the class [R].

3) We now show that [K] ⊂ [S]. By Remark 3 we may assume that the
function k mentioned in definition of the class [K] is non-increasing in α
and non-decreasing in β. We put

h(t) = lim
α→t−0
β→t+0

k(α, β)

for each t > 0. Since h(t) ≤ k(α, β) for α < t < β, one has h(t) < 1 for
each t and moreover, sup {h(t) : a ≤ t ≤ b} < 1 for every a ≤ b. It remains
to show that h satisfies (8) in place of k. Indeed, by the definition of h, for
each fixed t ≥ 0 there are two sequences {αn} and {βn} with αn ≤ t ≤ βn

for all n, such that k(αn, βn) → h(t) decreasingly.
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So
t

k(αn, βn)
→ t

h(t)
increasingly. Since k satisfies (7) and Fxy is

left-continuous, h must satisfy (8).
4) To show that [S] ⊂ [BW ] it suffices to put h(t) = lim sup

s→t
k(s) for all

t ≥ 0, where k is the function mentioned in the definition of the class [S].
Obviously, h is upper semicontinuous and satisfies (8).

5) Finally, we show that [BW ] ⊂ [MK]. Let T ∈ [BW ] and k satisfy
(8). Since k is upper semicontinuous from the right, so is the function
h(t) = tk(t) defined for t > 0. For a given ε > 0 we have h(ε) = εk(ε) < ε.
By upper semicontinuity from the right of h, there is δ > 0 such that
tk(t) < ε for ε ≤ t < ε + δ. Since FTxTy is non-decreasing,

FTxTy(ε) ≥ FTxTy(tk(t))

for all ε ≤ t < ε + δ. Then by (8) we get

FTxTy(ε) ≥ Fxy(t)

for all ε ≤ t < ε + δ. Letting t → ε + δ and using left-continuity of Fxy

we get
FTxTy(ε) ≥ Fxy(ε + δ),

so T ∈ [MK]. The proof of the theorem is complete.

3. Remark on a fixed point theorem

In [3] Chang, Lee, Cho, Chen, Kang and Jung have proved the following
theorem:

Let (X,F ,∆) be a complete Menger space with a t-norm ∆ satisfying
∆(t, t) ≥ t for all t ∈ [0, 1]. Let T : X → X be a mapping satisfying the
condition:

FTxTy(t) ≥ Fxy(t/k(α, β))

for all x, y ∈ X, t > 0 and α, β ∈ (0,∞) with Fxy(α) > 0 and Fxy(β) < 1,
where k(α, β) : (0,∞)2 → (0, 1) is a function. Then T has exactly one
fixed point in X.

We do not know the relation between the mappings considered in the
above theorem and the ones mentioned in Section 2, but we observe that
they are quite similar to that of the class [K], for which the conclusion of
the theorem is also valid. In fact, we can prove a more general result:
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Theorem 2. Let (X,F , min) be a complete Menger space and T : X → X
belong to the class [MK]. Then T has a unique fixed point x∗ and we have
Tnx0 → x∗ as n →∞ for each x0 ∈ X.

This is a corollary of Theorem 6 in [9]. For the convenience of the
reader we reproduce here the sketch of its proof.

First we note that if we define for all x, y ∈ X, λ ∈ (0, 1),

(10) dλ(x, y) = sup{t : Fxy(t) ≤ 1− λ},

then, with the assumption ∆ = min, for each λ, dλ is a pseudo-metric,
that is,

dλ(x, y) ≥ 0, dλ(x, x) = 0, dλ(x, y) = dλ(y, x),

dλ(x, y) ≤ dλ(x, z) + dλ(z, y).

Moreover, condition (PM.1) implies that dλ(x, y) = 0 for all λ ∈ (0, 1) if
and only if x = y.

By the left-continuity of Fxy we get from (10) the inequality

(11) Fxy(dλ(x, y)) ≤ 1− λ

for all x, y ∈ X and λ ∈ (0, 1).
In the space X with the family of pseudo-metrics {dλ : λ ∈ (0, 1)} we

introduce the following

Definition 12.
(i) A sequence {xn} in X is said to be convergent to x ∈ X if for each

λ ∈ (0, 1), dλ(xn, x) → 0 as n →∞.
(ii) A sequence {xn} in X is called a Cauchy sequence if for each λ ∈

(0, 1), dλ(xn, xm) → 0 as n,m →∞.
(iii) The space (X, {dλ}) is said to be complete if each Cauchy sequence

in X converges to some point of X.

In this way we may consider the complete space (X, {dλ}) instead of
the complete Menger space (X,F ,min).

We now show that if T ∈ [MK] then T satisfies the condition that for
every ε > 0 there is a δ > 0 such that

(12) dλ(x, y) < ε + δ implies dλ(Tx, Ty) < ε

for each λ ∈ (0, 1). Indeed, given ε > 0 we choose δ > 0 such that
(9) holds. Let λ ∈ (0, 1) and dλ(x, y) < ε + δ. Then by (10) we have
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Fxy(ε+ δ) > 1−λ. From (9) we get FTxTy(ε) > 1−λ which together with
(11) give dλ(Tx, Ty) < ε.

Since T satisfies (12) for each λ ∈ (0, 1), by slightly extending a theorem
of Meir and Keeler in [5] (see the theorem and the remark in Introduction)
to complete spaces with a family of pseudo-metrics one can prove that T
has a unique fixed point x∗ and Tnx0 → x∗ for every x0 ∈ X.
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