NORMAL STRUCTURE AND FIXED POINT PROPERTY IN LINEAR METRIC SPACES

T. D. NARANG

A linear metric space (X, d) is said to have the fixed point property if for every non-empty weakly compact convex subset K of X , every nonexpansive map $T: K \to K$ has a fixed point. In this paper we discuss a class of linear metric spaces which has the fixed point property.

Normal structure is one of the fundamental tools in fixed point theory for non-expansive maps. A central problem in the fixed point theory of non-expansive maps is to determine those spaces which have the fixed point property (f.p.p.). With the appearance of Alspach's example [1], we know that there is a weakly compact convex set in the Banach space $L_1[0, 1]$ which need not have the f.p.p. for non-expansive self maps. On the other hand, Kirk [4] proved that if a reflexive Banach space has weak normal structure then it has the f.p.p. For general Banach spaces it was proved by Dulst and Sims [2]. Here we prove this result in linear metric spaces by generalising the result of Kirk [4] as well as of Dulst and Sims [2]. We start with a few definitions.

Let (X, d) be a metric space. A continuous mapping $W : X \times X \times$ $[0, 1] \rightarrow X$ is said to be a convex structure on X, if for all x, y in X and $\alpha \in [0, 1]$ the following condition is satisfied:

$$
d(u, W(x, y, \alpha)) \le \alpha d(u, x) + (1 - \alpha)d(u, y)
$$

for all $u \in X$. A metric space X with convex structure is called a convex metric space.

This notion of convexity in metric spaces was introduced by W. Takahashi [6] in 1970. Clearly, a Banach space or any convex subset of it is a convex metric space with $W(x, y, \alpha) = \alpha x + (1 - \alpha)y$. More generally, if X is a linear space with a translation invariant metric d satisfying $d(\alpha x + (1 - \alpha)y, 0) \leq \alpha d(x, 0) + (1 - \alpha)d(y, 0)$, then X is a convex metric space. There are many convex metric spaces (see Takahashi $[6]$) which cannot be embedded in any Banach space.

A non-empty set K of a convex metric space X is said to be convex if

Received October 16, 1996.

258 T. D. NARANG

 $W(x, y, \alpha) \in K$ for all $x, y \in K$ and $\alpha \in [0, 1]$. For linear spaces, convexity of K requires that $\alpha x + (1 - \alpha)y \in K$ for all $x, y \in K$ and $\alpha \in [0, 1]$.

Takahashi $[6]$ proved that in a convex metric space X, open balls Takanashi [0] proved that in a convex metric space X , open balls $B(x,r) = \{y \in X : d(x,y) < r\}$ and closed balls $B[x,r] = \{y \in X : d(x,y) < r\}$ $D(x,r) = \{y \in \Lambda : u(x,y) \leq r\}$ and closed bans $D[x,r] = \{y \in \Lambda : d(x,y) \leq r\}$ are convex and if $\{K_\alpha : \alpha \in \Lambda\}$ is a family of convex sets in $\alpha(x, y) \leq r$ are convex and if $\{K_{\alpha} : \alpha \in \Lambda\}$ is convex.

A convex metric space (X, d) is said to satisfy property (I) if for all $x, y, p \in X$ and $\alpha \in [0, 1]$,

$$
d(W(x, p, \alpha), W(y, p, \alpha)) \leq \alpha d(x, y).
$$

Property (I) is always satisfied in any normed linear space. For details we refer to Guay, Singh and Whitfield [3].

Let B be a bounded set in a convex metric space X and let $\delta(B)$ be its diameter. An element $x \in B$ is said to be a diametral point of B if $\sup d(x, y) = \delta(B)$. For closed balls in X, diametral points are precisely $y\in B$

the boundary points. A point $x \in B$ is called a non-diametral point of B if $\sup d(x, y) < \delta(B)$.

 $y\!\in\!B$

A convex subset S of a convex metric space X is said to have normal structure if every bounded convex subset S_1 of S which contains more than one point has a point that is not a diametral point.

Any compact convex subset of a convex metric space has normal structure (Takahashi [6], Proposition 5).

Let X be a metric space. For subsets H, K of X, H bounded, let

$$
r_x(H) = \sup \{d(x, y) : y \in H\}, \quad x \in K,
$$

$$
r(H, K) = \inf \{r_x(H), x \in K\},
$$

$$
C(H, K) = \{x \in K : r_x(H) = r(H, K)\}.
$$

The set $C(H, K)$ is frequently referred to as the Chebyshev centre of H with respect to $(w.r.t.)$ K in X or the set of best simultaneous approximation in K to H, and $r(H, K)$ is called the Chebyshev radius of H w.r.t. K.

If K is compact convex and H is a bounded subset of a convex metric space X, then $C(H, K)$ is non-empty, closed, convex subset of K (Naimpally, Singh and Whitfield [5], Lemma 3.1).

A locally convex linear metric space (X, d) is said to have weak normal structure if every non-trivial weakly compact convex subset of X has normal structure. The space X is said to have the fixed point property

 $(f.p.p.)$ if for every non-empty weakly compact convex subset K of X, every non-expansive map $T : K \to K$ has a fixed point i.e. there exists $x \in K$ such that $Tx = x$.

The following result deals with the continuity of the function r_x defined above:

Lemma 1. The function $r_x : K \to \mathbf{R}$ defined above is uniformly continuous.

Proof. Let $x, y \in K$. Then $d(x, z) \leq d(x, y) + d(y, z)$ for all $z \in H$. Therefore $\sup d(x, z) \leq d(x, y) + \sup d(y, z)$ and so $r_x(H) \leq d(x, y) +$ $z\in H$ $z\in H$ $r_y(H)$ or $r_x(H) - r_y(H) \leq d(x, y)$. Interchanging x and y, we get $r_y(H)$ $r_x(H) \leq d(y,x)$. So $|r_x(H) - r_y(H)| \leq d(x,y)$ for all $x,y \in K$ and hence the result follows.

The following result deals with the convexity of the function r_x :

Lemma 2. If K is a convex subset of a convex metric space (X,d) then the function $r_x : K \to \mathbf{R}$ defined above is a convex function i.e. $r_{W(x_1,x_2,t)}(H) \leq tr_{x_1}(H) + (1-t)r_{x_2}(H)$ for all $x_1,x_2 \in K$ and $0 \leq t \leq 1$.

Proof. Let $x_1, x_2 \in K$ and $0 \le t \le 1$. Since K is convex, $W(x_1, x_2, t) \in K$. We have

$$
r_{W(x_1,x_2,t)}(H) = \sup_{y \in H} d(W(x_1,x_2,t),y)
$$

\n
$$
\leq \sup_{y \in H} [td(x_1,y) + (1-t)d(x_2,y)]
$$

\n
$$
\leq t \sup_{y \in H} d(x_1,y) + (1-t) \sup_{y \in H} d(x_2,y)
$$

\n
$$
= tr_{x_1}(H) + (1-t)r_{x_2}(H)
$$

and so r_x is convex.

Remark 1. The result is true if K is a convex subset of a linear metric space (X, d) satisfying $d(tx + (1-t)y, 0) \le td(x, 0) + (1-t)d(y, 0)$ for all $x, y \in X$ and $t \in [0, 1]$.

It is well known that if K is a weakly compact convex subset of a Banach space X then $C(H, K)$ is non-empty, weakly compact and convex. In linear metric spaces we have:

Lemma 3. If K is a weakly compact convex subset of a locally convex linear metric space (X, d) having convex structure and with property (I) then $C(H, K)$ is non-empty, weakly compact and convex.

260 T. D. NARANG

Proof. Since K is a weakly compact and convex set in the locally convex space X, the function $r_x : K \to \mathbf{R}$, being continuous and convex (by vex space X , the function $r_x : \mathbb{A} \to \mathbb{R}$, being continuous and convex (by
Lemmas 1 and 2), is weakly lower semi-continuous. Let $C(H, K) = \{x \in$ $K: r_x(H) = r(H,K) \big\} = \big\{ x \in K: r_x(H) \le r(H,K) \big\}$ be the Chebyshev centre of H w.r.t. K. Suppose $C(H, K) = \emptyset$. Then $r_x(H) > r(H, K)$ for all $x \in K$. Let x be any point of K. Since $\frac{r(H, K) + r_x(H)}{2}$ $\frac{1+r x(T)}{2} < r_x(H)$ and r_x is weakly lower semi-continuous, there exists a weak neighbourhood W_x of x in K such that $\frac{r(H, K) + r_x(H)}{2} \le r_y(H)$ for all $y \in W_x$. Now $\frac{d}{dx}$ ^{$\frac{d}{dx}$} $W_x : x \in K$ is a covering of K by weakly open sets and K is weakly $\{W_x : x \in K\}$ is a covering of K by weakly open sets and K is weakly compact, there exists a finite subcovering of K, say $\{W_{x_1}, W_{x_2}, \ldots, W_{x_n}\}$. Let $a = \min_{1 \leq j \leq n} r_{x_j}(H)$. Then $a > r(H, K)$ as each $r_{x_j}(H) > r(H, K)$. Let y be any element of K. Then $y \in W_{x_j}$ for some $j, 1 \leq j \leq n$. Hence $r(H,K) + r_{x_j}(H)$ $\frac{r^2 + r_{x_j}(H)}{2} \leq r_y(H)$. So $\frac{r(H, K) + a}{2}$ $\leq \frac{r(H,K) + r_{x_j}(H)}{2}$ 2 ≤ $r_y(H)$ · Therefore $\frac{r(H, K) + a}{2}$ $\leq \inf_{y \in K} r_y(H) = r(H, K)$ i.e. $a \leq r(H, K)$, a contradiction. Hence $C(H, K) \neq \emptyset$.

We now show that $C(H, K)$ is convex. Let $x_1, x_2 \in C(H, K)$ and $0 \le t \le 1$. Then $r_{tx_1+(1-t)x_2}(H) \le tr_{x_1}(H) + (1-t)r_{x_2}(H) = tr(H,K) +$ $(1-t)r(H, K) = r(H, K)$. Therefore $tx_1 + (1-t)x_2 \in C(H, K)$ and so $C(H, K)$ is convex.

Next we show that $C(H, K)$ is weakly compact. Let x belong to the weak closure of K in H and $\varepsilon > 0$ be given. Then there exists a weak neighbourhood W of x in K such that $r_x(H) - \varepsilon \le r_y(H)$ for all $y \in W$. As x belongs to the weak closure of $C(H, K)$ in K, there exists a $y \in$ $C(H, K) \cap W$. For this y, $r_H(y) = r(H, K)$. So $r_x(H) - \varepsilon \le r(H, K)$ or $r_x(H) \le r(H,K) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, $r_x(H) \le r(H,K)$ and so $x \in C(H, K)$. Thus $C(H, K)$ is a weakly closed subset of the weakly compact set K and hence $C(H, K)$ is weakly compact.

The following result gives a relation between the diameters of $C(K, K)$ and K :

Lemma 4. Let K be a weakly compact convex subset of a locally convex linear metric space (X, d) having convex structure and with property (I) and $C(K, K)$ be the Chebyshev centre of K w.r.t. itself. If K has normal structure then diam $C(K, K) <$ diam K.

Proof. Since K has normal structure, there exists $x \in K$ such that *Proof.* Since *K* has normal structure, there exists $x \in K$ such that sup $\{d(x,y) : y \in K\} < \text{diam } K$ or $r_x(K) < \text{diam } K$. Let x_1, x_2 be

any two points of $C(K, K)$. Then $d(x_1, x_2) \leq r_{x_1}(K) = r(K, K)$. So $\text{diam } C(K, K) \leq r(K, K) \leq r_x(K) < \text{diam } K.$

Alspach [1] proved that the Banach space $L_1[0,1]$ does not have the f.p.p.. Kirk [4] proved that if a reflexive Banach space has weak normal structure then it has the f.p.p.. The following theorem shows that there are certain linear metric spaces which have the f.p.p.:

Theorem. Let (X, d) be a locally convex linear metric space having convex structure and with property (I) . Then X has the f.p.p. if X has weak normal structure.

Proof. Let K be a non-empty weakly compact convex subset of X and $T: K \to K$ a non-expansive map. Let F be the family of all non-empty weakly compact convex subsets of K which are invariant under T . $\mathcal F$ is non-empty as $K \in \mathcal{F}$. For $K_1, K_2 \in \mathcal{F}$ let $K_1 \leq K_2$ if $K_1 \supseteq K_2$. This is a partial ordering in F. Let ${K_\alpha}$ be any chain in F. Obviously, ${K_\alpha}$ has the finite intersection property. Since K is weakly compact, ${K_{\alpha}}$ must have a non-empty intersection, say C_1 . Then C_1 is a non-empty weakly compact convex subset of K which is invariant under T. Obviously, C_1 is an upper bound of $\{K_{\alpha}\}\$ in F. By Zorn's lemma, F must have a maximal element, say M . If M is a singleton, then obviously T has a fixed point in K . So assume that M has more than one point. Since X has weak normal structure, M has normal structure. By Lemma 4, $diam C(M, M) < diam M$ and so $C(M, M) \subseteq M$ but $C(M, M) \neq M$. Also by Lemma 3, $C(M, M)$ is a non-empty weakly compact and convex set. We now show that $C(M, M)$ is invariant under T. Let $x \in C(M, M)$. We have $d(Tx,Ty) \leq d(x,y)$ for all $y \in M$. So $d(Tx,Ty) \leq r_x(M) = r(M,M)$ for all $y \in M$. Let B be the closed ball in X with centre Tx and radius $r(M, M)$. Then $Ty \in B$ for all $y \in M$, i.e. $T(M) \subseteq B$. Consequently, $T(B\cap M) \subseteq T(M) \subseteq M \cap B$. Since $M \cap B$ is a non-empty weakly compact convex subset of K, $B \cap M \in \mathcal{F}$. By the maximality of $M, M \cap B = M$ or $M \subseteq B$. Hence for all $y \in M$, $d(Tx, y) \le r(M, M)$ or $r_{Tx}(M) \le r(M, M)$ and so $Tx \in C(M, M)$. Therefore $C(M, M) \in \mathcal{F}$ and so by the maximality of M we must have $C(M, M) = M$, a contradiction. Hence M must be a singleton proving thereby that T has a fixed point in K .

Remark 2. Since Banach spaces are locally convex linear metric spaces having convex structure and with property (I), the above theorem generalizes the corresponding result of Kirk [4] as well as of Dulst and Sims [2].

262 T. D. NARANG

REFERENCES

- 1. D. B. Alspach, A fixed point free non expansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424.
- 2. D. Van Dulst and B. Sims, Fixed point of non expansive mappings and Chebyshev centres in Banach spaces with norms of type (K, K) , Banach Space Theory and Applications, Proc. Bucharest (1981), Lectures Notes in Math. 991, Springer-Verlag, 1983.
- 3. M. D. Guay, K. L. Singh and J. H. M. Whitfield, Fixed point theorems for non expansive mappings in convex metric spaces, Proc. Conference on Non-linear Analysis (Ed. S. P. Singh and J. H. Burry), Marcel Dekker, Inc., New York, 1982, 179-189.
- 4. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
- 5. S. A. Naimpally, K. L. Singh and J. H. M. Whitfield, Fixed points in convex metric spaces, Math. Japonica 29 (1984), 585-597.
- 6. W. Takahashi, A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (1970), 142-149.

Department of Mathematics Guru Nanak dev University Amritsar - 143005 India