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NORMAL STRUCTURE AND FIXED POINT PROPERTY
IN LINEAR METRIC SPACES

T. D. NARANG

A linear metric space (X, d) is said to have the fixed point property if
for every non-empty weakly compact convex subset K of X, every non-
expansive map T : K → K has a fixed point. In this paper we discuss a
class of linear metric spaces which has the fixed point property.

Normal structure is one of the fundamental tools in fixed point theory
for non-expansive maps. A central problem in the fixed point theory of
non-expansive maps is to determine those spaces which have the fixed
point property (f.p.p.). With the appearance of Alspach’s example [1],
we know that there is a weakly compact convex set in the Banach space
L1[0, 1] which need not have the f.p.p. for non-expansive self maps. On
the other hand, Kirk [4] proved that if a reflexive Banach space has weak
normal structure then it has the f.p.p. For general Banach spaces it was
proved by Dulst and Sims [2]. Here we prove this result in linear metric
spaces by generalising the result of Kirk [4] as well as of Dulst and Sims
[2]. We start with a few definitions.

Let (X, d) be a metric space. A continuous mapping W : X × X ×
[0, 1] → X is said to be a convex structure on X, if for all x, y in X and
α ∈ [0, 1] the following condition is satisfied:

d(u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y)

for all u ∈ X. A metric space X with convex structure is called a convex
metric space.

This notion of convexity in metric spaces was introduced by W. Taka-
hashi [6] in 1970. Clearly, a Banach space or any convex subset of it is
a convex metric space with W (x, y, α) = αx + (1 − α)y. More gener-
ally, if X is a linear space with a translation invariant metric d satisfying
d(αx + (1− α)y, 0) ≤ αd(x, 0) + (1− α)d(y, 0), then X is a convex metric
space. There are many convex metric spaces (see Takahashi [6]) which
cannot be embedded in any Banach space.

A non-empty set K of a convex metric space X is said to be convex if
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W (x, y, α) ∈ K for all x, y ∈ K and α ∈ [0, 1]. For linear spaces, convexity
of K requires that αx + (1− α)y ∈ K for all x, y ∈ K and α ∈ [0, 1].

Takahashi [6] proved that in a convex metric space X, open balls
B(x, r) =

{
y ∈ X : d(x, y) < r

}
and closed balls B[x, r] =

{
y ∈ X :

d(x, y) ≤ r
}

are convex and if
{
Kα : α ∈ Λ

}
is a family of convex sets in

X then
⋂ {

Kα : α ∈ Λ
}

is convex.
A convex metric space (X, d) is said to satisfy property (I) if for all

x, y, p ∈ X and α ∈ [0, 1],

d(W (x, p, α),W (y, p, α)) ≤ αd(x, y).

Property (I) is always satisfied in any normed linear space. For details
we refer to Guay, Singh and Whitfield [3].

Let B be a bounded set in a convex metric space X and let δ(B) be
its diameter. An element x ∈ B is said to be a diametral point of B if
sup
y∈B

d(x, y) = δ(B). For closed balls in X, diametral points are precisely

the boundary points. A point x ∈ B is called a non-diametral point of B
if sup

y∈B
d(x, y) < δ(B).

A convex subset S of a convex metric space X is said to have normal
structure if every bounded convex subset S1 of S which contains more
than one point has a point that is not a diametral point.

Any compact convex subset of a convex metric space has normal struc-
ture (Takahashi [6], Proposition 5).

Let X be a metric space. For subsets H, K of X, H bounded, let

rx(H) = sup
{
d(x, y) : y ∈ H

}
, x ∈ K,

r(H, K) = inf
{
rx(H), x ∈ K

}
,

C(H, K) =
{
x ∈ K : rx(H) = r(H, K)

}
.

The set C(H,K) is frequently referred to as the Chebyshev centre of H
with respect to (w.r.t.) K in X or the set of best simultaneous approxi-
mation in K to H, and r(H, K) is called the Chebyshev radius of H w.r.t.
K.

If K is compact convex and H is a bounded subset of a convex metric
space X, then C(H, K) is non-empty, closed, convex subset of K (Naim-
pally, Singh and Whitfield [5], Lemma 3.1).

A locally convex linear metric space (X, d) is said to have weak nor-
mal structure if every non-trivial weakly compact convex subset of X has
normal structure. The space X is said to have the fixed point property
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(f.p.p.) if for every non-empty weakly compact convex subset K of X,
every non-expansive map T : K → K has a fixed point i.e. there exists
x ∈ K such that Tx = x.

The following result deals with the continuity of the function rx defined
above:

Lemma 1. The function rx : K → R defined above is uniformly contin-
uous.

Proof. Let x, y ∈ K. Then d(x, z) ≤ d(x, y) + d(y, z) for all z ∈ H.
Therefore sup

z∈H
d(x, z) ≤ d(x, y) + sup

z∈H
d(y, z) and so rx(H) ≤ d(x, y) +

ry(H) or rx(H)−ry(H) ≤ d(x, y). Interchanging x and y, we get ry(H)−
rx(H) ≤ d(y, x). So |rx(H)− ry(H)| ≤ d(x, y) for all x, y ∈ K and hence
the result follows.

The following result deals with the convexity of the function rx:

Lemma 2. If K is a convex subset of a convex metric space (X, d)
then the function rx : K → R defined above is a convex function i.e.
rW (x1,x2,t)(H) ≤ trx1(H)+(1− t)rx2(H) for all x1, x2 ∈ K and 0 ≤ t ≤ 1.

Proof. Let x1, x2 ∈ K and 0 ≤ t ≤ 1. Since K is convex, W (x1, x2, t) ∈ K.
We have

rW (x1,x2,t)(H) = sup
y∈H

d(W (x1, x2, t), y)

≤ sup
y∈H

[
td(x1, y) + (1− t)d(x2, y)

]

≤ t sup
y∈H

d(x1, y) + (1− t) sup
y∈H

d(x2, y)

= trx1(H) + (1− t)rx2(H)

and so rx is convex.

Remark 1. The result is true if K is a convex subset of a linear metric
space (X, d) satisfying d(tx + (1− t)y, 0) ≤ td(x, 0) + (1− t)d(y, 0) for all
x, y ∈ X and t ∈ [0, 1].

It is well known that if K is a weakly compact convex subset of a
Banach space X then C(H,K) is non-empty, weakly compact and convex.
In linear metric spaces we have:

Lemma 3. If K is a weakly compact convex subset of a locally convex
linear metric space (X, d) having convex structure and with property (I)
then C(H, K) is non-empty, weakly compact and convex.



260 T. D. NARANG

Proof. Since K is a weakly compact and convex set in the locally con-
vex space X, the function rx : K → R, being continuous and convex (by
Lemmas 1 and 2), is weakly lower semi-continuous. Let C(H, K) =

{
x ∈

K : rx(H) = r(H, K)
}

=
{
x ∈ K : rx(H) ≤ r(H, K)

}
be the Chebyshev

centre of H w.r.t. K. Suppose C(H, K) = ∅. Then rx(H) > r(H, K) for

all x ∈ K. Let x be any point of K. Since
r(H, K) + rx(H)

2
< rx(H) and

rx is weakly lower semi-continuous, there exists a weak neighbourhood

Wx of x in K such that
r(H,K) + rx(H)

2
≤ ry(H) for all y ∈ Wx. Now{

Wx : x ∈ K
}

is a covering of K by weakly open sets and K is weakly
compact, there exists a finite subcovering of K, say

{
Wx1 ,Wx2 , . . . ,Wxn

}
.

Let a = min
1≤j≤n

rxj (H). Then a > r(H,K) as each rxj (H) > r(H, K). Let

y be any element of K. Then y ∈ Wxj for some j, 1 ≤ j ≤ n. Hence
r(H, K) + rxj (H)

2
≤ ry(H). So

r(H, K) + a

2
≤ r(H,K) + rxj (H)

2
≤

ry(H) · Therefore
r(H,K) + a

2
≤ inf

y∈K
ry(H) = r(H,K) i.e. a ≤ r(H, K),

a contradiction. Hence C(H, K) 6= ∅.
We now show that C(H,K) is convex. Let x1, x2 ∈ C(H, K) and

0 ≤ t ≤ 1. Then rtx1+(1−t)x2(H) ≤ trx1(H) + (1− t)rx2(H) = tr(H, K) +
(1 − t)r(H,K) = r(H, K). Therefore tx1 + (1 − t)x2 ∈ C(H, K) and so
C(H,K) is convex.

Next we show that C(H, K) is weakly compact. Let x belong to the
weak closure of K in H and ε > 0 be given. Then there exists a weak
neighbourhood W of x in K such that rx(H)− ε ≤ ry(H) for all y ∈ W .
As x belongs to the weak closure of C(H, K) in K, there exists a y ∈
C(H,K) ∩ W . For this y, rH(y) = r(H, K). So rx(H) − ε ≤ r(H,K)
or rx(H) ≤ r(H, K) + ε. Since ε > 0 is arbitrary, rx(H) ≤ r(H,K) and
so x ∈ C(H, K). Thus C(H, K) is a weakly closed subset of the weakly
compact set K and hence C(H, K) is weakly compact.

The following result gives a relation between the diameters of C(K, K)
and K:

Lemma 4. Let K be a weakly compact convex subset of a locally convex
linear metric space (X, d) having convex structure and with property (I)
and C(K, K) be the Chebyshev centre of K w.r.t. itself. If K has normal
structure then diam C(K, K) < diam K.

Proof. Since K has normal structure, there exists x ∈ K such that
sup

{
d(x, y) : y ∈ K

}
< diam K or rx(K) < diam K. Let x1, x2 be
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any two points of C(K,K). Then d(x1, x2) ≤ rx1(K) = r(K,K). So
diam C(K, K) ≤ r(K, K) ≤ rx(K) < diam K.

Alspach [1] proved that the Banach space L1[0, 1] does not have the
f.p.p.. Kirk [4] proved that if a reflexive Banach space has weak normal
structure then it has the f.p.p.. The following theorem shows that there
are certain linear metric spaces which have the f.p.p.:

Theorem. Let (X, d) be a locally convex linear metric space having convex
structure and with property (I). Then X has the f.p.p. if X has weak
normal structure.

Proof. Let K be a non-empty weakly compact convex subset of X and
T : K → K a non-expansive map. Let F be the family of all non-empty
weakly compact convex subsets of K which are invariant under T . F is
non-empty as K ∈ F . For K1, K2 ∈ F let K1 ≤ K2 if K1 ⊇ K2. This is a
partial ordering in F . Let {Kα} be any chain in F . Obviously, {Kα} has
the finite intersection property. Since K is weakly compact, {Kα} must
have a non-empty intersection, say C1. Then C1 is a non-empty weakly
compact convex subset of K which is invariant under T . Obviously, C1

is an upper bound of {Kα} in F . By Zorn’s lemma, F must have a
maximal element, say M . If M is a singleton, then obviously T has a
fixed point in K. So assume that M has more than one point. Since
X has weak normal structure, M has normal structure. By Lemma 4,
diam C(M, M) < diam M and so C(M, M) ⊆ M but C(M, M) 6= M . Also
by Lemma 3, C(M,M) is a non-empty weakly compact and convex set.
We now show that C(M, M) is invariant under T . Let x ∈ C(M, M). We
have d(Tx, Ty) ≤ d(x, y) for all y ∈ M . So d(Tx, Ty) ≤ rx(M) = r(M,M)
for all y ∈ M . Let B be the closed ball in X with centre Tx and radius
r(M, M). Then Ty ∈ B for all y ∈ M , i.e. T (M) ⊆ B. Consequently,
T (B∩M) ⊆ T (M) ⊆ M∩B. Since M∩B is a non-empty weakly compact
convex subset of K, B∩M ∈ F . By the maximality of M , M ∩B = M or
M ⊆ B. Hence for all y ∈ M , d(Tx, y) ≤ r(M, M) or rTx(M) ≤ r(M,M)
and so Tx ∈ C(M, M). Therefore C(M,M) ∈ F and so by the maximality
of M we must have C(M, M) = M , a contradiction. Hence M must be a
singleton proving thereby that T has a fixed point in K.

Remark 2. Since Banach spaces are locally convex linear metric spaces
having convex structure and with property (I), the above theorem gen-
eralizes the corresponding result of Kirk [4] as well as of Dulst and Sims
[2].
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