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SEMI-TRACES AND PROCESSES OF PETRI NETS

TRAN VAN DUNG

Abstract. It is well known that the processes of a Petri net represent
its true concurrent behaviour [11]. For the safe nets, the processes can
be replaced by traces on firing sequences [2, 3]. In the present paper we
generalize this result for a special class of nets which is strictly larger than
the class of safe nets. Namely, we prove that the processes of such nets can
be replaced by some semi-traces on firing sequences. We also show that
for a net in which every final process has a global observation, some set
of its final semi-traces on firing sequences forms a prime event structure,
and hence its induced finitary algebraic domain is equivalent to the one
generated by the set of processes.

1. Introduction

Two representations of behaviours of nets are well-known: firing se-
quences and processes. Relationship between them has been investigated
in [2, 6, 7]. For 1-safe Petri nets, processes are equivalent to traces as pre-
sented in [2, 3]. This result is not true for general nets as shown in [2]. E.
Ochmanski [10], D. V. Hung and E. Knuth [6] used maximal semi-traces
in representing concurrent behaviours of a net. In this paper, we shall
investigate relationship between the semi-traces on firing sequences and
the processes for some kind of nets.

Some definitions and results of the papers [2, 3, 7, 10] will be recalled
in Section 2. In Section 3 some properties of nets are specified. We prove
that a net has a global observation or global time for every process if and
only it has no firable semi-cycle of transitions. Also for the nets with
such properties, some set of semi-traces on firing sequences and the set of
processes are equivalent in the sense that they induce the same partially
ordered sets of transition occurrences.

In Section 4, we consider the nets whose processes with final event (i.e.,
having only one maximal event) have a global observation. We show that
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for such a net, some set of final semi-traces on firing sequences determines
a prime event structure, and hence, by results of [13], it is equivalent
to a finitary algebraic domain corresponding to the Lin-sets (sequential
observations) of processes. Since Scott domains are closely related to
denotational semantics, these sets of final semi-traces on firing sequences
of Petri nets can be used as semantics for parallel programming languages.

2. Basic definitions and notions

In this section we recall some necessary terminology and results.

Definition 2.1. (i) A triple (S, T, F ) is a net if S and T are disjoint sets,
F ⊆ (S×T )∪(T×S) and T ⊂ dom (F )∪ cod (F ). The relation F is also
interpreted as the characteristic function of F : F (x, y) = 1 ⇔ (x, y) ∈ F .

(ii) Σ = (S, T, F, M0) is a system net (or Petri net) if (S, T, F ) is a
net and M0 : S → N is a marking, where N is the set of non-negative
integers.

(iii) A net N = (S, T, F ) is an occurrence net if ∀s ∈ S: |•s|≤1 ∧ |s•|≤1
and F+ (the transitive closure of F ) is acyclic, where, for any x ∈ S ∪ T ,

•x = {y ∈ S∪T | (y, x) ∈ F} and x• = {y ∈ S∪T | (x, y) ∈ F}.

Definition 2.2. Let N = (B, E, F ) be an occurrence net.
(i) We define two sets li, co ⊆ (B∪E)× (B∪E) by

(x, y) ∈ li ⇔ (x < y ∨ y < x ∨ x = y),

(x, y) ∈ co ⇔ ((x, y) /∈ li ) ∨ x = y); where < stands for F+.

(ii) l ⊆ B ∪ E is a li-set iff ∀x, y ∈l: (x, y) ∈ li.
(iii) c ⊆ B∪E is a co-set iff ∀x, y ∈ c: (x, y) ∈ co.
(iv) The interval between two co-sets c1, c2 is defined by

[c1, c2] = {z ∈ B ∪ E | ∃x ∈ c1 ∃y ∈ c2: x ≤ z ≤ y}.
(v) A net N is discrete with respect to a co-set c if

∀x ∈ B ∪ E ∃n ∈ N: ∀ li-set l: |[c, x]∩l | ≤ n ∧ |[x,c]∩ l | ≤ n.

Definition 2.3. Let Σ = (S, T, F ) be a net, M a marking and t, t′ ∈ T .
(i) M enables t if ∀s ∈ S: F (s, t)≤M(s).
(ii) M ′ is produced from M by the firing of t if M enables t and ∀s ∈ S:

M ′(s) = M(s)− F (s, t) + F (t, s). In that case, we write M [t〉M ′.

(iii) M enables concurrently {ti | 1 ≤ i ≤ k} if ∀s ∈ S:
k∑

i=1

F (s, ti) ≤
M(s).
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Definition 2.4. Let Σ = (S, T, F, M0) be a system net.
(i) σ = M0t1M1. . .tiMi . . . is a firing sequence of Σ if ∀i ≥ 1: Mi−1[ti〉Mi.

Sometime we write: σ = t1t2. . .ti . . . and M0[t1. . .ti〉Mi. The marking
Mi is said to be reachable from M0.

(ii) The set of all finite and infinite firing sequences of Σ is denoted by
F(Σ).

(iii) [M0〉 denotes the set of all markings of the net Σ reachable from
the initial marking M0.

(iv) Σ is 1-safe if ∀M ∈ [M0〉, ∀s ∈ S: M(s)≤1.
(v) Σ is safe if ∃n ∈ N such that ∀M ∈ [M0〉, ∀s ∈ S: M(s) ≤ n.
(vi) Σ is self-concurrency free if ∀t ∈ T and ∀M ∈ [M0〉, M does not

enable concurrently {t, t}.

Definition 2.5. Let Σ = (S, T, F, M0) be a system net, N = (B,E, F ′)
an occurrence net and p a mapping: B∪E→S∪T . The pair (N, p) is a
process of Σ if

(i) p(B) ⊆ S, p(E) ⊆ T .
(ii) Min (N) is a B-cut of N , i.e., a maximal co-set consisting of ele-

ments of B.
(iii) N is discrete with respect to Min (N).
(iv) ∀e ∈ E, s ∈ S: F (s, p(e)) = |p−1(s)∩•e| ∧F (p(e), s) = |e•∩p−1(s)|.
(v) ∀s ∈ S: M0(s) = |p−1(s)∩Min (N)|.
From the practical point of view we only consider countable system

nets that are degree-finite (i.e., ∀x ∈ B ∪E: x• and •x are finite sets) and
have finite markings. For a process π = (B, E, F, p) of a system net, we
call Oπ = (E,≤π, p) the labelled partial ordering derived from π, where
≤π = F ∗|E . The basic relationship between processes and firing sequences,
which is presented in [3], is based on the following construction.

Construction 2.6. Let Σ = (S, T, F,M0) be a system net and σ =
M0t1M1. . . be a firing sequence of Σ. A set Π(σ) of processes is associated
to σ as follows.

We construct labelled occurrence nets (Ni, pi) = (Bi, Ei, Fi, pi), where
i ∈ N and pi: Bi∪Ei → S∪T , by the following recursive procedure:

Define E0 = F0 = ∅, and B0 consists of M0(s) distinct conditions b with
p0(b) = s for each s ∈ S. Suppose (Ni, pi) has already been constructed.
For each s ∈ •ti+1 we choose a condition b = b(s) ∈ Max(Ni)∩p−1

i (s).
Then we add a new event e and put pi+1(e) = ti+1 and (b, e) ∈ Fi+1. Also
for each s ∈ t•i+1 we add a new condition b′ = b′(s) and put pi+1(b′) = s
and (e, b′) ∈ Fi+1. For x, y ∈ Bi∪Ei we define pi+1(x) = pi(x), (x, y) ∈
Fi+1 ⇔ (x, y) ∈ Fi.
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For σ = M0t1. . .tnMn the procedure stops at i = n, and we put π =
(N, p) ∈ Π(σ) with N = Nn and p = pn. If σ is infinite, we put π = (∪Bi,
∪Ei, ∪Fi, ∪pi) ∈ Π(σ).

The following theorem is taken from [4].

Theorem 2.7. Let Σ be a degree-finite system net with a finite initial
marking. Then

(i) For each firing sequence σ of Σ, Π(σ) is a set of processes of Σ.
(ii) For each process π of Σ there exists a firing sequence σ such that

π ∈ Π(σ).

Definition 2.8. Let πi = (Bi, Ei, Fi, pi), i = 1, 2 be processes of a system
net Σ. We define π1 ≈ π2 if there is a bijection β: E1→E2 such that
∀e, e1, e2 ∈ E1: ((p1(e) = p2(β(e)) ∧ (e1 <1 e2 ⇔ β(e1) <2 β(e2))), where
<i= F+

i .

For a system net Σ, let P(Σ) denote the set of processes of Σ.

Theorem 2.9. Let Σ be a system net, π = (B, E, F, p) be a process of
Σ and let σ = t1t2. . . be a sequence of transitions of Σ. Then σ is a
firing sequence of Σ and π ∈ Π(σ) if and only if there exists a bijection β:
E→{1, 2, . . .} such that

∀e, e1, e2 ∈ E: ((p(e) = tβ(e)) ∧ (e1 <π e2⇒β(e1) < β(e2))).

Proof. It follows immediately from 2.10 and the proof of 2.10 in [2].

Definition 2.10. Let π be a process of a system net Σ. We denote the
Lin-set of π by

Lin(π) = {σ | σ is a firing sequence of Σ and π ∈ Π(σ)}.
A semi-commutative system SC = 〈A,R〉 is a semi-Thue system, where

A is a finite alphabet and R is a set of rules of the form ab→ba with a, b ∈ A
and a 6= b. If all the rules in R are symmetrical, then we say 〈A,R〉 is
a commutative system. For a semi-commutative system SC = 〈A,R〉 let
RS denote the set of symmetrical rules of R, i.e.

RS =
{
ab→ba ∈ R

∣∣ba→ab ∈ R
}
.

We say 〈A,RS〉 is the commutative system derived from 〈A,R〉. We
write x→Ry for x, y ∈ A∗ if x = x1abx2, y = x1bax2 and ab→ba ∈ R. The
reflexive and transitive closure of →R is denoted by →∗

R. A semi-trace
generated by a string x will be defined as a set of all words derived from
x by rules of R and denoted by [x〉R, i.e., [x〉R = {y ∈ A∗ | x→∗

Ry}.
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We define an equivalence relation associated with a commutative sys-
tem 〈A, RS〉: x ≡ y iff x→∗

RS
y. The equivalence class of x is denoted

by [x]RS and called a trace.
Let us fix some semi-commutative system 〈A,R〉. Unless there is a

confusion, we omit the subscripts R, RS for semi-traces and traces. A
semi-commutative monoid over 〈A, R〉 is a triple (M, ◦, {ε}), where M =
{[x〉 | x ∈ A∗}, [x〉◦ [y〉 = [x.y〉. We denote a free partial commutative
monoid over 〈A,RS〉 by (MS , ◦, {ε}), where MS = {[x] | x ∈ A∗} and
[x] ◦ [y] = [x.y].

The following lemma is obvious from the above mentioned notations
(see [6, 10]).

Lemma 2.11. [u〉 = [v〉 ⇐⇒ [u] = [v].

Definition 2.12. Let w = a1a2. . .an ∈ A∗. Set

O(w) = {(a, k) | a ∈ alph(w), k ∈ N, 1 ≤ k ≤ |w|a}.
We define an ordering ≤w on O(w) as follows: (a, k)≤0(a′, m) if ∃ua′:
w ∈ ua′A∗ with |ua′|a′ = m and ∃va: ua′ ∈ vaA∗ with |va|a = k and
aa′→a′a /∈ R. For ≤ω= (≤0)∗, the labelled partial ordering derived from
ω is denoted by Oω = (O(ω),≤ω, lb), where lb((a, n)) = a, for all a ∈ A,
and all n ∈ N.

Let us consider the following orderings on M and MS between semi-
traces and traces of the same length:

[α〉 ≤ [β〉 iff [α〉 ⊆ [β〉, i.e. β →∗ α.

[α] ≤ [β] iff [α〉 ≤ [β〉, i.e. β→∗α.

Lemma 2.13 (see [6]). Let w,w′ ∈ A∗. Then

[w′〉 ≤ [w〉 ⇐⇒ (O(w) = O(w′) ∧ ≤w ⊆ ≤w′).

We now extend the definition of finite semi-traces and traces to infinite
ones. Let SC = 〈A,R〉 be a semi-commutative system and Aω = A∗∪A∞.

Definition 2.14. Let x, y ∈ Aω. Then x →ω y if ∀ prefix u of y ∃ prefix
v of x and w ∈ A∗ such that: v →∗ uw. We define and denote semi-traces
and traces, respectively, by

[x〉 = {y ∈ Aω | x →ω y}, [x] = {y ∈ Aω | x →ω y ∧ y →ω x},
and the labelled partial ordering (O(x),≤x, lb) associated with x ∈ Aω by

O(x) = ∪O(u) and ≤x= ∪ ≤u for all prefices u of x.

From Definition 2.14 and Lemma 2.13 it immediately implies
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Lemma 2.15. Let x, y ∈ Aω. Then
(i) x →ω y iff O(y) ⊆ O(x) and ≤x ⊆ ≤y,
(ii) [x〉 = [y〉 iff [x] = [y].

Definition 2.16. Let Σ = (S, T, F, M0) be a system net. The semi-
commutative system derived from Σ is SC(Σ) = 〈T, R〉, where

R = {tt′→t′t | t•∩•t′ = ∅ ∧ t 6= t′},
RS = {tt′→t′t | t•∩•t′ = t′•∩•t = ∅ ∧ t 6= t′}.

For a given system net Σ we are always dealing with labelled partial or-
dering (Oσ,≤σ, lb) induced by the firing sequence σ, and with semi-traces
and traces on firing sequences in the corresponding semi-commutative sys-
tem SC(Σ).

The following notations will be used in the sequel:
S(Σ) is the set of all semi-traces on firing sequences of Σ.
T (Σ) is the set of all traces on firing sequences of Σ.
MS(Σ) is the set of all maximal semi-traces on firing sequences of Σ.
MT (Σ) is the set of all maximal traces on firing sequences of Σ.

3. Globally observable nets

Now we want to find conditions for a system net, in which the behaviour
can be represented by its semi-traces.

Definition 3.1. A process π of a system net Σ is globally observable if
there exists a firing sequence σ ∈ F(Σ) such that: Lin(π) = [σ〉.

In this case σ is said to be a global observation of the process π. A net
Σ is globally observable iff all of its processes are globally observable.

Definition 3.2. A process π = (B, E, F ′, p) of a net Σ has a global time
if there exists a bijection tm: E→{1, 2, . . ., |E|} such that, ∀e1, e2 ∈ E:

((e1≤e2⇒tm(e1)≤tm(e2)) ∧(e1coe2 ∧ p(e2)•∩•p(e1) 6= ∅)⇒
⇒(tm(e1) < tm(e2)))

We say a net Σ has a global time if all of its processes have their global
time.

Definition 3.3. A system net Σ = (S, T, F, M0) is said to have a firable
semi-cycle at a marking M ∈ [M0〉 if there exist t′i, ti ∈ T and ui ∈
t′iT

∗∩T ∗ti for i = 1, . . . , k such that: k ≥ 2, M =
k∑

i=1

Mi,Mi[ui〉M ′
i , t

′
i ≤ui

ti, t
′•
i+1∩•ti 6= ∅ with i = 1, . . . , k, t′i+1 6= ti and t′k+1 = t′1.
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In the case ui = t′i = ti for i = 1, . . . , k we say the net Σ has a firable
cycle at the marking M .

Example 3.4
(i) Consider the system net given in Fig. 1

Fig. 1

(ii) The process π of Σ, given in Fig. 2, is not globally observable,
because it has two maximal semi-traces of Lin(π), which are not ≡-
equivalent:

Fig. 2

[t1t3t2t4〉 and [t2t4t1t3〉 ∈ MS(Lin(π)), but t1t3t2t4 6≡ t2t4t1t3. Obvi-
ously, Σ has a firable semi-cycle at M0: M0 = •t1+•t2 with u1 = t1t3, u2 =
t2t4.

Theorem 3.5. Let Σ be a system net. The following three conditions are
equivalent:

(i) Σ is a globally observable,
(ii) Σ has a global time,
(iii) Σ has no firable semi-cycle at any reachable marking.

Proof. (i) ⇒ (ii). Let π = (B, E, F ′, p) ∈ P(Σ) and σ be the global
observation of π. Take tm = posσ. We show that tm is a global time of π.
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Assume for the contrary that tm is not a global time. By property of posσ

in Theorem 2.9 and Definition 3.2 this may happen only in the following
case:
∃e1, e2 ∈ E, e1 co e2, p(e2)•∩•p(e1) 6= ∅, but tm(e2) < tm(e1).

From ”e1 co e2” we have an observation
σ′ = αp(e1)p(e2)β ∈ Lin(π) = [σ〉.

So σ→∗σ′. Because of

posσ(e2) = tm(e2) < tm(e1) = posσ(e1),

σ = γ1p(e2)γ2p(e1)γ3 for some γ1, γ2, γ3 ∈ T ∗. Hence, by definition,

σ→∗αp(e2)p(e1)β and p(e2)p(e1) → p(e1)p(e2).

It follows that

p(e2)•∩•p(e1) = ∅.
This contradicts the assumption

p(e2)•∩•p(e1) 6= ∅.
Hence tm is a global time of π.

(ii) ⇒ (iii). Let every process of Σ have a global time. Assume that Σ
has a firable semi-cycle as in Definition 3.3. Then we can find a process π
of Σ as in Fig. 3:

Fig. 3

Let p(e′i) = t′i, p(ei) = ti and tm a global time of π. By the construction
of process π we have:

e′i ≤π ei, ei co e′i+1 and p(e′•i+1)∩•p(ei) 6= ∅
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for i = 1, . . . , and e′k+1 = e′1. So from definition of global time tm it
follows:

tm(e′1) < tm(e1) < tm(e′2) < . . . < tm(e′k) < tm(ek) < tm(e′1).

This is a contradiction. So Σ has no firable semi-cycle.

(iii)⇒ (i). The proof is by induction on the number of events of pro-
cesses of Σ. Assume that every process of Σ with number of events less
than n has been proved to be globally observable. Let π = (B, E, F ′, p)
be a process with n events. Now we prove that process π is a globally
observable.

For any subset E′ ⊂ E we define a subprocess π′ = (B′, E′, F ′′, p′) with

B′ = {b ∈ B | ∃e′ ∈ E′ : (e′, b) ∈ F ′ ∨ (b, e′) ∈ F ′},
F ′′ = F ′|(B′×E′)∪(E′×B′), p

′ = p|E′ .

The constructed process id denoted by π|E′ .
Let Oπ = (E,≤π, p) be the labelled partial ordering derived from π.

If Max(Oπ) = {e} with p(e) = t, i.e. , there is only one maximal event
e of π. Then, by induction process π′ = π|{e} is globally observable. Let
Lin(π′) = [α〉 for some α ∈ F(Σ). Since e is the unique maximal event,
Lin(π) = [αt〉, so π is a globally observable.

Suppose Max(Oπ) = {e1, . . . , ek} with k ≥ 2. For i = 1, . . . , k we
denote:

p(ei) = ti, Ei = {e ∈ E | e ≤π ei}.
Assume that there exists a maximal event ei0 ∈ Max(Oπ) such that

∀e ∈ E \ Ei0 : p(e)• ∩ •p(ei0) = ∅.
Let ei0 be such an event and π′ = π|E\{ei0}. By induction, π′ is a globally
observable, so Lin(π′) = [α〉 for some α ∈ F(Σ). Clearly, αti0 ∈ Lin(π).
We show Lin(π) = [αti0〉, i.e. , for all σti0σ

′ ∈ Lin(π), αti0 →∗ σti0σ
′.

Obviously, σσ′ ∈ Lin(π′), thus α →∗ σσ′. For all t ∈ alph(σ′), t /∈ Ei0 , i.e.,
t ∈ E \Ei0 . By the assumption this implies t• ∩ •ti0 = ∅, so (tti0 → ti0t).
Hence,

αti0 →∗ σσ′ti0 →∗ σti0σ
′.

Now we will show that if there is no such maximal event ei0 ∈ Max(Oπ),
i.e.

∀ei ∈ Max(Oπ), ∃e′′i ∈ E \ Ei : p(e′′i )• ∩ •p(ei) 6= ∅ with i = 1, . . . , k,

then we can find a firable semi-cycle by the following algorithm:
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Step 0. Take er0 = ek ∈ Max(Oπ). Note that maximal event er0 has
been marked. Go to Step i.

Step i. For eri ∈ Max(Oπ) let

E′′
ri

= {e ∈ E \ Eri
: p(e)• ∩ •p(eri

) 6= ∅.
By the assumption E′′

ri
6= ∅. Between all maximal events of E′′

ri
we can

choose the event e′′ri
such that for all other maximal event e ∈ E′′

ri
we have

p(e)•∩•p(e′′ri
) = ∅. Otherwise, we get a firable semi-cycle, a contradiction.

We denote the set of indexes of maximal events of π dominating e′′ri
by:

Ji = {j | j ≤ k ∧ e′′ri
∈ Ej}.

If there exists a marked maximal event in {ej | j ∈ Ji}, then the algorithm
stops. Otherwise, let E(i) =

⋃
Ej for j ∈ Ji, thus E(i) ⊆ E \ {eri}. By

induction, π(i) = π|E(i) is globally observable and Lin(π(i)) = [αt′′ri
β〉 for

some α, β ∈ T ∗ and t′′ri
= p(e′′ri

).
Let t′′ri

β ∈ T ∗tj0 and ej0 = p−1(tj0).
By the assumption, for the maximal event ej0 there exists e′′j0 ∈ E \Ej0

such that p(e′′j0)
• ∩ •p(ej0) 6= ∅. We show e′′j0 ∈ E \ E(i). Assume for the

contrary that e′′j0 ∈ E(i). Let γ = αt′′ri
β and tm = posγ . By induction tm

is a global time of π(i). Then tm(ej0) < tm(e′′j0), i.e., by the definition of
tm: posγ(ej0) < posγ(e′′j0). This contradicts the fact that tj0 = p(ej0) is
the last transition in αt′′ri

β.
Now we take eri+1 = ej0 and ui+1 = t′′ri

β. We assume that all maximal
events {ej | j ∈ Ji} have been marked. Let i = i + 1 and return to the
beginning of Step i.

Algorithm terminates after at most k steps. As a result, we get a set of
words {u1, u2, . . . , uq}. To prove that it is a firable semi-cycle, according
to the algorithm we need only to show in Step i that for every event
e ∈ E(i) with p(e) ∈ alph(β): e co eri . By the choice of e′′ri

from E′′
ri

, it
follows that for all e ∈ E(i),

p(e)• ∩ •p(eri) 6= ∅ implies e < e′′ri
or e co e′′ri

∧ p(e)• ∩ •p(e′′ri
) = ∅.

So we can take a global observation γ = αt′′ri
β of π(i) such that, for those

events e, as mentioned above, all transitions {p(e)} have no occurrence in
β. Then, ∀t ∈ alph(β): t• ∩ •p(eri) = ∅. Hence p−1(t) co eri . We get
a firable semi-cycle {u1, . . . , uq}, a contradiction. So there is a required
maximal event ei0 . Hence, every process of Σ with n events is globally
observable. The proof of Theorem 3.5 is complete.

Corollary 3.6. If a system net Σ = (S, T, F,M0) is a globally observable
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and M ∈ [M0〉, then so is the system net Σ′ = (S, T, F, M).

Definition 3.7. Let Σ be a system net and σ a firing sequence of Σ. A
semi-trace [σ〉 is strict if there is a process π such that: Lin(π) = [σ〉. We
denote the set of all strict semi-traces on firing sequences of Σ by SS(Σ).

Lemma 3.8. Let Σ be a self-concurrency free system net. Let

π = (B, E, F ′, p)

be a process and σ a firing sequence of Σ. Then

Lin(π) = [σ〉 iff (O(σ),≤σ) = (E,≤π, p).

Proof. (⇐) Clearly.
(⇒) Since Σ is self-concurrency free, for the process π ∈ Π(σ) there is

a unique bijection β : E→O(σ) such that

∀e ∈ E : p(e) = β(e)|T ∧ e1F
′∗e2→β(e1)≤σβ(e2).

By Theorem 3.5, posσ is a global time for the process π. It is obvious that
<π⊆<σ. Let t•∩•t′ 6= ∅ and m < k so (t,m) <σ (t′, k). We should prove
β−1(t,m) <π β−1(t′, k). We may assume t 6= t′. Suppose β−1(t,m) 6<π

β−1(t′, k). Then (t, m)co (t′, k) and t•∩•t′ 6= ∅. Since posσ is a global
time for π, posσ(t′, k) < posσ(t,m), i.e., k < m, a contradiction.

Corollary 3.9. Let Σ be a self-concurrency free system net. Then two
globally observable processes of Σ with common global observation are ≈-
equivalent.

Combining all above presented results we get

Theorem 3.10. Let Σ be a self-concurrency free globally observable sys-
tem net. Then the mappings π0 and Lin are order-preserving bijections
between the set SS(Σ) of strict semi-traces on firing sequences of Σ and
the set of ≈-equivalence classes on processes of Σ:

SS(Σ) ∼= P(Σ)/≈

where π0([σ〉) = {π | π ∈ Π(σ) ∧ Lin(π) = [σ〉} and (O(σ),≤σ) =
(E,≤π, p) for any process π = (B, E, F, p) ∈ π0(σ).

By Theorem 3.10, semi-traces can replace processes for self-concurrency
free globally observable nets.
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4. Locally observable nets

Now we consider a class of the so called locally observable nets, for
which there may be no global observation for all processes in general,
but there is a global observation for every of its final subprocesses. A
finite process π has a finite set of maximal events, which determines its
final subprocesses with maximal events of π as their final events. Global
observations of those final subprocesses are final strict semi-traces. So
each process π of a locally observable net Σ corresponds to some set of
final semi-traces which is denoted by Loc(π). We will show that the set
of {Loc(π) | π ∈ P(Σ)} with some partial order forms a prime algebraic
domain where final strict semi-traces are complete primes. So from [13]
the set of processes and the set of final strict semi-traces are equivalent in
the sense that the second can be used to represent the first.

The following two definitions are taken from [9, 13]:

Definition 4.1. Let (D,v) be a partial order. A subset X of D is said to
be compatible if ∃p ∈ D, ∀x ∈ X: x v p, and to be finitely compatible if
every its finite subset is compatible. D is said to be consistently complete
if all finitely compatible subsets X ⊆ D have least upper bounds tX.

Definition 4.2. Let D = (D,v) be a consistently compatible partial
order. A complete prime of D is an element p ∈ D such that p v tX ⇒
∃x ∈ X; p v x for any compatible set X. D is a prime algebraic domain if
x = t{p v x : p is a complete prime} for all x ∈ X. D is a finitary domain
if every complete prime p dominates only a finite number of elements, i.e.
{d ∈ D : d v p} is finite.

Definition 4.3. Let Σ be a system net. A finite process π of Σ is final if
there is only one maximal event on it.

Σ is called locally observable if every final process of Σ is globally
observable.

A semi-trace [σ〉 of Σ is final if there is only one maximal element of
(O(σ),≤σ). The set of all final semi-traces on firing sequences of Σ is
denoted by FS(Σ).

Definition 4.4. Let Σ = (S, T, F,M0) be a system net. A reachable
marking M ∈ [M0〉 is an observable if there exists a final process π of Σ
such that M corresponds to some co-set of conditions of π.

Proposition 4.5. Let Σ = (S, T, F, M0) be a system net. The following
conditions are equivalent:
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(i) Σ is locally observable,
(ii) Every final process is globally observable,
(iii) Every final process has global time,
(iv) There is no any firable semi-cycle at a reachable marking such that,

after firing this semi-cycle it produces an observable marking of Σ.

Proof. It is similar to the proof of Theorem 3.5.

Example 4.6. The system net Σ given in Example 3.4 is locally observ-
able because the marking we get after firing semi-cycle is not observable.

Let Σ be a self-concurrency free system net and π a process of Σ. Then
π has a finite set of maximal events each of them corresponds to a final
subprocess of π. If those final subprocesses are globally observable, each
process π of Σ associates with the finite set of final strict semi-traces, which
are called local observations of π. We denote the set of local observations
of a process π by Loc(π). So Loc(π) = {li | i = 1, . . . , n}, where li is a
global observation of final subprocess πi with n = |Max(Oπ)| ≤ |T |, and
π = ∪πi for i = 1, . . . , n.

Lemma 4.7. Let Σ be a self-concurrency free system net and π, π′ pro-
cesses of Σ. Then

Loc(π) = Loc(π′) iff π ≈ π′.

Proof. Let Loc(π) = Loc(π′) = {li | i = 1, . . . , n}. It is clear that if
process π is associated with a set of final subprocesses πi, then ≤π =
∪≤πi

. Each final subprocess πi is globally observable with li as its global
observation. By Lemma 3.8, (Ei,≤πi

, pi) = (O(li),≤li). Hence ≤π =
∪≤li = ≤π′ . The converse is obvious.

Let us denote LC(Σ) = {Loc(π) | π ∈ P(Σ)}. On the set LC(Σ) we
define the following ordering:

γ1, γ2 ∈ LC(Σ) : γ1 ¹ γ2 ⇔ (∀l1 ∈ γ1, ∃l2 ∈ γ2 ∧ γ ∈ T ∗ : l1 ◦ [γ〉 = l2).

Proposition 4.8. (LC(Σ),¹) is a finitary algebraic domain, where final
strict semi-traces are its complete primes.

Proof. (i) (LC(Σ),¹) is a consistently complete partial order. We have to
prove that if γ = {li | i = 1, . . . , n} is a finite consistent set of final semi-
traces, then Max(γ) = Loc(π) for some process π ∈ P(Σ). We may assume
that γ = Max(γ). Then ∃γ′ = {l′k | k = 1, . . . , p} ∈ LC(Σ) : ∀li ∈ γ, there
is l′ki

∈ γ′ such that li ¹ l′ki
for i = 1, . . ., n. Let π′ be the process of Σ
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with γ′ = Loc(π′). Since π′ = ∪π′k, where π′k is the final subprocess with
final semi-trace l′k as its global observation, Lin(π′k) = l′k. In the process
π′ki

there is the co-set with corresponding marking Mi, where M0[li〉Mi.
Let πi be the subprocess of π′ki

with the co-set corresponding marking
Mi as its maximal conditions. The process πi is final globally observable
and li is its global observation. We take the process π as the union of all
processes πi: π = ∪πi. So γ = Loc(π).

(ii) Now we prove that a final semi-trace [σ〉 is a complete prime. We
have to show that if [σ〉 ¹ {li | i = 1, . . ., n}, then there exists k : 0≤k≤n
such that [σ〉 ¹ lk. But that is obvious from the definition of the partial
ordering ¹ on LC(Σ.

(iii) Next, we show that (LC(Σ),¹) is finitary and prime algebraic. Let
π be a process of Σ. Then Loc(π) = {li | i = 1, . . ., n}, where li is a final
semi-trace corresponding to final subprocess πi of process π. So Loc(π) is
also the least upper bound of the set {l | l ∈ FS(Σ) ∧ l ¹ li ∧ 1≤i≤n}.
Hence the result follows.

Furthermore, we show that for locally observable nets the set of pro-
cesses is equivalent to the set of final semi-traces with corresponding con-
sistency relation on its subsets. The following two definitions come from
[13].

Definition 4.9. A prime event structure E = (E, Con,v) consisting of
a set E of events which are partially ordered by v is called the causal
dependency relation and a predicate Con ⊆ 2E is called the consistency
relation if {e′ | e′ v e} is finite, e ∈ Con, Y ⊆ X ∈ Con⇒Y ∈ Con,
X ∈ Con ∧ ∃e′ ∈ X, e v e′⇒X∪e ∈ Con, for all e ∈ E and all finite
subsets X, Y of E.

Define its consistent left-closed subset L(E) to consist of those subsets
x ⊆ E which are consistent: ∀ finite X ⊆ x,X ∈ Con and X is left-closed,
∀e, e′ : e′ v e ∈ x⇒e′ ∈ x. In particular, define the history of e as
h(e) = {e′ ∈ E | e′ v e}.

In [13] the following result has been proved:

Proposition 4.10. Let E be a prime event structure. Then (L(E),⊆) is
a finitary and prime algebraic domain in which the complete primes are
those elements that are of the form h(e) for e ∈ E.

Let D = (D,v) be a finitary and prime algebraic domain. Define

Pr(D) = (P, Con,vP ),

where P consists of the complete primes of D: vP =v|P and X ∈ Con if
X has an upper bound for a finite subset X of P . Then, Pr(D) is a prime
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event structure (see [13]).
Let SSf (Σ) be a set of all final strict semi-traces on firing sequences of

Σ. By Lemma 4.7, Theorems 4.8, 4.10 and Theorem 1.3.7 in [13] we get
the following result:

Theorem 4.11. Let Σ be a self-concurrency free locally observable sys-
tem net. Then SSf (Σ) is a prime event structure with φ: LC(Σ) ∼=
L(SSf (Σ)), giving an isomorphism of partial orders, where φ(Loc(π)) =
{h(li) | li ∈ Loc(π)} with inverse θ: L(SSf (Σ))→LC(Σ) given by θ(x) =
tx.

Thus we see that for locally observable nets the set of final semi-traces
on firing sequences can replace the set of processes.
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