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ON COHEN-MACAULAYNESS AND
GORENSTEINNESS OF REES ALGEBRAS OF
INTERGRALLY CLOSED FILTRATIONS OF

HEIGHT TWO EQUIMULTIPLE IDEALS

DUONG QUOC VIET

1. Introduction

Let (A,mmm) be a Noetherian local ring of dim A = d > 0 and I an ideal
of A with ht(I) = h > 0. An element x of A is said to be integral over I
if there is a positive integer n such that xn + c1x

n−1 + · · · + cn = 0 for
some ci ∈ Ii (1 ≤ i ≤ n). Let Ī be the set of integral elements over I. It is
well-known that Ī is an ideal and F = {In}n≥0 is a filtration of A. This
filtration F is called the integrally closed filtration of an ideal I. We call
the graded rings

R(I) = ⊕n≥0Intn and G(I) = ⊕n≥0(In/In+1)

the Rees algebra and the associated graded ring of integrally closed fil-
tration of I, respectively. The filtration F = {In}n≥0 is called an I-good
filtration if In+1 = IIn for all large n. If F is an I-good filtration and
I is an equimultiple ideal, we can find elements x1, . . . , xh of I such that
x1, . . . , xh is a minimal reduction system of F [3].

Throughout this paper we assume that the residue field of A is an
infinite field, the filtration F = {In}n≥0 is an I-good filtration and I is
an equimultiple ideal. In this case the number of elements of a minimal
reduction system of I and F is exactly ht(I) and R(I) is a Noetherian
ring of dimension d + 1 [10]. To determine when the Rees algebra R(I)
is a Cohen-Macaulay or Gorenstein ring in terms of A and the ideal I is
usually a hard problem. This problem is investigated by some authors in
the cases A being a Cohen-Macaulay (Gorenstein or regular) ring (see [1],
[2], [3], [4]).
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The aim of this paper is to give criteria for the Rees algebra R(I) of a
height two equimultiple ideal I to be a Cohen-Macaulay or Gorenstein ring
in terms of A and the ideal I. From these criteria we obtain interesting
information on the structure of A and I. For example, if R(I) is a Cohen-
Macaulay (Gorenstein) ring, then A is a Cohen-Macaulay (Gorenstein)
ring.

Our main result are the following theorems.

Theorem 1.1. Let I be a height two equimultiple ideal of A and F the
integrally closed filtration of I. Let r(F) be the reduction number of F .
Suppose that F is an I-good filtration. Then R(I) is a Cohen-Macaulay
ring if and only if the following conditions are satisfied.

(i) A is a Cohen-Macaulay ring.
(ii) J ∩ In = JIn for all n ≥ 0, where J is an arbitrary ideal of the

principal class of A such that ht(J) = d − 2 and (I, J) is an mmm-primary
ideal.

(iii) r(F) ≤ 1.

Theorem 1.2. Let I be a height two equimultiple ideal of A and F the
integrally closed filtration of I. Suppose that F is an I-good filtration.
Then R(I) is a Gorenstein ring if and only if the following conditions are
satisfied.

(i) A is a Gorenstein ring.
(ii) In = In for all n.
(iii) I is a complete intersection ideal of A.

A satisfactory tool for the proofs of these theorems is the theorem for
the Rees algebra of a filtration to be Cohen-Macaulay by the author [8]
or Gorenstein given by Trung-Viet-Zarzuela [7].

From the Theorem 1.1 and Theorem 1.2 we derive in Section 5 some
interesting results in the case A is a domain of dimension 3 or A is an
analytically unramified ring.

2. Preliminaries

We shall see that in dealing with problems on the Cohen-Macaulay and
Gorenstein Rees algebras of filtrations, one can restrict the investigation
to the associated graded rings which are easier to be handled due to the
standard graded structure. Let F = {In}n≥0 be a filtration of A with dim
A = d > 0 such that R(F ) is a Noetherian ring of dimension d+1. Denote
by M the maximal graded ideal of R(F ). First we mention some results
which are used frequently in this paper.



COHEN-MACAULAYNESS AND GORENSTEINNESS 219

Theorem 2.1 [8]. Suppose that R(F ) is a Noetherian ring of dimension
d + 1. Then R(F ) is a Cohen-Macaulay ring if and only if

(i) [Hi
M (G(F ))]n = 0 for all n 6= −1, i = 0, ..., d− 1.

(ii) [Hd
M (G(F ))]n = 0 for n ≥ 0.

In this case, Hi
M (G(F )) ' Hi

mmm(A) for i = 0, ..., d− 1.

If F is an equimultiple mmm-primary filtrations, then from Theorem 2.1 we
already obtained some results on the structure of the ring A and filtration
F with R(F ) being a Cohen-Macaulay Rees algebra, see [8].

Denote by KG(F ) the canonical module of G(F ) if G(F ) admits a canon-
ical module. Then we have the following result.

Theorem 2.2 [7]. R(F ) is a Gorenstein ring iff the following conditions
are satisfied:

(i) R(F ) is a Cohen-Macaulay ring.
(ii) ⊕n≥2[KG(F )]n ' G(F )(−2).

Next, we shall prove some results on the Cohen-Macaulay property
of Rees algebras of equimultiple filtrations. A filtration F = {In}n≥0 is
called an equimultiple filtration if there exists an equimultiple ideal I ⊆ I1

such that F is an I-good filtration. Let I ′ ⊆ I be a minimal reduction of
an I-good filtration F. The reduction number of F with respect to I ′ is
the number

rI′(F ) = min {r; In+1 = I ′In for all n ≥ r}.

The reduction number of F is the number

r(F ) = min {rI′(F ); I ′ is a minimal reduction of F}.

An ideal J of the ring A is called a complete intersection ideal of A if
J = 0 or J is generated by a regular sequence of A.

Then we have the following theorem.

Theorem 2.3. Let F be an equimultiple filtration of A and J an ideal of
principal class of A such that ht (J) = dim A - ht (I1) and (J, I1) is an
mmm-primary ideal of A. Then R(F ) is a Cohen-Macaulay ring if and only
if the following conditions are satisfied.

(i) J is a complete intersection ideal of A.
(ii) J ∩ In = JIn for all n ≥ 0.
(iii) ⊕n≥0(In + J/J)tn is a Cohen-Macaulay ring.

Proof. (=⇒) Since F is an equimultiple filtration, one can use the same
argument as in [6] to obtain the fact that there exists a system of pa-
rameters J∗ of R(F ) such that J is a subset of J∗. Note that R(F ) is
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Cohen-Macaulay and JR(I) is an ideal of principal class of R(F ). Then
JR(F ) is a complete intersection ideal of R(F ). Thus, J is a complete
intersection ideal of A. Since dim [R(F )/JR(F )] > 0 and

dim[R(F )/(JR(F ) + I1 ⊕n>0 Intn)] = 0,

we get
JR(F ) : (I1 ⊕n>0 Intn)k = JR(F )

for all k ≥ 1. It follows that (J : I1) = J and (JIn : In) ∩ In = JIn for all
n > 0. Because

JIn = (JIn : In) ∩ In ⊇ J ∩ In ⊇ JIn

for all n ≥ 1, we get J ∩ In = JIn for all n ≥ 0. Thus,

R(F )/JR(F ) = ⊕n≥0(In/JIn)tn = ⊕n≥0(In/J ∩ In)tn

' ⊕n≥0(In + J/J)tn.

Since R(F )/JR(F ) is a Cohen-Macaulay ring, it follows that ⊕n≥0(In +
J/J)tn is a Cohen-Macaulay ring.

(⇐=) Assume that ht (J) = j and J = (a1, .., aj)A. Since

(a1, ..., ai, a
k
i+1, ..., a

k
j ) ∩ In = (a1, ..., ai, a

k
i+1, ..., a

k
j )In

for all k ≥ 1, it follows that

⋂

k≥1

[(a1, ..., ai, a
k
i+1, ..., a

k
j ) ∩ In] =

⋂

k≥1

[(a1, ..., ai, a
k
i+1, ..., a

k
j )In].

Therefore, (a1, . . . , ai) ∩ In = (a1, . . . , ai)In for all n ≥ 0. Using the
equality just obtained and the regular property of the sequence a1, . . . , aj

we get

[(a1, . . . , ai)In : ai+1] ∩ In = [((a1, . . . , ai) ∩ In) : ai+1] ∩ In

= [(a1, . . . , ai) : ai+1] ∩ (In : ai+1) ∩ In = (a1, . . . , ai) ∩ In = (a1, . . . , ai)In

for all n ≥ 0, i < j. Hence

(a1, . . . , ai)R(F ) : ai+1R(F ) = (a1, . . . , ai)R(F )
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for all i < j and JR(F ) is a complete intersection ideal of R(F ). Since

R(F )/JR(F ) ' ⊕n≥0(In + J/J)tn

is a Cohen-Macaulay ring, it follows that R(F ) is a Cohen-Macaulay ring.

Proposition 2.4. Let F be an equimultiple filtration of A such that I1 is
an mmm-primary ideal and R(F ) is a Cohen-Macaulay ring. Let x1, . . . , xd

be a minimal reduction system of F . Then

In ∩ (x1, . . . , xi) = (x1, . . . , xi)In−1

for all n ≥ 0, i ≤ d.

Proof. Set Ji,k = (x1, . . . , xi, x
k
i+1, . . . , x

k
d). By [8, Corollary 2.5], we have

Ji,k ∩ In = (x1, . . . , xi)In−1 + (xk
i+1, . . . , x

k
d)In−k.

Since ⋂

k≥1

[Ji,k ∩ In] = (x1, . . . , xi) ∩ In

and
⋂

k≥1

[(x1, . . . , xi)In−1 + (xk
i+1, . . . , x

k
d)In−k] = (x1, . . . , xi)In−1,

it follows that
In ∩ (x1, . . . , xi) = (x1, . . . , xi)In−1.

Let A be a generalized Cohen-Macaulay ring and a1, . . . , ad a standard

system of parameters of A. By [9] a1, . . . , ad is
[ d∑

i=1

(a1, . . . , ai−1, ai+1, . . . ,

ad) : ai

]
-independent and if J is an ideal of A such that a1, . . . , ad is

J-independent, then

[ d∑

i=1

(a1, . . . , ai−1, ai+1, . . . , ad) : ai

]
⊆ J.

In [5] D. Rees showed that if A is a quasi-unmixed ring and a1, . . . , ad

is a system of parameters of A then a1, . . . , ad is Q-independent with
Q = (a1, . . . , ad)A. Note that if A is a generalized Cohen-Macaulay ring,
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then A is a quasi-unmixed ring. By the results just mentioned, we get the
following lemma.

Lemma 2.5. Let A be a generalized Cohen-Macaulay ring, a1, . . . , ad a
standard system of parameters of A, Q = (a1, . . . , ad)A. Then

[ d∑

i=1

(a1, . . . , ai−1, ai+1, . . . , ad) : ai

]
⊆ Q.

3. Criterion for Cohen-Macaulayness of Rees algebras R(I)

First we have the following proposition in the case dim A = 2.

Proposition 3.1. Let dim A = 2, I an mmm-primary equimultiple ideal of
A and F the integrally closed filtration of I. Suppose that F is an I-good
filtration. Then R(I) is a Cohen-Macaulay ring iff A is a Cohen-Macaulay
ring and r(F) ≤ 1.

Proof. Set R(I) = R, G(I) = G.
(=⇒) Let a, b be a minimal reduction system of F and x, y their images

in G, respectively. Since R is a Cohen-Macaulay ring, we obtain that a,
b (resp. x, y) is a standard system of parameters of A (resp. G) by
Lemma 2.4 in [8]. From [8, Theorem 2.1] we get [H0

M (G)]0 ' H0
mmm(A) and

[H0
M (G)]0 = 0. Thus, depth(A) > 0 and depth(G) > 0. Since x, y is a

standard system of parameters of G, it follows that the element x is a
non-zero-divisor in G. Hence, there is the exact sequence

(1) 0 −→ G
x−→ G −→ G/xG −→ 0.

From this exact sequence we get for all n 6= −1,

(2) [H0
M (G/xG)]n ' [H1

M (G)]n−1

and the exact sequence
(3)

0−→[H1
M (G)]n−→[H1

M (G/xG)]n−→[H2
M (G)]n−1−→[H2

M (G)]n−→0.

Consider the following exact sequences:

(4) 0−→xG : y/xG−→G/xG
y−→ (x, y)G/xG−→0,
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(5) 0−→(x, y)G/xG−→G/xG−→G/(x, y)G−→0.

Since x, y is a standart system of parameters of G, H1
M (xG : y/xG) = 0

and yH0
M (G/xG) = 0. Hence from (4) we get

(6) [H1
M (G/xG)]n ' [H1

M ((x, y)/xG)]n+1.

From (5), it follows that
(7)

0−→[H0
M (G/xG)]n−→[H0

M (G/(x, y)G)]n−→[H1
M ((x, y)G/xG)]n−→0.

Using (2), (6), (7) and [H1
M (G)]n = 0 for all n 6= −1, we get

[G/(x, y)G]n = [H0
M (G/(x, y)G)]n = 0

for all n ≥ 2. Therefore In+1 = (a, b)In for all n ≥ 1. Thus, r(F) ≤ 1.
Note that [H0

M (G/xG)]n ' [H1
M (G)]n−1 and [H1

M (G)]n = 0 for n 6= −1.
Further, from (a) ∩ In = (a)In−1 for all n ≥ 1 by Proposition 2.4 and
r(F) ≤ 1, we get

[H0
M (G/xG)]1 = [xG : y/xG]1

= [(aĪ, Ī3) : b] ∩ Ī/(a, Ī2)

= [(aA ∩ Ī2 : b) ∩ Ī + Ī2]/(a, Ī2)

= [(aA : b) ∩ (Ī2 : b) ∩ Ī + Ī2]/(a, Ī2)

= [(aA : b) ∩ Ī + Ī2]/(a, Ī2)

= [(aA : b) ∩ Ī]/[a, (a : b) ∩ Ī2]

= [(aA : b) ∩ Ī]/[aA + (aA : b) ∩ (a, b) ∩ Ī2]

= [(aA : b) ∩ Ī]/[aA + aA ∩ I2]

= [aA : b] ∩ Ī/aA.

Note that [H0
M (G/xG)]1 = 0. Hence, we have [(a) : b] ∩ Ī = (a). Since

A is a generalized Cohen-Macaulay ring and a, b is a standard system of
parameters of A, it follows that (a) : b ⊆ (a, b)A ⊆ Ī. Thus, (a) : b = [(a) :
b] ∩ Ī = (a). Since the element a is a non-zero-divisor in A, (a) : b = (a)
and dimA = 2, it follows that A is a Cohen-Macaulay ring.

(⇐=) Since r(F) ≤ 1, it follows that there exists a minimal reduc-
tion system a, b of F such that In+1 = (a, b)In for all n ≥ 1. Thus,
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In+1 ∩ (a, b) = (a, b)In for all n ≥ 0. Hence the filtration F satisfies the
conditions (i) and (ii) of the Theorem 2.3 in [8]. From the above equalities
together with A being a Cohen-Macaulay ring, it follows that R(I) is a
Cohen-Macaulay ring, by [8, Theorem 2.3].

One can replace the condition (a) : b ⊂ Ī by (a) : b ⊂ I1 and use the
same argument as in the proof of Proposition 3.1 to prove the following
proposition.

Proposition 3.2. Let dim A = 2, F an equimultiple filtration of A such
that I1 is an mmm-primary ideal. Suppose that there is a minimal reduction
J = (a, b) of I1 such that (a) : b ⊂ I1. Then R(F ) is a Cohen-Macaulay
ring if and only if A is a Cohen-Macaulay ring and the reduction number
of F with respect to J is smaller than 2.

Proof of Theorem 1.1.
(=⇒) Let J = (a3, ..., ad) be an ideal of principal class of A such that

ht(I) = d−2 and (I, J) is an mmm-primary ideal. Set Jk = (ak
3 , ..., ak

d) for all
k ≥ 1, R(I) = R, G(I) = G. Since R is a Cohen-Macaulay ring, it follows
that ⊕n≥0(In + Jk/Jk)tn is a Cohen-Macaulay ring and Jk is a complete
intersection ideal of A for all k ≥ 1, by Theorem 2.3. Let a, b be a minimal
reduction system of F and x, y their images in A/Jk. Since (a) : b ⊆ Ī we
get (x) : y ⊆ (Ī + Jk/Jk). Note that {In + Jk/Jk}n≥0 is an equimultiple
filtration of the ring A/Jk and x, y is a minimal reduction system, it follows
that A/Jk is a Cohen-Macaulay ring and if r∗ is a reduction number of
the filtration {In + Jk/Jk)}n≥0 then r∗ ≤ 1, by Proposition 3.2. Using
the results just obtained and by Proposition 3.2 it follows that

(In+1, Jk)/Jk = [(a, b)In, Jk]/Jk

for all n ≥ 1, k ≥ 1. Thus,

In+1 + Jk = (a, b)In + Jk.

From this it follows that

∩k≥1[In+1 + Jk] = ∩k≥1[(a, b)In + Jk].

Thus, In+1 = (a, b)In for all n ≥ 1. Hence r(F) ≤ 1. Since A/J is
a Cohen-Macaulay ring and J is a complete intersection ideal of A, it
follows that A is a Cohen-Macaulay ring. The condition (ii) of Theorem
1.1 follows by the condition (ii) of Theorem 2.3.
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(⇐=) Let J be an ideal of principal class of A such that ht(J) = d− 2
and (I, J) an mmm-primary ideal of A such that JIn = J ∩ In for all n ≥ 0.
Consequently,

R/JR ' ⊕n≥0(In + J/J)tn.

Since r(F) ≤ 1, it follows that there exists an ideal I” = (a′, b′) ⊆ (I+J/J)
such that if r̄ is the reduction number of the filtration {In + J/J} of the
ring A/J with respect to I”, then r̄ ≤ 1. Since A is a Cohen-Macaulay ring
and J is an ideal of principal class of A, it follows that A/J is a Cohen-
Macaulay ring. Hence, by Proposition 3.2 it follows that ⊕n≥0(In+J/J)tn

is a Cohen-Macaulay ring. By the results just mentioned and by Theorem
2.3, it follows that R is a Cohen-Macaulay ring.

4. Criterion for Gorensteiness of Rees algebras R(I)

First we shall prove Theorem 1.2.

Proof of Theorem 1.2.
(=⇒) Set R(I) = R, G(I) = G. Since R is a Gorenstein ring, it follows

that A is a Cohen-Macaulay ring and grade(I) = 2 by Theorem 1.1. Hence
A, G are Gorenstein rings and a(G) = −2 by [7, Corollary 3.5]. Let a, b
be a minimal reduction system of filtration F and x, y their images in G.
Then a, b and x, y are regular sequences of A and G, respectively. Hence
we get an exact sequence

0 −→ G
x−→ G −→ G/xG −→ 0.

Using this exact sequence we have the exact sequence

0 −→ [H1
M (G/xG)]n −→ [H2

M (G)]n−1.

Since [H2
M (G)]n = 0 for d > 0 and [H2

M (G)]n = 0 for all n ≥ −1 if d = 2,
[H1

M (G/xG)]n = 0 for n ≥ 0. Since the element y is a non-zero-divisor in
G/xG, we get the exact sequence

0−→G/xG
y−→ G/xG−→G/(x, y)G−→0.

This implies exact sequence

0−→[H0
M (G/(x, y)G]n−→[H1

M (G/xG)]n−1.

Since [H1
M (G/xG)]n = 0 for all n ≥ 0, it follows that [H0

M (G/(x, y)G)]n =
0 for all n ≥ 1. Note that J = (a3, . . . , ad) is an ideal of the principal class
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such that (I, J) is an mmm-primary ideal and Jk = (ak
3 , . . . , ak

d). We shall
denote by (J ′k, x, y)/(x, y) the image of Jk in G. Then (J ′k, x, y)/(x, y)
is a complete intersection ideal of the ring G/(x, y)G, because G/(x, y)G
is a Cohen-Macaulay ring. On the other hand, (J ′k, x, y)/(x, y) is a ho-
mogeneous ideal of degree 0 of the ring G/(x, y)G for all k ≥ 1. Using
the results just obtained, we get [H0

M (G/(J ′k, x, y)G)]n = 0 for all n ≥ 1.
Since

[G/(J ′k, x, y)G]n = [H0
M (G/(J ′k, x, y)G]n

= [In/(JkIn + (a, b)In−1 + In+1] = 0

for all n ≥ 1, we get

I = JkI + (a, b) + I2 = JkI + (a, b) + I3 = · · · = JkI + (a, b) + In = · · ·

for all k ≥ 1. Thus,

I = ∩n≥1[JkI + (a, b) + In] = JkI + (a, b)

for all k ≥ 1. Hence, we get

I = ∩k≥1[JkI + (a, b)] = (a, b).

Now, from the relations In+1 = (a, b)In for all n ≤ 1 it follows that
In = (a, b)n = In for all n ≥ 1 and that I is a complete intersection ideal
of A.

(⇐=) Since I is a complete intersection ideal of A, there exist regular
elements a, b of A such that I = (a, b). Since A is a Cohen-Macaulay ring
and In = In = (a, b)n, it follows that

G(I) = G(I) = (A/I)[X, Y ],

by [10]. Since A is a Gorenstein ring, A/I and (A/I)[X,Y ] are Gorenstein
rings. Thus, G(I) is a Gorenstein ring. Since G = (A/I)[X, Y ], we get
the following exact sequences

0−→G
X−→ G−→(A/I)[Y ]−→0,

0−→(A/I)[Y ] Y−→ (A/I)[Y ]−→A/I−→0.
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Using these exact sequences we get exact sequences
(8)
0−→[Hd−2

M (A/I)]n−→[Hd−1
M ((A/I)[X])]n−1−→[Hd−1

M ((A/I)[X])]n−→0,

(9) 0−→[Hd−1
M ((A/I)[X])]n−→[Hd

M (G)]n−1−→[Hd
M (G)]n−→0.

From (8) we get

(10) [Hd−1
M ((A/I)[X])]n−1 ' [Hd−1

M ((A/I)[X])]n

for all n ≥ 1. Since [Hd−1
M ((A/I)[X])]n = 0 for all large n, it follows that

[Hd−1
M ((A/I)[X])]n = 0 for all n ≥ 0.

From this and (9) we get [Hd
M (G)]n ' [Hd

M (G)]n−1 for all n ≥ 0. Thus,
[Hd

M (G)]n = 0 for all n ≥ −1. It is a plain fact that a(G) = −2. Hence the
conditions of Corollary 3.5 in [7] are satisfied. Thus, R(I) is Gorenstein
ring by Corollary 3.5 of [7].

Corollary 4.1. Let dim A = 2, I a height two equimultiple ideal of A and
F an I-good integrally closed filtration of I. Then R(I) is a Gorenstein
ring if and only if A is a Gorenstein ring and G(I) ' (A/I)[X, Y ].

Proof. (=⇒) From Theorem 1.2 it follows that A is a Gorenstein ring and

G(I) = G(I) ' (A/I)[X, Y ].

(⇐=) Since G(I) ' (A/I)[X, Y ] and A is a Gorenstein ring, it follows
that I is a complete intersection ideal of A and In = In for all n. From
this it follows that R(I) is a Gorenstein ring, by Theorem 1.2.

5. Some applications

First, we are interested in the case A being a normal integral domain
with dim A = 3.

Proposition 5.1. Let A be a Noetherian normal integral domain of di-
mension 3, I a height two equimultiple ideal of A and F the integrally
closed filtration of I. Let r(F) be the reduction number of F . Then R(I)
is a Cohen-Macaulay ring if and only if A is a Cohen-Macaulay ring and
r(F) ≤ 1.
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Proof. We need only to show that if A is a Cohen-Macaulay normal integral
domain of dimension 3, I a height two equimultiple ideal of A and F an
I-good integrally closed filtration of I, c is an element of A such that (I, c)
is an mmm-primary ideal, then (c)∩ In = cIn for all n ≥ 1. Assume that a, b
is a minimal reduction system of F and x ∈ (c)∩ In. It follows that there
is an element y ∈ A such that x = cy ∈ In and cNyN ∈ Ik(a, b)nN−k for
all large N, k. From this, we get cNyN ∈ (a, b)nN−k. Thus,

yN ∈ (a, b)nN−k : cN = (a, b)nN−k,

because A is a Cohen-Macaulay ring. Now, let V be a discrete valuation
of A. We have

NV (y) ≥ NV [(a, b)n]− kV [(a, b)]

for all large N. It follows that

V (y) ≥ V [(a, b)n]− (k/N)V [(a, b)]

for all large N . Therefore, we have V (y) ≥ V [(a, b)n] for all discrete
valuations V of A and y ∈ (a, b)n ⊆ In. Thus, x ∈ (c)In and

(c) ∩ In = (c)In

for all n ≥ 1. From this and Theorem 1.1 we get Proposition 5.1.

Proposition 5.2. Let (A,mmm) be a Noetherian local analytically unmarified
ring of dim A ≥ 2, I a height two equimultiple ideal of A, F = {In}n≥0.
Then R(I) is a Gorenstein ring if and only if A is a Gorenstein ring, I is
a complete intersection ideal of A and In = In

Proof. Since A is analytically unmarified, it follows that the filtration F
is an I-good filtration. Hence this proposition follows from Theorem 1.2.
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