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SEPARATELY HOLOMORPHIC FUNCTIONS
ON COMPACT SETS

NGUYEN THAI SON

Abstract. The main aim of this paper is to give a characterization for

H(Z) to have the property (DN), where Z is a Stein space, and to give

conditions for a compact set K in a locally irreducible Stein space not to
be pluripolar in every irreducible branch of all neighbourhoods of K .

1. Introduction

Let K be a compact set in a complex space X and Z a complex space.
For a function f : K × Z −→ lC we put

fx(z) = f(x, z) for z ∈ Z,

fz(x) = f(x, z) for x ∈ K.

The function f is called separately holomorphic if fx : Z −→ lC and
fz : K −→ lC are holomorphic for all x ∈ K and z ∈ Z, respectively.
Here a function on K is said to be holomorphic if it can be extended
holomorphically to a neighbourhood of K in X.

The aim of the present note is to find some conditions on K and Z for
which every separately holomorphic function on K × Z is holomorphic.

For the formulation of results we need the following notions.

1.1. The properties (DN) and (LB∞)

Let E be a Frechet space with a fundamental system of semi-norms{‖ . ‖k

}∞
k=1

. For each subset B ⊂ E , define the generalized semi-norm
‖ . ‖∗B : E′ −→ [0, +∞], where E′ is the dual space of E, by

‖u‖∗B = sup{|u(x)| : x ∈ B}.

We will write ‖ . ‖∗k for ‖ . ‖∗Uk
, where Uk = {x ∈ E : ‖x‖k < 1}.

Using this notion, we say that E has the property
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(DN) if ∃p ∀q, d > 0 ∃k, C > 0 : ‖ . ‖1+d
q ≤ C ‖ . ‖k ‖ . ‖d

p,

(LB∞) if ∀ρN ↑ ∞ ∀p ∃q ∀k ∃nk, C > 0 ∀u ∈ E′ ∃k ≤ n ≤ nk :

‖ u ‖∗1+ρN
q ≤ C ‖ u ‖∗n ‖ u ‖∗ρN

p .

The above properties were introduced and investigated by Vogt (see, for
example, [8], [9]). In these cases we will write E ∈ (DN) and E ∈ (LB∞),
respectively.

1.2. Plurisubharmonic functions
Given a complex space X and a function ϕ : X −→ [−∞, +∞). We

say that ϕ is plurisubharmonic on X if ϕ is upper-semicontinuous and
plurisubharmonic on the regular locus R(X) of X. Note that such a
function is called by Zeriahi [11] weakly plurisubharmonic. A subset Y of
X, for which there exists a plurisubharmonic function ϕ on X such that
ϕ
∣∣
Y

= −∞ and ϕ 6≡ −∞ on every irreducible branch of X, is called the
pluripolar set in X.

1.3. The results
In this note we prove the following two theorems:

Theorem A. Let Z be a Stein space. The following conditions are equiv-
alent:

(i) The space H(Z) of holomorphic functions on Z equipped with the
compact-open topology has the property (DN).

(ii) Every separately holomorphic function on K × Z, where K is a
compact set in a locally irreducible Stein space X which is not pluripolar
in every irreducible branch of all neighbourhoods of K, can be extended
holomorphically to a neighbourhood W × Z of K × Z in X × Z.

Theorem B. Let K be a compact set in a locally irreducible Stein space
X. Then the following conditions are equivalent:

(i) K is not pluripolar in every irreducible branch of all neighbourhoods
of K.

(ii) [H(K)]′ ∈ (LB∞), where H(K) denotes the space of holomorphic
functions on K equipped with the inductive topology.

(iii) Every separately holomorphic function on K×Z, where Z is a Stein
space, H(Z) ∈ (DN) and K is unique, can be extended holomorphically
to a neighbourhood W × Z of K × Z in X × Z.

The proofs of Theorems A and B are given in Section 2 and Section 3,
respectively.
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2. Proof of Theorem A

For the proof of the theorem we need the following three lemmas.

Lemma 2.1 [3]. Let θ : Y −→ Z be a finite proper holomorphic surjection
between Stein spaces. Then H(Z) ∈ (DN) if and only if H(Y ) ∈ (DN).

Lemma 2.2 [2]. Let Z be a locally irreducible Stein space. Then H(Z) ∈
(DN) if and only if every plurisubharmonic function on Z, which is bounded
from above, is constant.

Lemma 2.3. Let Z be a Stein space. Then H(Z) ∈ (DN) if and only
if H(Z \H) ∈ (DN) for all hypersurfaces H ⊂ Z containing the singular
locus S(Z) of Z.

Proof. Since H(Z) is contained in H(Z \ H) as a subspace for every
hypersurface H in Z (see [5]), the sufficiency is obvious.

Conversely, assume that H(Z) ∈ (DN) and H is a hypersurface in
Z containing S(Z). Since Z \ H is a Stein manifold, it suffices to show
that every plurisubharmonic function ϕ on Z \H, which is bounded from
above, is constant. Consider the normalization θ : Z̃ −→ Z of Z. Since
ϕθ is plurisubharmonic on Z̃ \ θ−1(H) and locally bounded on Z̃, by the
normality of Z̃ it follows that ϕθ can be considered as a plurisubharmonic
function on Z̃. By Lemma 2.1 H(Z̃) ∈ (DN). Lemma 2.2 then yields that
ϕθ and hence ϕ is constant.

Now we are able to prove Theorem A.
(i) =⇒ (ii). Given a separately holomorphic function f : K×Z −→ lC,

where K is a compact set in a locally irreducible Stein space X which is
not pluripolar in every irreducible branch of all neighbourhoods of K.

Let {Wn} be a neighbourhood basis of K and T , H are hypersurfaces
in X, Z, respectively, such that S(X) ⊂ T and S(Z) ⊂ H. For each n ≥ 1
put

Zn = {z ∈ Z \H : fz ∈ H(Wn), ‖fz‖Wn ≤ n},
where ‖fz‖Wn denotes the sup-norm of fz on Wn. From the separate
holomorphicity of f we have

Z \H = ∪
n≥1

Zn.

On the other hand, by the Montelness of H(Wn), it follows that Zn

are closed in Z \H. The Baire Theorem yields that there exists n0 such
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that Int Zn0 6= ∅. Note that IntZn0 meets every irreducible branch of Z.
Writing K ∩ (Wn0 \ T ) as a countable union of compact sets in Wn0 \ T ,
we can find a compact set E ⊂ K ∩ (Wn0 \ T ) which is not pluripolar
in every connected component of Wn0 \ T . Now we can consider f as a
separately holomorphic function on (E ×Z \H)∪ (Wn0 \ T × IntZn0) (in
the sense of Siciak [7]). From the relation H(Z \ H) ∈ (DN) and from
the non-pluripolarrity of E in every connected component of Wn0 \ T it
follows by Zaharjuta [10] that f is extended to a holomorphic function f̂
on Wn0 ∩ (X \ T )× (Z \H).

Consider the holomorphic function from W into H(Z \H) given by

x 7−→ f̂x, x ∈ W,

where W = Wn0∩(X\T ). Since E is not pluripolar andH(Z) is contained
in H(Z \H) as a subspace with

{
f̂x : x ∈ E

}
⊂ H(Z),

f̂ can be considered as a holomorphic function on Wn0 ∩ (X \ T )× Z.
Similarly, using the holomorphic function

z 7−→ f̂z ∈ H(Wn0 ∩ (X \ T )), z ∈ Z,

we can consider f̂ as a holomorphic function on Wn0 × Z.

(ii) =⇒ (i). By Vogt [9], it suffices to check that every continuous linear
map T from H(4) into H(Z) is compact, where 4 =

{
λ ∈ lC : |λ| < 1

}
.

Since [H(4)]′ ∼= H(4), the map T induces a function f : 4× lC −→ lC by

f(λ, z) = (T ∗δz)(λ) for (λ, z) ∈ 4× lC,

where
δz(ϕ) = ϕ(z) for ϕ ∈ H( lC).

Obviously, f is separately holomorphic. By the hypothesis, f is holo-
morphically extended to a holomorphic function f̂ on a neighbourhood
W × lC of 4× lC. This implies that T ∗ maps continuously [H( lC)]′ into
H∞(V ), where V is a relatively compact neighbourhood of 4 in W and
H∞(V ) is the Banach space of bounded holomorphic functions on V .
Hence T is compact.
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3. Proof of Theorem B

We need the following

Lemma 3.1. Let K be a compact set in a complex space X such that
[H(K)]′ ∈ (LB∞). Then K is unique.

Proof. Given f ∈ H(K) with f
∣∣
K

= 0. Let {Uk} be a neighbourhood
basis of K. For each k ≥ 1, put

εk = ‖f‖Uk
= sup{|f(x)| : x ∈ Uk}.

Then εk ↓ 0. By applying (LB∞) to ρN =
√− log εN ↑ +∞ we have

f ∈ H∞(Up) for p ≥ 1 and

∃q ∀N ∃Ñ ≥ N, CN > 0 ∀n ∃N ≤ kn ≤ Ñ :

‖fn‖1+ρkn
q ≤ CN‖fn‖kn ‖f‖ρkn

p .

This yields
‖f‖1+ρkn

q ≤ C
1/n
N ‖f‖kn ‖f‖ρkn

p .

Choose N ≤ k ≤ Ñ such that

#{n : kn = k} = ∞.

Then

∥∥f
∥∥

q
≤

∥∥f
∥∥ 1

1+ρk

k

∥∥f
∥∥ ρk

1+ρk
p

=
(
εk

) 1
1+
√
−logεk

(
εp

) √
−logεk

1+
√
−logεk −→ 0

as k −→∞. Hence f = 0 on Vq.

Now we prove Theorem B.
(i) =⇒ (iii) by Theorem A.
(iii) =⇒ (i). Assume that there exists an irreducible branch Z of a

neighbourhood U of K such that E = K ∩ Z is pluripolar. Since Z is a
connected component of U , it follows that E satisfies the hypothesis of
(iii).

Choose a plurisubharmonic function ϕ on X for which ϕ
∣∣
E

= −∞.
Let W be a neighbourhood of E in X for which there exists a finite
proper holomorphic map θ from W onto the unit polydisc 4n, n = dim X.
Consider the plurisubharmonic function ϕ̃ on 4n \ S(θ) given by
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ϕ̃(z) =
∑

θ(x)=z

ϕ(x), z ∈ 4n \ S(θ),

where S(θ) denotes the branch locus of θ. Since θ is proper, ϕ̃ is bounded
from above on 4n. Hence

ϕ̂(z) = lim sup
{
ϕ̃(z′) : z′ −→ z, z′ ∈ 4n \ S(θ)

}

is a plurisubharmonic extension of ϕ̃. This function is also equal to −∞
on θ(E).

Indeed, let z ∈ θ(E). Write θ−1(z) = {x1, . . . , xq, xq+1, . . . , xp} with

ϕ(xj) = −∞ for 1 ≤ j ≤ q,

and
ϕ(xj) 6= −∞ for q + 1 ≤ j ≤ p.

Given M > 0. For each j = 1, . . . , p take a neighbourhood Uj of xj such
that

ϕ(x) < −M for x ∈ Uj , j = 1, . . . , q,

and
ϕ(x) < ϕ(xj) + 1 for x ∈ Uj , q + 1 ≤ j ≤ p.

We may assume that Uj are disjoint. Since θ is proper, there exists a
neighbourhood V of z such that

θ−1(V ) ⊂ p∪
j=1

Uj .

It follows that for z′ ∈ V \ S(θ) we have

ϕ̂(z′) = ϕ̃(z′) =
∑ {

ϕ(x′) : θ(x′) = z′ , x′ ∈ ∪
1≤j≤q

Uj

}

+
∑ {

ϕ(x′) : θ(x′) = z′ , x′ ∈ ∪
q+1≤j≤p

Uj

}

≤ −M + (p− q − 1)max
(
ϕ(xj) + 1

)
.

Hence ϕ̂
∣∣
θ(E)

= −∞.
Consider the Hartogs domain Ωϕ̂ in 4n × lC given by

Ωϕ̂ =
{

(z, λ) ∈ 4n × lC : |λ| < e−ϕ̂(z)
}

.
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Since Ωϕ̂ is a pseudoconvex domain, there exists f ∈ H(Ωϕ̂) such that Ωϕ̂

is the domain of existence of f (see [4]). Write the Hartogs expansion of
f on Ωϕ̂,

f(z, λ) =
∑

n≥0

fn(z)λn,

where

fn(z) =
1

2πi

∫

|λ|=e−δϕ̂(z)

f(z, λ)
λn+1

dλ (δ > 1).

Since the sequence
{ 1

n
log|fn(z)|

}
is locally bounded, for each m ≥ 1 we

can define

Ψm(z) = sup
{ 1

n
log|fn(z)| : n ≥ m

}
for z ∈ 4n,

Ψ∗m(z) = lim sup
z′−→z

Ψm(z′).

By Bedford-Taylor [1] Ψ∗m is plusubharmonic on 4n and the set
{

Ψm <

Ψ∗m
}

is pluripolar. Let

Ψ̂ = lim
m−→∞

Ψ∗m.

It suffices to show that Ψ̂ is not identically equal to −∞ on every non-
empty open set in 4n.

Assume by contrary that Ψ̂ ≡ −∞ on a non-empty open set U ⊂ 4n.
Then the Hartogs theorem [4] implies that the series

∑
n≥0

fn(z)λn converges

to a holomorphic function g on U × lC. This yields U × lC ⊂ Ωϕ̂ and hence
ϕ̂
∣∣
U

= −∞. It follows that Ψ̂ is plurisubharmonic on 4n and the set{
Ψ < Ψ̂

}
is pluripolar, where Ψ = lim

m−→∞
Ψm.

Consider the function:

g(x, λ) = f(θ(x), λ) for x ∈ E and λ ∈ lC.

By the hypothesis we can find a holomorphic function ĝ on a neighbour-
hood W × lC of E × lC such that ĝ

∣∣
E× lC = g. Choose a neighbourhood V

of E in W such that

V ×4 ⊂ {
(x, λ) : (θx, λ) ∈ Ωϕ̂

}
.
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Consider the Hartogs expansion of ĝ on V ×4:

ĝ(x, λ) =
∑

n≥0

ĝn(x)λn.

Then
ĝn

∣∣
E

= fnθ
∣∣
E

for n ≥ 0.

Hence, shrinking V if necessary, we have ĝn

∣∣
V

= fnθ
∣∣
V

for n ≥ 0. This
yields

−∞ = lim
n

sup
1
n

log|ĝn(x)| = lim
n

sup
1
n

log|fnθ(x)|
= Ψ(θ(x)) = Ψ̂(θ(x)),

for x ∈ V \ θ−1({Ψ < Ψ̂}), which is impossible.
(i) =⇒ (ii). To prove [H(K)]′ ∈ (LB∞), by Vogt [9], it suffices to

show that every continuous linear map T : [H(K)]′ −→ H( lC) is compact.
Define the function

fT (x, λ) = T (δx)(λ) for x ∈ K, λ ∈ lC.

This function is separately holomorphic. By Theorem A there is a holo-
morphic extension f̂T of fT to a neighbourhood V × lC of K × lC. Since

H(V,H( lC)) ∼= H(V )⊗̂πH( lC) ∼= L (
[H(V )]′,H( lC)

)
,

the form
S(δz)(λ) = f̂T (z)(λ) for z ∈ V, λ ∈ lC,

defines a continuous linear map from [H(V )]′ into H( lC). By the unique-
ness of K, from the relations

T
(∑

j

λjδzj

)
=

∑

j

λjT (δzj ) =
∑

j

λjfT (zj)

=
∑

j

λjS(δzj ) = S
( ∑

j

λjδzj

)
.

it follows that T = S. Hence T is compact.

(ii) =⇒ (i). We show that E = K ∩ Z is not pluripolar, where Z is an
irreducible branch of a neighbourhood U of K.
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Assume by contrary that E is pluripolar. We use the same notations in
the proof of (iii) =⇒ (i). Consider the linear map T : [H( lC)]′ −→ H(E)
given by

(Tµ)(x) = 〈gx, µ〉 for µ ∈ [H( lC)]′ and x ∈ E.

The definition is correct. Indeed, given µ ∈ [H( lC)]′, choose C > 0 and
r > 0 such that

| 〈σ, µ〉 | ≤ C‖σ‖r4 for σ ∈ H( lC).

Let V be a neighbourhood of E in X such that V × r4 ⊂ (θ × id)−1Ωϕ̂.
Write

g(x, λ) =
∑

n≥0

gn(x)λn for x ∈ V, |λ| < r .

Since
|〈λn, µ〉| ≤ Crn for n ≥ 0,

it follows that the series
∑
n≥0

gn(x)〈λn, µ〉 converges uniformly to 〈gx, µ〉 on

a relatively compact neighbourhood of E in V . This means that T (µ) ∈
H(E).

Further, since U is locally irreducible, Z is a connected component
of U and hence [H(E)]′ ∈ (LB∞). By Lemma 3.1 E is an unique set.
This yields that T has a closed graph. By the open mapping Grothendieck
Theorem in [6], T is continuous. By Vogt [9], T continuously maps [H( lC)]′

into H(V ) for some neighbourhood V of E. Then the form

ĝ(x, λ) = T (δλ)(x) , x ∈ V , λ ∈ lC

defines a holomorphic extension of g to V × lC. Similarly as in (iii) =⇒
(i) we get a contradiction.
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