SEPARATELY HOLOMORPHIC FUNCTIONS ON COMPACT SETS

NGUYEN THAI SON

Abstract. The main aim of this paper is to give a characterization for $\mathcal{H}(Z)$ to have the property (DN) , where Z is a Stein space, and to give conditions for a compact set K in a locally irreducible Stein space not to be pluripolar in every irreducible branch of all neighbourhoods of K .

1. INTRODUCTION

Let K be a compact set in a complex space X and Z a complex space. For a function $f: K \times Z \longrightarrow \mathbb{C}$ we put

$$
f_x(z) = f(x, z) \text{ for } z \in Z,
$$

$$
f^z(x) = f(x, z) \text{ for } x \in K.
$$

The function f is called separately holomorphic if $f_x : Z \longrightarrow \mathbb{C}$ and f^z : $K \longrightarrow \mathbb{C}$ are holomorphic for all $x \in K$ and $z \in Z$, respectively. Here a function on K is said to be *holomorphic* if it can be extended holomorphically to a neighbourhood of K in X .

The aim of the present note is to find some conditions on K and Z for which every separately holomorphic function on $K \times Z$ is holomorphic.

For the formulation of results we need the following notions.

1.1. The properties (DN) and (LB^{∞})

Let E be a Frechet space with a fundamental system of semi-norms \overline{a} $\|\,.\,\|_k$ $\frac{L}{\sqrt{2}}$ $\sum_{k=1}^{\infty}$. For each subset $B \subset E$, define the generalized semi-norm $\|\cdot\|_B^* : E' \longrightarrow [0, +\infty],$ where E' is the dual space of E, by

$$
||u||_B^* = \sup\{|u(x)| : x \in B\}.
$$

We will write $\| \cdot \|_k^*$ for $\| \cdot \|_{U_k}^*$, where $U_k = \{x \in E : \|x\|_k < 1\}.$

Using this notion, we say that E has the property

Received August 24, 1996; in revised form December 7, 1996.

208 NGUYEN THAI SON

$$
(DN) \quad \text{if } \exists p \,\forall q, \ d > 0 \,\exists k, \ C > 0 : \|\ .\ \|_q^{1+d} \le C \|\ .\ \|_k \|\ .\ \|_p^d,
$$

$$
(LB^{\infty}) \quad \text{if } \forall \rho_N \uparrow \infty \,\forall p \,\exists q \,\forall k \,\exists n_k, C > 0 \,\forall u \in E' \,\exists k \le n \le n_k :
$$

$$
\|\ u\ \|_q^{*1+\rho_N} \le C \|\ u\ \|_n^* \|\ u\ \|_p^{*\rho_N}.
$$

The above properties were introduced and investigated by Vogt (see, for example, [8], [9]). In these cases we will write $E \in (DN)$ and $E \in (LB^{\infty})$, respectively.

1.2. Plurisubharmonic functions

Given a complex space X and a function $\varphi: X \longrightarrow [-\infty, +\infty)$. We say that φ is plurisubharmonic on X if φ is upper-semicontinuous and plurisubharmonic on the regular locus $R(X)$ of X. Note that such a function is called by Zeriahi [11] weakly plurisubharmonic. A subset Y of X, for which there exists a plurisubharmonic function φ on X such that $\varphi|_{Y} = -\infty$ and $\varphi \neq -\infty$ on every irreducible branch of X, is called the pluripolar set in X.

1.3. The results

In this note we prove the following two theorems:

Theorem A. Let Z be a Stein space. The following conditions are equivalent:

(i) The space $\mathcal{H}(Z)$ of holomorphic functions on Z equipped with the compact-open topology has the property (DN).

(ii) Every separately holomorphic function on $K \times Z$, where K is a compact set in a locally irreducible Stein space X which is not pluripolar in every irreducible branch of all neighbourhoods of K , can be extended holomorphically to a neighbourhood $W \times Z$ of $K \times Z$ in $X \times Z$.

Theorem B. Let K be a compact set in a locally irreducible Stein space X. Then the following conditions are equivalent:

(i) K is not pluripolar in every irreducible branch of all neighbourhoods of K .

(ii) $[\mathcal{H}(K)]' \in (LB^{\infty})$, where $\mathcal{H}(K)$ denotes the space of holomorphic functions on K equipped with the inductive topology.

(iii) Every separately holomorphic function on $K \times Z$, where Z is a Stein space, $\mathcal{H}(Z) \in (DN)$ and K is unique, can be extended holomorphically to a neighbourhood $W \times Z$ of $K \times Z$ in $X \times Z$.

The proofs of Theorems A and B are given in Section 2 and Section 3, respectively.

2. Proof of Theorem A

For the proof of the theorem we need the following three lemmas.

Lemma 2.1 [3]. Let $\theta: Y \longrightarrow Z$ be a finite proper holomorphic surjection between Stein spaces. Then $\mathcal{H}(Z) \in (DN)$ if and only if $\mathcal{H}(Y) \in (DN)$.

Lemma 2.2 [2]. Let Z be a locally irreducible Stein space. Then $\mathcal{H}(Z) \in$ (DN) if and only if every plurisubharmonic function on Z, which is bounded from above, is constant.

Lemma 2.3. Let Z be a Stein space. Then $\mathcal{H}(Z) \in (DN)$ if and only if $\mathcal{H}(Z \setminus H) \in (DN)$ for all hypersurfaces $H \subset Z$ containing the singular locus $S(Z)$ of Z.

Proof. Since $\mathcal{H}(Z)$ is contained in $\mathcal{H}(Z \setminus H)$ as a subspace for every hypersurface H in Z (see [5]), the sufficiency is obvious.

Conversely, assume that $\mathcal{H}(Z) \in (DN)$ and H is a hypersurface in Z containing $S(Z)$. Since $Z \setminus H$ is a Stein manifold, it suffices to show that every plurisubharmonic function φ on $Z \setminus H$, which is bounded from above, is constant. Consider the normalization $\theta : \widetilde{Z} \longrightarrow Z$ of Z. Since $\varphi\theta$ is plurisubharmonic on $\widetilde{Z}\setminus \theta^{-1}(H)$ and locally bounded on \widetilde{Z} , by the normality of \widetilde{Z} it follows that $\varphi\theta$ can be considered as a plurisubharmonic function on \widetilde{Z} . By Lemma 2.1 $\mathcal{H}(\widetilde{Z}) \in (DN)$. Lemma 2.2 then yields that $\varphi\theta$ and hence φ is constant.

Now we are able to prove Theorem A.

(i) \implies (ii). Given a separately holomorphic function $f: K \times Z \longrightarrow \mathbb{C}$, where K is a compact set in a locally irreducible Stein space X which is not pluripolar in every irreducible branch of all neighbourhoods of K.

Let $\{W_n\}$ be a neighbourhood basis of K and T, H are hypersurfaces in X, Z, respectively, such that $S(X) \subset T$ and $S(Z) \subset H$. For each $n \geq 1$ put

$$
Z_n = \{ z \in Z \setminus H : f^z \in \mathcal{H}(W_n), ||f^z||_{W_n} \leq n \},\
$$

where $||f^z||_{W_n}$ denotes the sup-norm of f^z on W_n . From the separate holomorphicity of f we have

$$
Z \setminus H = \bigcup_{n \geq 1} Z_n.
$$

On the other hand, by the Montelness of $\mathcal{H}(W_n)$, it follows that Z_n are closed in $Z \setminus H$. The Baire Theorem yields that there exists n_0 such 210 NGUYEN THAI SON

that Int $Z_{n_0} \neq \emptyset$. Note that Int Z_{n_0} meets every irreducible branch of Z. Writing $K \cap (W_{n_0} \setminus T)$ as a countable union of compact sets in $W_{n_0} \setminus T$, we can find a compact set $E \subset K \cap (W_{n_0} \setminus T)$ which is not pluripolar in every connected component of $W_{n_0} \setminus T$. Now we can consider f as a separately holomorphic function on $(E \times Z \setminus H) \cup (W_{n_0} \setminus T \times \text{Int } Z_{n_0})$ (in the sense of Siciak [7]). From the relation $\mathcal{H}(Z \setminus H) \in (DN)$ and from the non-pluripolarrity of E in every connected component of $W_{n_0} \setminus T$ it follows by Zaharjuta [10] that f is extended to a holomorphic function \widehat{f} on $W_{n_0} \cap (X \setminus T) \times (Z \setminus H)$.

Consider the holomorphic function from W into $\mathcal{H}(Z \setminus H)$ given by

$$
x \longmapsto \widehat{f}_x, \quad x \in W,
$$

where $W = W_{n_0} \cap (X \setminus T)$. Since E is not pluripolar and $\mathcal{H}(Z)$ is contained in $H(Z \setminus H)$ as a subspace with

$$
\left\{\widehat{f}_x\ : x\in E\right\} \ \subset \ \mathcal{H}(Z),
$$

 \widehat{f} can be considered as a holomorphic function on $W_{n_0} \cap (X \setminus T) \times Z$.

Similarly, using the holomorphic function

$$
z \longmapsto \hat{f}^z \in \mathcal{H}(W_{n_0} \cap (X \setminus T)), \quad z \in Z,
$$

we can consider \widehat{f} as a holomorphic function on $W_{n_0} \times Z$.

(ii) \implies (i). By Vogt [9], it suffices to check that every continuous linear map T from $\mathcal{H}(\triangle)$ into $\mathcal{H}(Z)$ is compact, where $\triangle = \{ \lambda \in \mathbb{C} : |\lambda| < 1 \}.$ Since $[\mathcal{H}(\triangle)]' \cong \mathcal{H}(\overline{\triangle})$, the map T induces a function $f : \overline{\triangle} \times \mathbb{C} \longrightarrow \mathbb{C}$ by

$$
f(\lambda, z) = (T^* \delta_z)(\lambda)
$$
 for $(\lambda, z) \in \overline{\Delta} \times \mathbb{C}$,

where

$$
\delta_z(\varphi) = \varphi(z) \text{ for } \varphi \in \mathcal{H}(\mathbb{C}).
$$

Obviously, f is separately holomorphic. By the hypothesis, f is holomorphically extended to a holomorphic function \hat{f} on a neighbourhood $W \times \mathbb{C}$ of $\overline{\triangle} \times \mathbb{C}$. This implies that T^* maps continuously $[\mathcal{H}(\mathbb{C})]'$ into $\mathcal{H}^{\infty}(V)$, where V is a relatively compact neighbourhood of $\overline{\triangle}$ in W and $\mathcal{H}^{\infty}(V)$ is the Banach space of bounded holomorphic functions on V. Hence T is compact.

3. Proof of Theorem B

We need the following

Lemma 3.1. Let K be a compact set in a complex space X such that $[\mathcal{H}(K)]' \in (LB^{\infty})$. Then K is unique.

Proof. Given $f \in \mathcal{H}(K)$ with f $\big|_K = 0$. Let $\{U_k\}$ be a neighbourhood basis of K. For each $k \geq 1$, put

$$
\varepsilon_k = ||f||_{U_k} = \sup\{|f(x)| : x \in U_k\}.
$$

Then $\varepsilon_k \downarrow 0$. By applying (LB^{∞}) to $\rho_N = \sqrt{\frac{\varepsilon_k}{L}}$ $-\log \varepsilon_N$ ↑ $+\infty$ we have $f \in \mathcal{H}^{\infty}(U_p)$ for $p \geq 1$ and

$$
\exists q \forall N \ \exists \widetilde{N} \ge N, \quad C_N > 0 \ \forall n \ \exists N \le k_n \le \widetilde{N} : \\
||f^n||_q^{1 + \rho_{k_n}} \le C_N ||f^n||_{k_n} ||f||_p^{\rho_{k_n}}.
$$

This yields

$$
||f||_q^{1+\rho_{k_n}} \leq C_N^{1/n} ||f||_{k_n} ||f||_p^{\rho_{k_n}}.
$$

Choose $N\leq k\leq \widetilde{N}$ such that

$$
\#\{n : k_n = k\} = \infty.
$$

Then

$$
||f||_q \leq ||f||_k^{\frac{1}{1+\rho_k}} ||f||_p^{\frac{\rho_k}{1+\rho_k}} = (\varepsilon_k)^{\frac{1}{1+\sqrt{-\log \varepsilon_k}}} (\varepsilon_p)^{\frac{\sqrt{-\log \varepsilon_k}}{1+\sqrt{-\log \varepsilon_k}}} \longrightarrow 0
$$

as $k \longrightarrow \infty$. Hence $f = 0$ on V_a .

Now we prove Theorem B.

 $(i) \implies (iii)$ by Theorem A.

(iii) \implies (i). Assume that there exists an irreducible branch Z of a neighbourhood U of K such that $E = K \cap Z$ is pluripolar. Since Z is a connected component of U , it follows that E satisfies the hypothesis of (iii).

Choose a plurisubharmonic function φ on X for which φ $\Big|_E = -\infty.$ Let W be a neighbourhood of E in X for which there exists a finite proper holomorphic map θ from W onto the unit polydisc Δ^n , $n = \dim X$. Consider the plurisubharmonic function $\tilde{\varphi}$ on $\Delta^n \setminus S(\theta)$ given by

$$
\widetilde{\varphi}(z) = \sum_{\theta(x)=z} \varphi(x), \quad z \in \triangle^n \setminus S(\theta),
$$

where $S(\theta)$ denotes the branch locus of θ . Since θ is proper, $\tilde{\varphi}$ is bounded from above on \triangle^n . Hence

$$
\widehat{\varphi}(z) = \limsup \{ \widetilde{\varphi}(z') : z' \longrightarrow z, \ z' \in \triangle^n \setminus S(\theta) \}
$$

is a plurisubharmonic extension of $\tilde{\varphi}$. This function is also equal to $-\infty$ on $\theta(E)$.

Indeed, let $z \in \theta(E)$. Write $\theta^{-1}(z) = \{x^1, \ldots, x^q, x^{q+1}, \ldots, x^p\}$ with

$$
\varphi(x^j) = -\infty \text{ for } 1 \le j \le q,
$$

and

$$
\varphi(x^j) \neq -\infty \text{ for } q+1 \leq j \leq p.
$$

Given $M > 0$. For each $j = 1, ..., p$ take a neighbourhood U_j of x^j such that

$$
\varphi(x) < -M \quad \text{for } x \in U_j \,, \quad j = 1, \dots, q,
$$

and

$$
\varphi(x) < \varphi(x^j) + 1 \quad \text{for } x \in U_j \,, \quad q + 1 \le j \le p.
$$

We may assume that U_j are disjoint. Since θ is proper, there exists a neighbourhood V of z such that

$$
\theta^{-1}(V) \subset \bigcup_{j=1}^p U_j.
$$

It follows that for $z' \in V \setminus S(\theta)$ we have

$$
\widehat{\varphi}(z') = \widetilde{\varphi}(z') = \sum \left\{ \varphi(x') : \theta(x') = z', \quad x' \in \bigcup_{1 \le j \le q} U_j \right\} \n+ \sum \left\{ \varphi(x') : \theta(x') = z', \quad x' \in \bigcup_{q+1 \le j \le p} U_j \right\} \n\le -M + (p - q - 1) \max \left(\varphi(x^j) + 1 \right).
$$

Hence $\widehat{\varphi}$ $\Big|_{\theta(E)} = -\infty.$

Consider the Hartogs domain $\Omega_{\hat{\varphi}}$ in $\triangle^{n} \times \mathbb{C}$ given by

$$
\Omega_{\widehat{\varphi}} = \Big\{ (z, \lambda) \in \triangle^n \times \mathbb{C} : |\lambda| < e^{-\widehat{\varphi}(z)} \Big\}.
$$

Since $\Omega_{\hat{\varphi}}$ is a pseudoconvex domain, there exists $f \in \mathcal{H}(\Omega_{\hat{\varphi}})$ such that $\Omega_{\hat{\varphi}}$ is the domain of existence of f (see [4]). Write the Hartogs expansion of f on $\Omega_{\hat{\varphi}},$

$$
f(z,\lambda) = \sum_{n\geq 0} f_n(z)\lambda^n,
$$

where

$$
f_n(z) = \frac{1}{2\pi i} \int_{\substack{\lambda \mid 0 \leq e^{-\delta \widehat{\varphi}(z)}}} \frac{f(z,\lambda)}{\lambda^{n+1}} d\lambda \quad (\delta > 1).
$$

Since the sequence $\begin{cases} 1 \end{cases}$ $\frac{1}{n} \log |f_n(z)|$ o is locally bounded, for each $m \geq 1$ we can define

$$
\Psi_m(z) = \sup \left\{ \frac{1}{n} \log |f_n(z)| : n \ge m \right\} \text{ for } z \in \Delta^n,
$$

$$
\Psi_m^*(z) = \limsup_{z' \to z} \Psi_m(z').
$$

By Bedford-Taylor [1] Ψ_m^* is plusubharmonic on \triangle^n and the set $\Big\{\Psi_m<\Big\}$ Ψ_m^* is pluripolar. Let o

$$
\widehat{\Psi} = \lim_{m \longrightarrow \infty} \Psi_m^*.
$$

It suffices to show that $\hat{\Psi}$ is not identically equal to $-\infty$ on every nonempty open set in Δ^n .

Assume by contrary that $\widehat{\Psi} \equiv -\infty$ on a non-empty open set $U \subset \Delta^n$. Assume by contrary that $\Psi = -\infty$ on a non-empty
Then the Hartogs theorem [4] implies that the series Σ $n\geq 0$ $f_n(z)\lambda^n$ converges to a holomorphic function g on $U \times \mathbb{C}$. This yields $U \times \mathbb{C} \subset \Omega_{\hat{\varphi}}$ and hence $\widehat{\varphi}|_U = -\infty$. It follows that $\widehat{\Psi}$ is plurisubharmonic on Δ^n and the set $\Psi < \hat{\Psi}$ is pluripolar, where $\Psi = \lim_{m \to \infty} \Psi_m$.

Consider the function:

$$
g(x,\lambda) = f(\theta(x), \lambda)
$$
 for $x \in E$ and $\lambda \in \mathbb{C}$.

By the hypothesis we can find a holomorphic function \hat{g} on a neighbourhood $W \times \mathbb{C}$ of $E \times \mathbb{C}$ such that $\widehat{g}|_{E \times \mathbb{C}} = g$. Choose a neighbourhood V of E in W such that

$$
V \times \triangle \subset \big\{ (x, \lambda) : (\theta x, \lambda) \in \Omega_{\widehat{\varphi}} \big\}.
$$

Consider the Hartogs expansion of \hat{g} on V $\times\triangle$:

$$
\widehat{g}(x,\lambda) = \sum_{n\geq 0} \widehat{g}_n(x)\lambda^n.
$$

Then

$$
\widehat{g}_n\big|_E = f_n \theta\big|_E \quad \text{for } n \ge 0.
$$

Hence, shrinking V if necessary, we have \widehat{g}_n $\big|_V = f_n \theta$ $|_V$ for $n \geq 0$. This yields

$$
-\infty = \lim_{n} \sup \frac{1}{n} \log |\widehat{g}_n(x)| = \lim_{n} \sup \frac{1}{n} \log |f_n \theta(x)|
$$

= $\Psi(\theta(x)) = \widehat{\Psi}(\theta(x)),$

for $x \in V \setminus \theta^{-1}(\{\Psi \leq \widehat{\Psi}\})$, which is impossible.

(i) \implies (ii). To prove $[\mathcal{H}(K)]' \in (LB^{\infty})$, by Vogt [9], it suffices to show that every continuous linear map $T : [\mathcal{H}(K)]' \longrightarrow \mathcal{H}(\mathbb{C})$ is compact. Define the function

$$
f_T(x,\lambda) = T(\delta_x)(\lambda)
$$
 for $x \in K$, $\lambda \in \mathbb{C}$.

This function is separately holomorphic. By Theorem A there is a holomorphic extension \hat{f}_T of f_T to a neighbourhood $V \times \mathbb{C}$ of $K \times \mathbb{C}$. Since

$$
\mathcal{H}(V, \mathcal{H}(\mathbb{C})) \cong \mathcal{H}(V) \hat{\otimes}_{\pi} \mathcal{H}(\mathbb{C}) \cong \mathcal{L} ([\mathcal{H}(V)]', \mathcal{H}(\mathbb{C})),
$$

the form

$$
S(\delta_z)(\lambda) = \widehat{f}_T(z)(\lambda) \quad \text{for } z \in V, \ \lambda \in \mathbb{C},
$$

defines a continuous linear map from $[\mathcal{H}(V)]'$ into $\mathcal{H}(\mathbb{C})$. By the uniqueness of K , from the relations

$$
T\Big(\sum_{j} \lambda_j \delta_{z_j}\Big) = \sum_{j} \lambda_j T(\delta_{z_j}) = \sum_{j} \lambda_j f_T(z_j)
$$

=
$$
\sum_{j} \lambda_j S(\delta_{z_j}) = S\Big(\sum_{j} \lambda_j \delta_{z_j}\Big).
$$

it follows that $T = S$. Hence T is compact.

(ii) \implies (i). We show that $E = K \cap Z$ is not pluripolar, where Z is an irreducible branch of a neighbourhood U of K.

Assume by contrary that E is pluripolar. We use the same notations in the proof of (iii) \implies (i). Consider the linear map $T : [\mathcal{H}(\mathbb{C})] \longrightarrow \mathcal{H}(E)$ given by

$$
(T\mu)(x) = \langle g_x, \mu \rangle
$$
 for $\mu \in [\mathcal{H}(\mathbb{C})]'$ and $x \in E$.

The definition is correct. Indeed, given $\mu \in [\mathcal{H}(\mathbb{C})]'$, choose $C > 0$ and $r > 0$ such that

$$
|\langle \sigma, \mu \rangle| \le C ||\sigma||_{r\Delta} \quad \text{for } \sigma \in \mathcal{H}(\mathbb{C}).
$$

Let V be a neighbourhood of E in X such that $V \times r \triangle \subset (\theta \times id)^{-1} \Omega_{\hat{\varphi}}$. Write

$$
g(x,\lambda) = \sum_{n\geq 0} g_n(x)\lambda^n \quad \text{for } x \in V, \ |\lambda| < r \, .
$$

Since

$$
|\langle \lambda^n, \mu \rangle| \le Cr^n \quad \text{for } n \ge 0,
$$

it follows that the series \sum $n\geq 0$ $g_n(x) \langle \lambda^n, \mu \rangle$ converges uniformly to $\langle g_x, \mu \rangle$ on a relatively compact neighbourhood of E in V. This means that $T(\mu) \in$ $\mathcal{H}(E)$.

Further, since U is locally irreducible, Z is a connected component of U and hence $[\mathcal{H}(E)]' \in (LB^{\infty})$. By Lemma 3.1 E is an unique set. This yields that T has a closed graph. By the open mapping Grothendieck Theorem in [6], T is continuous. By Vogt [9], T continuously maps $[\mathcal{H}(\mathbb{C})]$ ['] into $\mathcal{H}(V)$ for some neighbourhood V of E. Then the form

$$
\widehat{g}(x,\lambda) = T(\delta_{\lambda})(x), \quad x \in V, \ \lambda \in \mathbb{C}
$$

defines a holomorphic extension of g to $V \times \mathbb{C}$. Similarly as in (iii) \implies (i) we get a contradiction.

ACKNOWLEDGEMENT

The author thanks Professor Nguyen Van Khue for helpful suggestions during preparation of this paper.

REFERENCES

1. E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.

216 NGUYEN THAI SON

- 2. Dinh Huy Hoang and Thai Thuan Quang, Holomorphic surjections and linear topological invariants, Acta Math. Vietnam. 21 (1996), 45-58.
- 3. Do Duc Thai and Dinh Huy Hoang, Continuous linear extension operators from closed subgroups of a complex Lie group, Ann. Toulouse (to appear).
- 4. L. Hormander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966.
- 5. R. Narasimhan, Introduction to the Theory of Analytic Spaces, Springer Verlag, 1966.
- 6. A. P. Robertson and W. Robertson, Topological Vector Spaces, Cambridge Univ. Press, Cambridge, 1964.
- 7. J. Siciak, *Extremal plurisubharmonic functions in* \mathbb{C}^n , Ann. Polon. Math. 39 (1981), 175-211.
- 8. D. Vogt, On two classes of Frechet spaces, Arch. Math. 45 (1987), 255-266.
- 9. D. Vogt, Frechetraume zwischen deren jede stetige lineare Abbildung beschrankt ist, J. rein angew. Math. 345 (1983), 182-200.
- 10. V. P. Zaharjuta, Separately analytic functions, generalizations of Hartogs' theorem and envolopes of holomorphy, Math. Sb. 101 (143), (1976), 57-76 (in Russian).
- 11. A. Zeriahi, Fonction de Green pluricomplexe à pôle l'infini sur un espace de Stein parabolique, Math. Scand. 69 (1991), 89-126.

Department of Mathematics Pedagogical college of Ho Chi Minh City 280 An Duong Vuong, District 5, HCM City, Vietnam.