SEPARATELY HOLOMORPHIC FUNCTIONS ON COMPACT SETS

NGUYEN THAI SON

ABSTRACT. The main aim of this paper is to give a characterization for $\mathcal{H}(Z)$ to have the property (DN), where Z is a Stein space, and to give conditions for a compact set K in a locally irreducible Stein space not to be pluripolar in every irreducible branch of all neighbourhoods of K.

1. INTRODUCTION

Let K be a compact set in a complex space X and Z a complex space. For a function $f: K \times Z \longrightarrow \mathbb{C}$ we put

$$f_x(z) = f(x, z) \quad \text{for } z \in Z,$$

$$f^z(x) = f(x, z) \quad \text{for } x \in K.$$

The function f is called separately holomorphic if $f_x : Z \longrightarrow \mathbb{C}$ and $f^z : K \longrightarrow \mathbb{C}$ are holomorphic for all $x \in K$ and $z \in Z$, respectively. Here a function on K is said to be holomorphic if it can be extended holomorphically to a neighbourhood of K in X.

The aim of the present note is to find some conditions on K and Z for which every separately holomorphic function on $K \times Z$ is holomorphic.

For the formulation of results we need the following notions.

1.1. The properties (DN) and (LB^{∞})

Let *E* be a Frechet space with a fundamental system of semi-norms $\{\| \cdot \|_k\}_{k=1}^{\infty}$. For each subset $B \subset E$, define the generalized semi-norm $\| \cdot \|_B^* : E' \longrightarrow [0, +\infty]$, where *E'* is the dual space of *E*, by

$$||u||_B^* = \sup\{|u(x)| : x \in B\}.$$

We will write $\| \cdot \|_k^*$ for $\| \cdot \|_{U_k}^*$, where $U_k = \{x \in E : \|x\|_k < 1\}$. Using this notion, we say that E has the property

NGUYEN THAI SON

$$(DN) \quad \text{if } \exists p \ \forall q, \ d > 0 \ \exists k, \ C > 0 : \| . \|_q^{1+d} \le C \| . \|_k \| . \|_p^d,$$

$$(LB^{\infty}) \quad \text{if } \forall \rho_N \uparrow \infty \ \forall p \ \exists q \ \forall k \ \exists n_k, C > 0 \ \forall u \in E' \ \exists k \le n \le n_k :$$

$$\| u \|_q^{*1+\rho_N} \le C \| u \|_n^* \| u \|_p^{*\rho_N}.$$

The above properties were introduced and investigated by Vogt (see, for example, [8], [9]). In these cases we will write $E \in (DN)$ and $E \in (LB^{\infty})$, respectively.

1.2. Plurisubharmonic functions

Given a complex space X and a function $\varphi : X \longrightarrow [-\infty, +\infty)$. We say that φ is plurisubharmonic on X if φ is upper-semicontinuous and plurisubharmonic on the regular locus R(X) of X. Note that such a function is called by Zeriahi [11] weakly plurisubharmonic. A subset Y of X, for which there exists a plurisubharmonic function φ on X such that $\varphi|_Y = -\infty$ and $\varphi \not\equiv -\infty$ on every irreducible branch of X, is called the pluripolar set in X.

1.3. The results

In this note we prove the following two theorems:

Theorem A. Let Z be a Stein space. The following conditions are equivalent:

(i) The space $\mathcal{H}(Z)$ of holomorphic functions on Z equipped with the compact-open topology has the property (DN).

(ii) Every separately holomorphic function on $K \times Z$, where K is a compact set in a locally irreducible Stein space X which is not pluripolar in every irreducible branch of all neighbourhoods of K, can be extended holomorphically to a neighbourhood $W \times Z$ of $K \times Z$ in $X \times Z$.

Theorem B. Let K be a compact set in a locally irreducible Stein space X. Then the following conditions are equivalent:

(i) K is not pluripolar in every irreducible branch of all neighbourhoods of K.

(ii) $[\mathcal{H}(K)]' \in (LB^{\infty})$, where $\mathcal{H}(K)$ denotes the space of holomorphic functions on K equipped with the inductive topology.

(iii) Every separately holomorphic function on $K \times Z$, where Z is a Stein space, $\mathcal{H}(Z) \in (DN)$ and K is unique, can be extended holomorphically to a neighbourhood $W \times Z$ of $K \times Z$ in $X \times Z$.

The proofs of Theorems A and B are given in Section 2 and Section 3, respectively.

2. Proof of Theorem A

For the proof of the theorem we need the following three lemmas.

Lemma 2.1 [3]. Let $\theta : Y \longrightarrow Z$ be a finite proper holomorphic surjection between Stein spaces. Then $\mathcal{H}(Z) \in (DN)$ if and only if $\mathcal{H}(Y) \in (DN)$.

Lemma 2.2 [2]. Let Z be a locally irreducible Stein space. Then $\mathcal{H}(Z) \in (DN)$ if and only if every plurisubharmonic function on Z, which is bounded from above, is constant.

Lemma 2.3. Let Z be a Stein space. Then $\mathcal{H}(Z) \in (DN)$ if and only if $\mathcal{H}(Z \setminus H) \in (DN)$ for all hypersurfaces $H \subset Z$ containing the singular locus S(Z) of Z.

Proof. Since $\mathcal{H}(Z)$ is contained in $\mathcal{H}(Z \setminus H)$ as a subspace for every hypersurface H in Z (see [5]), the sufficiency is obvious.

Conversely, assume that $\mathcal{H}(Z) \in (DN)$ and H is a hypersurface in Z containing S(Z). Since $Z \setminus H$ is a Stein manifold, it suffices to show that every plurisubharmonic function φ on $Z \setminus H$, which is bounded from above, is constant. Consider the normalization $\theta : \widetilde{Z} \longrightarrow Z$ of Z. Since $\varphi \theta$ is plurisubharmonic on $\widetilde{Z} \setminus \theta^{-1}(H)$ and locally bounded on \widetilde{Z} , by the normality of \widetilde{Z} it follows that $\varphi \theta$ can be considered as a plurisubharmonic function on \widetilde{Z} . By Lemma 2.1 $\mathcal{H}(\widetilde{Z}) \in (DN)$. Lemma 2.2 then yields that $\varphi \theta$ and hence φ is constant.

Now we are able to prove Theorem A.

(i) \implies (ii). Given a separately holomorphic function $f: K \times Z \longrightarrow \mathbb{C}$, where K is a compact set in a locally irreducible Stein space X which is not pluripolar in every irreducible branch of all neighbourhoods of K.

Let $\{W_n\}$ be a neighbourhood basis of K and T, H are hypersurfaces in X, Z, respectively, such that $S(X) \subset T$ and $S(Z) \subset H$. For each $n \ge 1$ put

$$Z_n = \{ z \in Z \setminus H : f^z \in \mathcal{H}(W_n), \|f^z\|_{W_n} \le n \},\$$

where $||f^z||_{W_n}$ denotes the sup-norm of f^z on W_n . From the separate holomorphicity of f we have

$$Z \setminus H = \bigcup_{n \ge 1} Z_n.$$

On the other hand, by the Montelness of $\mathcal{H}(W_n)$, it follows that Z_n are closed in $Z \setminus H$. The Baire Theorem yields that there exists n_0 such

NGUYEN THAI SON

that Int $Z_{n_0} \neq \emptyset$. Note that Int Z_{n_0} meets every irreducible branch of Z. Writing $K \cap (W_{n_0} \setminus T)$ as a countable union of compact sets in $W_{n_0} \setminus T$, we can find a compact set $E \subset K \cap (W_{n_0} \setminus T)$ which is not pluripolar in every connected component of $W_{n_0} \setminus T$. Now we can consider f as a separately holomorphic function on $(E \times Z \setminus H) \cup (W_{n_0} \setminus T \times \operatorname{Int} Z_{n_0})$ (in the sense of Siciak [7]). From the relation $\mathcal{H}(Z \setminus H) \in (DN)$ and from the non-pluripolarity of E in every connected component of $W_{n_0} \setminus T$ it follows by Zaharjuta [10] that f is extended to a holomorphic function \widehat{f} on $W_{n_0} \cap (X \setminus T) \times (Z \setminus H)$.

Consider the holomorphic function from W into $\mathcal{H}(Z \setminus H)$ given by

$$x \longmapsto \widehat{f}_x, \quad x \in W,$$

where $W = W_{n_0} \cap (X \setminus T)$. Since *E* is not pluripolar and $\mathcal{H}(Z)$ is contained in $\mathcal{H}(Z \setminus H)$ as a subspace with

$$\left\{\widehat{f}_x : x \in E\right\} \subset \mathcal{H}(Z),$$

 \widehat{f} can be considered as a holomorphic function on $W_{n_0} \cap (X \setminus T) \times Z$.

Similarly, using the holomorphic function

$$z \longmapsto \widehat{f}^z \in \mathcal{H}(W_{n_0} \cap (X \setminus T)), \quad z \in Z,$$

we can consider \widehat{f} as a holomorphic function on $W_{n_0} \times Z$.

(ii) \Longrightarrow (i). By Vogt [9], it suffices to check that every continuous linear map T from $\mathcal{H}(\triangle)$ into $\mathcal{H}(Z)$ is compact, where $\triangle = \left\{ \lambda \in \mathbb{C} : |\lambda| < 1 \right\}$. Since $[\mathcal{H}(\triangle)]' \cong \mathcal{H}(\overline{\triangle})$, the map T induces a function $f : \overline{\triangle} \times \mathbb{C} \longrightarrow \mathbb{C}$ by

$$f(\lambda, z) = (T^* \delta_z)(\lambda) \text{ for } (\lambda, z) \in \overline{\Delta} \times \mathbb{C},$$

where

$$\delta_z(\varphi) = \varphi(z) \text{ for } \varphi \in \mathcal{H}(\mathbb{C}).$$

Obviously, f is separately holomorphic. By the hypothesis, f is holomorphically extended to a holomorphic function \widehat{f} on a neighbourhood $W \times \mathbb{C}$ of $\overline{\Delta} \times \mathbb{C}$. This implies that T^* maps continuously $[\mathcal{H}(\mathbb{C})]'$ into $\mathcal{H}^{\infty}(V)$, where V is a relatively compact neighbourhood of $\overline{\Delta}$ in W and $\mathcal{H}^{\infty}(V)$ is the Banach space of bounded holomorphic functions on V. Hence T is compact.

3. Proof of Theorem B

We need the following

Lemma 3.1. Let K be a compact set in a complex space X such that $[\mathcal{H}(K)]' \in (LB^{\infty})$. Then K is unique.

Proof. Given $f \in \mathcal{H}(K)$ with $f|_{K} = 0$. Let $\{U_k\}$ be a neighbourhood basis of K. For each $k \geq 1$, put

$$\varepsilon_k = \|f\|_{U_k} = \sup\{|f(x)| : x \in U_k\}.$$

Then $\varepsilon_k \downarrow 0$. By applying (LB^{∞}) to $\rho_N = \sqrt{-\log \varepsilon_N} \uparrow +\infty$ we have $f \in \mathcal{H}^{\infty}(U_p)$ for $p \ge 1$ and

$$\exists q \; \forall N \; \exists \tilde{N} \ge N, \quad C_N > 0 \; \forall n \; \exists N \le k_n \le \tilde{N}:$$
$$\|f^n\|_q^{1+\rho_{k_n}} \le C_N \|f^n\|_{k_n} \; \|f\|_p^{\rho_{k_n}}.$$

This yields

$$\|f\|_q^{1+\rho_{k_n}} \le C_N^{1/n} \|f\|_{k_n} \, \|f\|_p^{\rho_{k_n}}.$$

Choose $N \leq k \leq \widetilde{N}$ such that

$$\#\{n:k_n=k\}=\infty.$$

Then

$$\left\|f\right\|_{q} \leq \left\|f\right\|_{k}^{\frac{1}{1+\rho_{k}}} \left\|f\right\|_{p}^{\frac{\rho_{k}}{1+\rho_{k}}} = \left(\varepsilon_{k}\right)^{\frac{1}{1+\sqrt{-\log\varepsilon_{k}}}} \left(\varepsilon_{p}\right)^{\frac{\sqrt{-\log\varepsilon_{k}}}{1+\sqrt{-\log\varepsilon_{k}}}} \longrightarrow 0$$

as $k \longrightarrow \infty$. Hence f = 0 on V_q .

Now we prove Theorem B.

(i) \implies (iii) by Theorem A.

(iii) \implies (i). Assume that there exists an irreducible branch Z of a neighbourhood U of K such that $E = K \cap Z$ is pluripolar. Since Z is a connected component of U, it follows that E satisfies the hypothesis of (iii).

Choose a plurisubharmonic function φ on X for which $\varphi|_E = -\infty$. Let W be a neighbourhood of E in X for which there exists a finite proper holomorphic map θ from W onto the unit polydisc Δ^n , $n = \dim X$. Consider the plurisubharmonic function $\tilde{\varphi}$ on $\Delta^n \setminus S(\theta)$ given by

$$\widetilde{\varphi}(z) = \sum_{\theta(x)=z} \varphi(x), \quad z \in \triangle^n \setminus S(\theta),$$

where $S(\theta)$ denotes the branch locus of θ . Since θ is proper, $\tilde{\varphi}$ is bounded from above on Δ^n . Hence

$$\widehat{\varphi}(z) = \limsup \left\{ \widetilde{\varphi}(z') : z' \longrightarrow z, \ z' \in \triangle^n \setminus S(\theta) \right\}$$

is a plurisubharmonic extension of $\tilde{\varphi}$. This function is also equal to $-\infty$ on $\theta(E)$.

Indeed, let $z \in \theta(E)$. Write $\theta^{-1}(z) = \{x^1, \dots, x^q, x^{q+1}, \dots, x^p\}$ with

$$\varphi(x^j) = -\infty \text{ for } 1 \le j \le q,$$

and

$$\varphi(x^j) \neq -\infty \text{ for } q+1 \leq j \leq p.$$

Given M > 0. For each j = 1, ..., p take a neighbourhood U_j of x^j such that

$$\varphi(x) < -M$$
 for $x \in U_j$, $j = 1, \dots, q$,

and

$$\varphi(x) < \varphi(x^j) + 1 \quad \text{for } x \in U_j, \quad q+1 \le j \le p.$$

We may assume that U_j are disjoint. Since θ is proper, there exists a neighbourhood V of z such that

$$\theta^{-1}(V) \subset \bigcup_{j=1}^{p} U_j.$$

It follows that for $z' \in V \setminus S(\theta)$ we have

$$\widehat{\varphi}(z') = \widetilde{\varphi}(z') = \sum \left\{ \varphi(x') : \theta(x') = z', \quad x' \in \bigcup_{1 \le j \le q} U_j \right\} \\ + \sum \left\{ \varphi(x') : \theta(x') = z', \quad x' \in \bigcup_{q+1 \le j \le p} U_j \right\} \\ \le -M + (p-q-1) \max \left(\varphi(x^j) + 1 \right).$$

Hence $\widehat{\varphi}|_{\theta(E)} = -\infty.$

Consider the Hartogs domain $\Omega_{\widehat{\varphi}}$ in $\triangle^n \times \mathbb{C}$ given by

$$\Omega_{\widehat{\varphi}} = \Big\{ (z, \lambda) \in \triangle^n \times \mathbb{C} : |\lambda| < e^{-\widehat{\varphi}(z)} \Big\}.$$

Since $\Omega_{\widehat{\varphi}}$ is a pseudoconvex domain, there exists $f \in \mathcal{H}(\Omega_{\widehat{\varphi}})$ such that $\Omega_{\widehat{\varphi}}$ is the domain of existence of f (see [4]). Write the Hartogs expansion of $f \text{ on } \Omega_{\widehat{\varphi}},$

$$f(z,\lambda) = \sum_{n \ge 0} f_n(z)\lambda^n,$$

where

$$f_n(z) = \frac{1}{2\pi i} \int_{|\lambda| = e^{-\delta \widehat{\varphi}(z)}} \frac{f(z,\lambda)}{\lambda^{n+1}} d\lambda \quad (\delta > 1).$$

Since the sequence $\left\{\frac{1}{n}\log|f_n(z)|\right\}$ is locally bounded, for each $m \ge 1$ we can define

$$\Psi_m(z) = \sup\left\{\frac{1}{n}\log|f_n(z)| : n \ge m\right\} \quad \text{for } z \in \Delta^n,$$

$$\Psi_m^*(z) = \limsup_{z' \longrightarrow z} \Psi_m(z').$$

By Bedford-Taylor [1] Ψ_m^* is plusubharmonic on \triangle^n and the set $\left\{\Psi_m < \Psi_m < \Psi_m \right\}$ Ψ_m^* is pluripolar. Let

$$\widehat{\Psi} = \lim_{m \longrightarrow \infty} \Psi_m^*.$$

It suffices to show that $\widehat{\Psi}$ is not identically equal to $-\infty$ on every nonempty open set in \triangle^n .

Assume by contrary that $\widehat{\Psi} \equiv -\infty$ on a non-empty open set $U \subset \triangle^n$. Then the Hartogs theorem [4] implies that the series $\sum_{n\geq 0} f_n(z)\lambda^n$ converges to a holomorphic function g on $U \times \mathbb{C}$. This yields $U \times \mathbb{C} \subset \Omega_{\widehat{\varphi}}$ and hence $\widehat{\varphi}|_U = -\infty$. It follows that $\widehat{\Psi}$ is plurisubharmonic on \triangle^n and the set $\left\{\Psi < \widehat{\Psi}\right\}$ is pluripolar, where $\Psi = \lim_{m \to \infty} \Psi_m$.

Consider the function:

$$g(x,\lambda) = f(\theta(x),\lambda)$$
 for $x \in E$ and $\lambda \in \mathbb{C}$.

By the hypothesis we can find a holomorphic function \hat{g} on a neighbourhood $W \times \mathbb{C}$ of $E \times \mathbb{C}$ such that $\widehat{g}|_{E \times \mathbb{C}} = g$. Choose a neighbourhood V of E in W such that

$$V \times \triangle \subset \left\{ (x, \lambda) : (\theta x, \lambda) \in \Omega_{\widehat{\varphi}} \right\}.$$

Consider the Hartogs expansion of \hat{g} on V × \triangle :

$$\widehat{g}(x,\lambda) = \sum_{n\geq 0} \widehat{g}_n(x)\lambda^n.$$

Then

$$\widehat{g}_n\big|_E = f_n \theta\big|_E \quad \text{for } n \ge 0$$

Hence, shrinking V if necessary, we have $\widehat{g}_n|_V = f_n \theta|_V$ for $n \ge 0$. This yields

$$-\infty = \limsup_{n} \sup \frac{1}{n} \log|\widehat{g}_{n}(x)| = \limsup_{n} \sup \frac{1}{n} \log|f_{n}\theta(x)|$$
$$= \Psi(\theta(x)) = \widehat{\Psi}(\theta(x)),$$

for $x \in V \setminus \theta^{-1}(\{\Psi < \widehat{\Psi}\})$, which is impossible.

(i) \Longrightarrow (ii). To prove $[\mathcal{H}(K)]' \in (LB^{\infty})$, by Vogt [9], it suffices to show that every continuous linear map $T : [\mathcal{H}(K)]' \longrightarrow \mathcal{H}(\mathbb{C})$ is compact. Define the function

$$f_T(x,\lambda) = T(\delta_x)(\lambda)$$
 for $x \in K, \ \lambda \in \mathbb{C}$.

This function is separately holomorphic. By Theorem A there is a holomorphic extension \hat{f}_T of f_T to a neighbourhood $V \times \mathbb{C}$ of $K \times \mathbb{C}$. Since

$$\mathcal{H}(V,\mathcal{H}(\mathbb{C})) \cong \mathcal{H}(V) \hat{\otimes}_{\pi} \mathcal{H}(\mathbb{C}) \cong \mathcal{L}\left([\mathcal{H}(V)]', \mathcal{H}(\mathbb{C}) \right),$$

the form

$$S(\delta_z)(\lambda) = \widehat{f}_T(z)(\lambda) \quad \text{for } z \in V, \ \lambda \in \mathbb{C},$$

defines a continuous linear map from $[\mathcal{H}(V)]'$ into $\mathcal{H}(\mathbb{C})$. By the uniqueness of K, from the relations

$$T\left(\sum_{j} \lambda_{j} \delta_{z_{j}}\right) = \sum_{j} \lambda_{j} T(\delta_{z_{j}}) = \sum_{j} \lambda_{j} f_{T}(z_{j})$$
$$= \sum_{j} \lambda_{j} S(\delta_{z_{j}}) = S\left(\sum_{j} \lambda_{j} \delta_{z_{j}}\right).$$

it follows that T = S. Hence T is compact.

(ii) \implies (i). We show that $E = K \cap Z$ is not pluripolar, where Z is an irreducible branch of a neighbourhood U of K.

Assume by contrary that E is pluripolar. We use the same notations in the proof of (iii) \implies (i). Consider the linear map $T : [\mathcal{H}(\mathbb{C})]' \longrightarrow \mathcal{H}(E)$ given by

$$(T\mu)(x) = \langle g_x, \mu \rangle$$
 for $\mu \in [\mathcal{H}(\mathbb{C})]'$ and $x \in E$.

The definition is correct. Indeed, given $\mu \in [\mathcal{H}(\mathbb{C})]'$, choose C > 0 and r > 0 such that

$$|\langle \sigma, \mu \rangle| \leq C \|\sigma\|_{r\triangle} \text{ for } \sigma \in \mathcal{H}(\mathbb{C}).$$

Let V be a neighbourhood of E in X such that $V \times r \triangle \subset (\theta \times id)^{-1} \Omega_{\widehat{\varphi}}$. Write

$$g(x, \lambda) = \sum_{n \ge 0} g_n(x) \lambda^n \text{ for } x \in V, \ |\lambda| < r.$$

Since

$$|\langle \lambda^n, \mu \rangle| \le Cr^n \quad \text{for } n \ge 0,$$

it follows that the series $\sum_{n\geq 0} g_n(x)\langle \lambda^n, \mu \rangle$ converges uniformly to $\langle g_x, \mu \rangle$ on a relatively compact neighbourhood of E in V. This means that $T(\mu) \in \mathcal{H}(E)$.

Further, since U is locally irreducible, Z is a connected component of U and hence $[\mathcal{H}(E)]' \in (LB^{\infty})$. By Lemma 3.1 E is an unique set. This yields that T has a closed graph. By the open mapping Grothendieck Theorem in [6], T is continuous. By Vogt [9], T continuously maps $[\mathcal{H}(\mathbb{C})]'$ into $\mathcal{H}(V)$ for some neighbourhood V of E. Then the form

$$\widehat{g}(x,\lambda) = T(\delta_{\lambda})(x), \quad x \in V, \ \lambda \in \mathbb{C}$$

defines a holomorphic extension of g to $V \times \mathbb{C}$. Similarly as in (iii) \Longrightarrow (i) we get a contradiction.

ACKNOWLEDGEMENT

The author thanks Professor Nguyen Van Khue for helpful suggestions during preparation of this paper.

References

 E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.

NGUYEN THAI SON

- Dinh Huy Hoang and Thai Thuan Quang, Holomorphic surjections and linear topological invariants, Acta Math. Vietnam. 21 (1996), 45-58.
- 3. Do Duc Thai and Dinh Huy Hoang, *Continuous linear extension operators from closed subgroups of a complex Lie group*, Ann. Toulouse (to appear).
- 4. L. Hormander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966.
- 5. R. Narasimhan, Introduction to the Theory of Analytic Spaces, Springer Verlag, 1966.
- 6. A. P. Robertson and W. Robertson, *Topological Vector Spaces*, Cambridge Univ. Press, Cambridge, 1964.
- J. Siciak, Extremal plurisubharmonic functions in Cⁿ, Ann. Polon. Math. 39 (1981), 175-211.
- 8. D. Vogt, On two classes of Frechet spaces, Arch. Math. 45 (1987), 255-266.
- 9. D. Vogt, Frechetraume zwischen deren jede stetige lineare Abbildung beschrankt ist, J. rein angew. Math. **345** (1983), 182-200.
- 10. V. P. Zaharjuta, Separately analytic functions, generalizations of Hartogs' theorem and envolopes of holomorphy, Math. Sb. **101** (143), (1976), 57-76 (in Russian).
- 11. A. Zeriahi, Fonction de Green pluricomplexe à pôle l'infini sur un espace de Stein parabolique, Math. Scand. **69** (1991), 89-126.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL COLLEGE OF HO CHI MINH CITY 280 AN DUONG VUONG, DISTRICT 5, HCM CITY, VIETNAM.