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STRONG CONSISTENCY OF LEAST SQUARES
ESTIMATES AND MEAN SQUARE REGRESSION

NGUYEN BAC VAN

Abstract. We prove that the least squares estimates of regression pa-
rameters are strongly consistent if and only if the regression is the mean
square one.

1. Introduction

Cramér called mean square (msq) regression of a numerical random
variable (rv) Y on another rv X a function g(X) which, among all func-
tions belonging to some given class, is one that gives the best possible
representation of Y according to the principle of least squares (see [4]).
For example, the linear msq regression is the function α + βX that mini-
mizes E{Y − g(X)}2 in the class of linear functions g(X).

Let
(
X(1), Y (1)

)
, . . . ,

(
X(n), Y (n)

)
be n i.i.d. versions of the pair

(X,Y ). In the general linear representation Y ≈ c+dX we could estimate
the parameter (c, d) by the least square method, i.e. by seeking values of

(c, d) so as to minimize the square distance
n∑

i=1

(
Y (i)− c− dX(i)

)2. Such

values are called least squares values of (c, d). Under what conditions a
least squares value will converge almost surely (a.s.) to the true parameter
value as n →∞ ? In this paper we will prove that

If EY 2, EX2 are finite and X is not reduced a.s. to a constant, then
a least squares value is strongly consistent when and only when the line
y = c + dx is the msq regression line.

We will state this result in a much more general setting. In the same
way as in Bac Van (1992, 1994), we consider the r-dimensional polygonal
regression model

(1.1) Y ′ =
k∑

i=1

b′i(X)qiIS(i)(X) + ε,

where Y is an r × 1 random vector variable, X is a rv taking values in
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an arbitrary measurable space (H,A), ε is some residual, S(1), . . . , S(k)
are specified disjoint sets of A such that P{X ∈ S(i)} > 0, i = 1, . . . , k,
k ≥ 1 is fixed, and for each index i, IS(i) is the indicator of S(i), bi(·)
is a known `(i) × 1 measurable vector-valued function on S(i) and qi an
unknown `(i)× r matrix parameter. The above linear case corresponds to
r = 1, k = 1, S(1) = H, `(1) = 2, b1(X) = (X 1)′, q1 = (d c)′. Let

` = `(1) + · · ·+ `(k),

q =
(
q′1 . . . q′k

)′

and Q be the rangle of the parameter q in

M`×r = the linear spaces of `× r real matrices.

For example, in the above case if EX = EY = 0 and VarX = Var Y = 1,
then the msq regression line is y = ρx, the parameter is ρ and its range is
the segment [−1, 1]. Besides, the constraints imposed on the parameters
qi’s in (1.1), if any, can always be expressed through a definite shape of
Q. The following definition of generalized least squares (GLS) estimates,
already stated in [2], takes into account the arbitrariness of Q and the
flexibility to some extent in the choice of metric in the space of response
observations. It consists in

(i) Ranking the observations by subset S(i): rearrange the pair of ob-
servations

(
X(t), Y (t)

)
(t = 1, . . . , n) on (X, Y ) according to the

successive entrance of X(1), . . . , X(n) into each domains S(i) by
setting

Xij = The jth element of the sequence X(1), . . . , X(n)

falling into S(i),

Yij = The Y -observation paired with Xij ,

d(i) = #S(i) ∩ {X(1), . . . , X(n)}.

(ii) Minimizing some distance d(., .) from the overall response observa-
tion matrix

(1.2) U =
(
Y11 . . . Y1d(1)

... · · · ...Yk1 . . . Ykd(k)

)′

to the product matrix Bp, where
B = diag(B1. . . . , Bk)

with
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(1.3) Bi =
(
bi(Xi1) . . . bi(Xid(i))

)′
,

and where p varies on some affine manifold M containing the pa-
rameter range Q and contained in M`×r.

(iii) Defining a norm in the range space of U : use

z(.) = an arbitrary A-measurable

r × r positive definite (p.d.) matrix function on H,

set

Zi = diag
(
z(Xij), j = 1, . . . , d(i)

)
, i = 1, . . . , k,

Z = diag(Z1, . . . , Zk),(1.4)

and define the inner product of elements u and v in the range space
of U as (

u, v
)
Z

= [u]′Z[v]

by means of the notation
[u] =

(
u1 u2 . . .

)′
,

where u1, u2, . . . are the successive rows of the matrix u.
Then the norm of U is

‖U‖Z =
{
[U ]′Z[U ]

}1/2
.

This is not the general norm in the U -space, but it tolerates an arbitrary
scaling of Y given a value of X.

Thus we define a GLS value q̂ by

(1.5) ‖U −Bq̂‖Z = min
p∈M

‖U −Bp‖Z .

A GLS value q̂ always exists whenever

(1.6) d(i) > 0 ∀i = 1, . . . , k,

since Bq̂ is the orthogonal projection of U on the image BM = {Bp : p ∈
M}. When there exists a unique GLS value q̂, it is called a GLS estimate
(GLSE) for q. Specifically, for M = M`×r GLS values q̂ are defined by

(1.7) ‖U −Bq̂‖Z = min
p∈M`×r

‖U −Bp‖Z .

The characterization of msq regression by strong consistency of GLS
estimates of the regression parameter will be proved for the polygonal
model (1.1) in the following section.
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2. Results

We now restate and generalize the definition of msq regression applied
to Model (1.1). We shall write

‖Y ‖2z(X) = Y ′z(X)Y.

Definition 1. The function
k∑

i=1

q′ibi(X)IS(i)(X) is called the msq regres-

sion of Y if q =
(
q′1 · · · q′k

)′ is a value that minimizes

E
∥∥Y −

k∑

i=1

p′ibi(X)IS(i)(X)
∥∥2

z(X)

among all non-random values p =
(
p′1 · · · p′k

)′ in M`×r.

For any matrix A = (ast) and any positive integer m, we shall write
‖A‖2 =

∑
s,t
|ast|2 and Im is the m × m unit matrix. We first state the

following lemma.

Lemma. In Model (1.1) suppose that

(2.1) E‖z1/2(X)Y ‖2 < ∞,

and that

(2.2) E{X∈S(i)}{‖bi(X)‖2Tr z(X)} < ∞ ∀i = 1, . . . , k.

Then the function
k∑

i=1

q′ibi(X)IS(i)(X) is the msq regression of Y according

to Definition 1 if and only if q satisfies the condition:

(2.3) E{X∈S(i)} {(bi(X)⊗ z(X)) Y − (bi(X)b′i(X)⊗ z(X)) [qi]}

exists and vanishes ∀i = 1, . . . , k.

Given the functions z(.), bi(.) and the sets S(i) (i = 1, . . . , k), there
always exists some value q in M`×r satisfying (2.3).
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Proof. For any rv ξ we have ξ =
k∑

i=1

ξIS(i)(X) + ξIS(0)(X), where S(0) =

H − (S(1) + · · ·+ S(k)). If Eξ exists, Eξ =
k∑

i=1

P{X ∈ S(i)}E{X∈S(i)}ξ +

EξIS(0)(X). Let

(2.4) ξ = ‖Y −
k∑

i=1

q′ibi(X)IS(i)(X)‖2z(X) .

Then, to minimize Eξ as q =
(
q′1 · · · q′k

)′ varies over M`×r is equiva-
lent to minimize E{X∈S(i)}ξ separately as qi varies over M`(i)×r (i =
1, . . . , k), because EξIS(0)(X) = E‖Y ‖2z(X)IS(0)(X) is independent of q.
Thus, our problem is reduced to k problems of minimizing E{X∈S(i)}‖Y −
q′ibi(X)‖2z(X) as qi varies over M`(i)×r (i = 1, . . . , k) or, equivalently, to
the only problem of

(2.5) minimizing E‖Y − q′b‖2z as q varies over M`×r .

Here we write E, q, b, z, ` instead of E{X∈S(i)}, qi, bi(X), z(X), `(i).

Let us tackle it. Let Sz be the set of all r×1 random vectors η defined up
to an equivalence and such that E‖η‖2z = E(η′zη) = E‖z1/2η‖2 < ∞. We
can check that Sz is a linear space and that the function ϕ(η, ζ) = E(η′zζ)
is an inner product in Sz since z is p.d. Further, q is an `×r-matrix and b is
an `× 1-matrix. The algebraic Propositions 3.2 and 4.3 in [2] successively
give

(2.6) q′b = [b′q] = (b′ ⊗ Ir)[q] ,

E‖z1/2q′b‖2 ≤ E{‖z1/2(b′ ⊗ Ir)‖2‖q‖2} = ‖q‖2E‖(b⊗ Ir)z1/2‖2
= ‖q‖2E‖(b⊗ z1/2)‖2 = ‖q‖2E{Tr (b⊗ z1/2)(b′ ⊗ z1/2)}
= ‖q‖2E{(Tr bb′)(Tr z)} = ‖q‖2E{‖b‖2Tr z} .

By Assumption (2.2) it follows that q′b belongs to Sz ∀q ∈ M`×r. In par-
ticular, from (2.6) each column vector of (b′ ⊗ Ir) belongs to Sz. Thus in
the space Sz q′b varies over the finite-dimensional subspace G generated
by `r column vectors of b′ ⊗ Ir. By Assumption (2.1) also Y ∈ Sz. In
the Euclidean space Sz the distance E‖Y − q′b‖2z is minimized when and
only when q′b is the orthogonal projection of Y on G. Since G is a finite-
dimensional subspace of the Euclidean space Sz, the orthogonal projector
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from Sz onto G exists (see the remark on p. 370 in [3]). Thus there exists a
unique vector q′b ∈ G such that E‖Y − q′b‖2z is minimized as q varies over
M`×r or, equivalently, by virtue of (2.6) there exists some value q ∈ M`×r

such that Y − q′b ⊥ G. This condition is successively written as

E{(Y ′ − b′q)z(b′ ⊗ Ir)} = 0 ,

E{(b⊗ z)Y − (bb′ ⊗ z)[q]} = 0 ,(2.7)

since (b⊗ Ir)zY = (b⊗ z)Y and, by (2.6),

(2.8) (b⊗ Ir)zq′b = (b⊗ z)q′b = (b⊗ z)(b′ ⊗ Ir)[q] = (bb′ ⊗ z)[q] .

So the existing value q ∈ M`×r satisfying (2.7) is a solution to Problem
(2.5). Therefore there always exists some value q =

(
q′1 · · · q′k

)′ ∈ M`×r

satisfying the condition (2.3), and (2.3) is necessary and sufficient for q to
minimize ξ in (2.4).

The following theorem gives necessary conditions of strong consistency
of GLS values.

Theorem 1. Assume (2.2). If, on the basis of i.i.d. observations
(X(t), Y (t)) , t = 1, . . . , n, some GLS value q̂ defined by (1.7) tends a.s.
to a value q as n →∞, then q necessarily satisfies the condition (2.3).

Since the existence of GLS estimate is not supposed, this theorem is
more general than the necessity result stated in [2, Remark 5.2]. Here, we
also give a direct proof.

Proof. We first prove that Equation (1.7) is equivalent to a much simpler
one. As p varies over M`×r , [Bp] = (B ⊗ Ir)[p] varies over the vector
space, which is denoted by M{B ⊗ Ir} and generated by the columns of
the matrix B ⊗ Ir. Let us define the inner product [u′]Z[v] (see(1.4)) for
arbitrary elements [u] and [v] in the range space of the rv [U ] (see (1.2)).
Then ‖U − Bp‖Z is minimized if and only if [U − Bp] is orthogonal to
M{B ⊗ Ir}. Thus Equation (1.7) is equivalent to

(2.9)
[
U −Bq̂

]′
Z(B ⊗ Ir) = 0.

We now assume (1.6) to ensure that q̂ exists. Replace (X,Y ) by the t-
th observation (X(t), Y (t)) in (1.1). After ranking, it follows that, up to
some residual,

Y ′
ij = b′i(Xij)qi, i = 1, . . . , k, j = 1, . . . , d(i).
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Then, using (1.2), (1.3) we can write

U = Bq + e,

where e is some residual. Hence (2.9) can be rewritten as

(2.10)
[
B(q̂ − q)

]′
Z(B ⊗ Ir) = [e]′Z(B ⊗ Ir).

Consider block diagonal matrices

A = diag
(
d(i)Id(i)r

)
,

C = diag(Ci), (i = 1, . . . , k),

where (see (1.3) and (1.4))

(2.11) Ci = Z
1/2
i (Bi ⊗ Ir).

Then
A−1C ′ = C ′A−1,

C = Z1/2(B ⊗ Ir).

Hence (2.10) is successively equivalent to

(B′ ⊗ Ir)Z(B ⊗ Ir)[q̂ − q] = (B′ ⊗ Ir)Z[e] ,

A−1C ′C[q̂ − q] = A−1C ′Z1/2[e] .

By denoting
T = C ′A−1C ,

g = C ′A−1Z1/2[e] ,

it follows that, under (1.6), Equation (1.7) is equivalent to the equation

T [q̂ − q] = g .

From the latter we have

(2.12) ‖g‖2 ≤ ‖q̂ − q‖2(Tr T )2 ,

since ‖T‖2 = Tr TT ′ = TrT 2 ≤ (TrT )2.
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Now, we can write T = diag(Ti , i = 1, . . . , k), where

Ti = d−1(i)C ′iCi = d−1(i)(B′
i ⊗ Ir)Zi(Bi ⊗ Ir)

= d−1(i)
d(i)∑

j=1

bi(Xij)b′i(Xij)⊗ z(Xij)

by using (1.3) and (1.4). We have TrT =
∑
i

TrTi with

Tr Ti = d−1(i)
d(i)∑

j=1

‖bi(Xij)‖2 Tr z(Xij).

On the basis of the infinite sequence of i.i.d. rvs X(1), X(2), . . . the ranked
one {Xi1, Xi2, . . . } is a sequence of a.s. defined, i.i.d. rvs (see [1, Theorem
2]). By Kolmogorov strong law of large numbers, TrTi tends a.s. to
E‖bi(Xi1)‖2 Tr z(Xi1) as d(i) ↑ ∞ in a non-random manner. Hence TrTi

tends a.s. to the same limit as n →∞, because d(i) →∞ a.s. as n →∞.
From [1, Theorem 2] this limit equals E{X∈S(i)}‖bi(X)‖2 Tr z(X) which
is finite by Assumption (2.2). Hence TrT tends a.s. to a finite limits as
n →∞.

In the basic probability space, let us now consider the almost sure event

Ω0 =
{
d(i) −→

n→∞
∞ ∀i = 1, . . . , k

}
.

At each element ω of Ω0, as soon as n is sufficiently large we have d(i) > 0
∀i. Then every GLS value q̂ defined by Equation (1.7) will satisfy (2.12).
Thus,

If some GLS value defined by (1.7) tends a.s. to the parameter value q

as n →∞, the g
a.s.−→

n→∞
0.

Write Ui =
(
Yi1 . . . Yid(i)

)′. From (1.2) and (1.3) we have

e = U −Bq =
(
e′1 . . . e′k

)′
,

where ei = Ui −Biqi. Then

[ei] =
(
. . . (Y ′

ij − b′i(Xij)qi) . . .
)′

, (j = 1, . . . , d(i)),

g = A−1C ′Z1/2[e] =
{
diag(d−1(i)C ′iZ

1/2
i )

}(
[e1]′ . . . [ek]′

)′
.
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By (2.11), g =
(
g′1, . . . , g

′
k

)′, where

gi = d−1(i)(B′
i ⊗ Ir)Zi[ei], i = 1, . . . , k.

Besides, from (1.3) and (1.4)

(B′
i ⊗ Ir)Zi =

(
. . . (bi(Xij)⊗ Ir)z(Xij) . . .

)

=
(
. . . (bi(Xij)⊗ z(Xij)) . . .

)
(j = 1, . . . , d(i)).

Hence

gi = d−1(i)
d(i)∑

j=1

(
bi(Xij)⊗ z(Xij)

)(
Yij − q′ibi(Xij)

)
, (i = 1, . . . , k).

By [1, Theorem 2], {(Xij , Yij), j = 1, 2, . . . } is a sequence of i.i.d. rvs.
Thus, by Kolmogorov strong law of large numbers gi

a.s.→ 0 as d(i) → ∞
in a non-random manner if and only if

(2.13) E
{(

bi(Xi1)⊗ z(Xi1)
)(

Yi1 − q′ibi(Xi1)
)}

exists and vanishes.

Now as n ↑ ∞, d(i) tends a.s. to infinity in increasing by the unit, hence
gi

a.s.→ 0 as d(i) goes non-randomly to infinity if and only if gi
a.s.→ n→∞ 0

(see also [2, Proposition 5.6]. By [1, Theorem 2(ii)] and by (2.8), Condition
(2.13) is expressed equivalently as follows:

(2.14) E{X∈S(i)} {(bi(X)⊗ z(X)) Y − (bi(X)b′i(X)⊗ z(X)) [qi]}

exists and vanishes.

Thus (2.14) is equivalent to gi
a.s.−→

n→∞
0, hence

(2.15) (2.3) is equivalent to g
a.s.−→

n→∞
0.

From the strong consistency of any GLS value defined by Equation (1.7),
it follows that (2.3) holds.

From Theorem 1 and Lemma we get

Corollary 1. Assume (2.1) and (2.2). If on the basis of i.i.d. observa-
tions (X(t), Y (t)) on (X, Y ), t = 1, . . . , n, some GLS value q̂ defined by



204 NGUYEN BAC VAN

Equation (1.7) tends a.s. to q =
(
q′1 . . . q′k

)′ as n →∞, then the function
k∑

i=1

q′ibi(X)IS(i)(X) formed with these values q is the msq regression of Y

according to Definition 1.

Sufficient conditions for strong consistency of GLSE are stated in the
following theorem:

Theorem 2. Assume (2.2) and that

(2.16) the P{X∈S(i)} − distribution of bi(X) is not concentrated

is any proper subspace of R`(i), i = 1, . . . , k.

Then, in the representation (1.1) and on the basis of i.i.d. observations
(X(t), Y (t)) on (X, Y ), we have
(i) in the basic probability spaces Ω = {ω},

P
{
ω : ∃n0(ω), ∀n ≥ n0(ω), there is a unique solution q̂ to (1.5)

}
= 1,

(ii) if the parameter value q satisfies (2.3), then holds

P
{

sup
M
‖q̂ − q‖ → 0 as n →∞

}
= 1,

where sup
M

is taken over the set of all affine manifolds M containing

the parameter range Q and contained in M`×r.

Proof. Part (i) follows from Assumption (2.16) (see [2, Theorem 5.1]).
Part (ii) follows from (2.15) and [2, Theorem 5.2].

Corollary 2. Assume (2.1), (2.2) and (2.16). On the basis of i.i.d. ob-
servations (X(t), Y (t)) on (X,Y ), t = 1, . . . , n, the GLSE q̂ defined by
Equation (1.7) for sufficiently large n tends a.s. to the parameter value

q =
(
q′1 . . . q′k

)′ as n → ∞ if and only if the function
k∑

i=1

q′ibi(X)IS(i)(X)

is the msq regression of Y according to Definition 1.
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