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GLOBAL STABILITY IN A MODEL OF
SINGLE-SPECIES POPULATION DYNAMICS
IN A PERIODIC PATCHY ENVIRONMENT

TRINH TUAN ANH

Abstract. We consider a model of single-species population dynamics
in a periodic patchy environment and prove a sufficient condition for the
existence of a globally asymptotically stable, strictly positive (component-
wise) and periodic solution.

1. Introduction

The purpose of this paper is to study the stability of a system of nonau-
tonomous ordinary differential equations which models the growth of a
single-species population distribution over n (n > 1) patches (islands or
habitats) and allows for population dispersing from one to the others. This
work may be throught of as a continuation of the work in [1-4, 6] where
the autonomous case was considered.

The model considered in this paper is described by the following system
of nonautonomous ordinary differential equations:
(1.1)

u̇i = uigi(t, ui)− εi(t)hi(t, ui) +
n∑

j=1
j 6=i

dij(t)εj(t)hj(t, uj), i = 1, 2, . . . , n,

where gi, hi : R × [0, +∞) → R are continuous and T -periodic in the
t-variable (T > 0); εi, dij(i 6= j) : R → R are continuous and T -periodic;
ui(t) represents the population density of the species in the ith patch at
time t.

The above model is a natural generalization of the autonomous case
describing the growth of the prey-population in Freedman and Takeuchi
[4]. Further assumptions on the functions of the system (1.1) are given
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below, which are based on those in [4].
The function gi(t, ui) represents the specific growth rate of the pop-

ulation in the ith patch at time t. Due to limited resources at time t,
gi(t, .) > 0 if the environment is underpopulated and gi(t, .) < 0 if the
environment is overpopulated. Furthermore, we suppose that the growth
rate slows down as population increases. Therefore the following assump-
tions are made on gi(t, ui):

(H1) gi(t, 0) > 0 and gi(t, .) is strictly decreasing for any fixed t ∈ [0, T ].
Moreover, there exists a positive number Ki such that gi(t,Ki) < 0 for
any t ∈ [0, T ].

The hypothesis (H1) is standard in single-species models [2, 4, 6].
The function hi(t, ui) represents the pressure or desire for the popula-

tion to leave the ith patch and seek another patch in the total environment
at time t. Clearly, pressure to disperse increases with increasing popula-
tion. Hence we assume:

(H2) hi(t, 0) = 0 and hi(t, .) is increasing for any fixed t ∈ [0, T ].
εi(t) is an inverse barrier strength at time t. If εi(t) = 0 then the

population may not leave the ith patch at time t.
(H3) εi(t) ≥ 0 for any t ∈ [0, T ].
dij(t) (1 ≤ i, j ≤ n, i 6= j) is the probability that a given member of

the population, having left the jth patch, will arrive safely at the ith patch
at time t. Clearly

(H4) 0 ≤ dij(t) ≤ 1,
n∑

i=1
i 6=j

dij(t) ≤ 1, for any t ∈ [0, T ].

The following assumption is needed for technical mathematical reasons:
(H5) The functions gi(t, ui), hi(t, ui) are locally Lipschitzian in ui,

uniformly in t, i.e., for each ui ∈ R+ there are numbers δ > 0, L > 0
such that |gi(t, ui) − gi(t, ui)| ≤ L|ui − ui| for ui, ui ∈ R+ : |ui − ui| ≤ δ
and t ∈ R; and similarly for hi.

Our goal is to establish a criterion for the existence of a strictly positive
(componentwise) T -periodic solution of (1.1) and to investigate its stability
character in the case hi(t, ui) = ki(t)ui (1 ≤ i ≤ n).

In the next section we present some basic properties of the system (1.1).
The third section is devoted to prove the existence and the global stability
of a strictly positive T -periodic solution.

2. Preliminaries

First, we see that the Cauchy problem for (1.1) with the initial condition
u(t0) = u0 ∈ Rn

+ has a unique forward solution. Indeed, the case u(t0) =
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u0 ∈ int(Rn
+) is trivial, since we know from (H5) that the right hand side

function of (1.1) is locally Lipschitzian in u, uniformly in t. The case
u(t0) = u0 ∈ ∂Rn

+ can be showed as follows. Setting F : R × Rn
+ → Rn

with

Fi(t, u) = uigi(t, ui)− εi(t)hi(t, ui) +
n∑

j=1
j 6=i

dij(t)εj(t)hj(t, uj),

i = 1, 2, . . . , n.

Let Uε(Rn
+) =

{
u ∈ Rn : d(u,Rn

+) < ε
}
, where d(u,Rn

+) = inf
u∈Rn

+

‖u − u‖,
and ε > 0. It is easy to see that for each u ∈ Uε(Rn

+) \ Rn
+ there exists

uniquely u ∈ ∂Rn
+ such that d(u,Rn

+) = ‖u − u‖. Let F (t, u) be the
extension of F (t, u) on R × Uε(Rn

+) such that for u ∈ Uε(Rn
+) \ Rn

+ we
have F (t, u) = F (t, u), where u ∈ ∂Rn

+ such that d(u,Rn
+) = ‖u − u‖.

Then, by (H5), F (t, u) is locally Lipschitzian in u ∈ Uε(Rn
+), uniformly in

t. Therefore, the Cauchy problem

(2.1) u̇ = F (t, u),

(2.2) u(t0) = u0 ∈ Uε(Rn
+),

has a unique solution. Since F i(t, u) = Fi(t, u) ≥ 0 for u ∈ ∂Rn
+ with

ui = 0, it follows that Rn
+ is positively invariant with respect to (2.1).

Therefore, the Cauchy problem for (1.1) with the initial condition u(t0) =
u0 ∈ ∂Rn

+ has a unique forward solution.
The boundedness of the solutions to (1.1) is shown by the following

lemma.

Lemma 2.1. There exists K > 0 such that

A =
{
(u1, . . . , un) ∈ Rn

+ : 0 ≤ ui ≤ K, 1 ≤ i ≤ n
}

is positively invariant and strongly attractive with respect to Rn
+.

Proof. Denote

L = max
1≤i≤n

{Ki}, a = sup
0≤t≤T
1≤i≤n

{
gi(t, 0)

}
, b = sup

0≤t≤T
1≤i≤n

{
gi(t, L)

}
,
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K =
(
1− a

b

) n∑

i=1

Ki.

It follows from (H1) that a > 0, b < 0 and K > L.
We shall prove that A =

{
(u1, . . . , un) ∈ Rn

+ : 0 ≤ ui ≤ K, 1 ≤ i ≤ n
}

is positively invariant and strongly attractive with respect to Rn
+. If u 6∈ A

then there exists at least an index k ∈ {1, 2, . . . , n} such that uk ≥ K.
Therefore

n∑

i=1

uigi(t, ui) =
n∑

i=1
i 6=k

uigi(t, ui) + ukgk(t, uk)

≤
n∑

i=1
i 6=k

Kia + Kgk(t, L) ≤ a

n∑

i=1

Ki + Kb = b

n∑

i=1

Ki < 0.

Thus, by (H3) and (H4) we have

n∑

i=1

u̇i ≤
n∑

i=1

uigi(t, ui) < 0

whenever u 6∈ A. This proves the lemma.

By Lemma 2.1, the solution to (1.1) with u(t0) ∈ Rn
+ is defined on

[t0, +∞), and u(t) ∈ Rn
+ for all t ≥ t0. Therefore, we may introduce, for

any t ≥ t0, the Cauchy operator G(t, t0): it is defined on Rn
+ and maps the

initial datum (u01, . . . , u0n) into the solution (u1(t), . . . , un(t)) at time t.
Straightforward properties of G are: G is continuous and t-differentiable
for t ≥ t0; G(t, t0)Rn

+ ⊂ Rn
+ for all t ≥ t0; G(t, s)G(s, t0) = G(t, t0) for all

t ≥ s ≥ t0; G(t + T, t0 + T ) = G(t, t0) for all t ≥ t0; and G(t0, t0) = E,
where E is the identity.

A basic tool in investigating T -periodic solutions is the monodromy (or
Poincare) operator H = G(T, 0). In fact, T -periodic solutions are in one-
to-one correspondence with fixed points of H; and the stability character
of a T -periodic solution can be read off from that of the corresponding
fixed point of H with respect to the discrete semi-dynamical system

(2.3) N×Rn
+ 3 (k, p) 7→ Hkp ∈ Rn

+.

In particular, if Hkp converges to p̂ as k →∞, then p̂ is a fixed point of H.
Thus, G(t, 0)p̂ is a T -periodic solution and lim

t→∞
‖G(t, 0)p−G(t, 0)p̂‖ = 0.
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Now we shall prove the monotone property of the operator H. For
u, v ∈ Rn, we write u ≤ v if ui ≤ vi for every i = 1, 2, . . . , n. Similarly,
u < v will mean that ui < vi for every i = 1, 2, . . . , n. The most important
property of (1.1) is that it is quasi-monotone increasing, because for every
pair points (t, u), (t, v) ∈ R × Rn

+ and every i = 1, 2, . . . , n, one gets
Fi(t, u) ≤ Fi(t, v) whenever ui = vi and u ≤ v.

Solutions to quasi-monotone systems such as (1.1) have the follow-
ing comparison property (see [5, p. 318]): Let u+ : [t0, ω) → Rn

+ be the
maximum solution through some point (t0, u0) ∈ R × Rn

+ of (1.1) and
v : [t0, ω) → Rn

+, ω ≤ ω, a continuous function such that
(i) v(t0) ≤ u0,
(ii) Dv(t) ≤ F (t, v(t)) for t ∈ (t0, ω),

where Dv is any Dini derivative of v. Then v(t) ≤ u+(t) for any t ∈ (t0, ω).
In particular, by the forward uniqueness of solution of (1.1) we have

the following:

Lemma 2.2. If u1(t) and u2(t) are two solutions of (1.1) with u1(t0) ≤
u2(t0), (t0 ∈ R), then u1(t) ≤ u2(t) for all t > t0. In particular, H is
monotone increasing, i.e., Hx ≤ Hy whenever x, y ∈ Rn

+ : x ≤ y.

3. Periodic solutions and global
asymptotic stability

In this section we study the existence and global stability of a periodic
solution whose components are strictly positive.

Theorem 3.1. Let

(H6) inf
t∈[0,T ]

{
gi(t, 0)− εi(t)Du+

i
(hi(t, 0))

}
> 0, 1 ≤ i ≤ n,

where Du+
i
(hi(t, 0)) is the lower right Dini derivative of hi(t, ui) at ui = 0.

Then the system (1.1) has at least one T -periodic solution u0(t) whose
components are strictly positive. Moreover, if such a solution is unique,
then lim

t→+∞
|u0

i (t) − ui(t)| = 0 for every i = 1, 2, . . . , n, where u(t) is any

solution of (1.1) with u(0) > 0.

Proof. By (H6), there exists a positive number δ such that

gi(t, ui)− εi(t)hi(t, u)
ui

> 0

for all 0 < ui < δ and 1 ≤ i ≤ n. This fact and Lemma 2.1 imply that

A∗ =
{
(u1, . . . , un) ∈ Rn

+ : δ ≤ ui ≤ K, 1 ≤ i ≤ n
}
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is positively invariant and strongly attractive with respect to int (Rn
+).

Hence H(A∗) ⊂ A∗.
Denote x = (δ, . . . , δ) ∈ Rn and y = (K, . . . , K) ∈ Rn. Clearly, Hx ∈

A∗. Thus, Hx ≥ x. By Lemma 2.2,
{
Hkx

}∞
k=1

is monotone increasing.
Moreover,

{
Hkx

}∞
k=1

is bounded above by y. Consequently, Hkx must
converge to some point p ∈ A∗ . Thus, G(t, 0)p is a T -periodic solution
of (1.1). Moreover, G(t, 0)p ∈ A∗ for all t ∈ R because A∗ is positively
invariant.

We now prove the second part of the theorem. Similarly,
{
Hky

}∞
k=1

is monotone decreasing and bounded below by x. By the uniqueness
of a strictly positive T -periodic solution, we have that

{
Hkx

}∞
k=1

and{
Hky

}∞
k=1

must converge to p = u0(0) ∈ A∗ as k → ∞. Let z be any
point in A∗. Clearly, x ≤ z ≤ y. By Lemma 2.2, Hky ≥ Hkz ≥ Hky for
all k ≥ 1. Thus Hkz converges to p, as k →∞. Therefore, for the discrete
semi-dynamical system (2.3) the point p absorbs every point in A∗. Since
A∗ is strongly attractive with respect to int (Rn

+), p is globally attractive
with respect to int (Rn

+). This proves the second part of the theorem. The
theorem is proved.

From now on we consider the special case of the system (1.1) in which
hi(t, ui) (1 ≤ i ≤ n) is linear in ui, i.e., hi(t, ui) = ki(t)ui:

(3.1) u̇i = uigi(t, ui)− εi(t)ki(t)ui +
n∑

j=1
j 6=i

dij(t)εj(t)kj(t)uj , 1 ≤ i ≤ n.

The hypothesis (H2) now becomes
(H ′

2) ki(t) ≥ 0 for all t ∈ [0, T ].
We now prove the uniqueness of a strictly positive T -periodic solution

of the system (3.1). Before doing this, we prove the following lemma:

Lemma 3.2. Let α be a positive number. Let u(t) be a solution of (3.1)
satisfying u(t) > 0 for all t ≥ 0 and u(x, t) the solution of (3.1) with
u(x, 0) = x := αu(0).

If α < 1, then u(x, t) > αu(t), for all t > 0.
If α > 1, then u(x, t) < αu(t), for all t > 0.

Proof. First we consider the case α < 1. For i = 1, 2, . . . , n, we have

d

dt
(αui(t)) = α

[
ui(t)gi(t, ui(t))− εi(t)ki(t)ui(t)
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+
n∑

j=1
j 6=i

dij(t)εj(t)kj(t)uj(t)
]

< αui(t)gi(t, αui(t))− εi(t)ki(t)αui(t)

+
n∑

j=1
j 6=i

dij(t)εj(t)kj(t)αuj(t),

because gi(t, ui(t)) < gi(t, αui(t)). It follows from Lemma 2.3 of [5, p. 315]
that u(x, t) > αu(t) for all t > 0.

Similarly, we can prove that u(x, t) < αu(t) for all t > 0 if α > 1 by
using Lemma 2.4 of [5, p. 316].

Theorem 3.3. The system (3.1) has at most one strictly positive T -
periodic solution.

Proof. Suppose that the system (3.1) has two different strictly positive T -
periodic solutions, say u(t) and u(t). Without loss of generality, we may
assume that u1(0) > u1(0). Therefore, there exists α ∈ (0, 1) such that
αu1(0) > u1(0). Denote x = αu(0). By Lemma 3.2, we have u(x, t) >
αu(t) for all t > 0, where u(x, t) is the solution with u(x, 0) = x. Thus,
by the periodicity of u(t),

(3.2) H(αu(0)) > αu(0).

Since u(0) 6∈ {
z ∈ Rn

+ : zi ≥ xi, 1 ≤ i ≤ n
}
, it follows that there exists

β > 1 such that

y := βu(0) ∈
n⋃

i=1

{
z ∈ Rn

+ : z ≥ x, zi = xi

}
.

Thus, Lemma 3.2 implies that u(y, t) < βu(t) for all t > 0, where u(y, t)
is the solution with u(y, 0) = y. Hence, by the periodicity of u(t),

(3.3) H(βu(0)) < βu(0).

Clearly, y = βu(0) ≥ αu(0) = x. Thus, it follows from Lemma 2.2 that

(3.4) H(βu(0)) ≥ H(αu(0)).
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It is easy to deduce from (3.2), (3.3) and (3.4) that

(3.5) βu(0) > H(βu(0)) ≥ H(αu(0)) > αu(0).

But there exists at least one index j ∈ {
1, . . . , n

}
such that yj = xj ,

i.e., βu j(0) = αu(0). This contradiction proves the theorem.

We now show that the second assertion of Theorem 3.1 is valid for the
system (3.1) without requiring the assumption utilized there.

Theorem 3.4. Suppose that the system (3.1) has a unique strictly positive
T -periodic solution. Then this solution is globally asymptotically stable in
int (Rn

+).

Proof. Suppose that u0(t) is the strictly positive T -periodic solution of
(3.1). We consider the discrete semi-dynamical system (2.3). Let x ∈
int (Rn

+). Then there exist α ∈ (0, 1) and β > 1 such that αu0(0) ≤ x ≤
βu0(0).

Thus, by Lemma 3.2, H(αu0(0)) > αu0(0) and H(βu0(0)) < βu0(0).
Therefore, Lemma 2.2 implies that

{
Hk(αu0(0))

}∞
k=1

is monotone increas-
ing and bounded above by βu0(0), that

{
Hk(βu0(0))

}∞
k=1

is monotone de-
creasing and bounded below by αu0(0), and that Hk(αu0(0) ≤ Hk(x) ≤
Hk(βu0(0)) for all k ≥ 1. Thus, the uniqueness of u0(t) implies that
Hk(αu0(0)), Hk(βu0(0)) and Hk(x) must converge to u0(0) as k → ∞.
This implies that u0(0) is globally attractive with respect to int (Rn

+).
The stability of u0(0) follows from the fact that

{
u ∈ Rn

+ : αu0(0) ≤
u ≤ βu0(0)

}
is positively invariant (with respect to (2.3)) for all 0 < α < 1

and β > 1. Therefore, the T -periodic solution u0(t) to (3.1) is stable in
int (Rn

+). The theorem is proved.

In the linear case, i.e. the system (3.1), the hypothesis (H6) in Theorem
3.1 becomes

(H ′
6) gi(t, 0)− εi(t)ki(t) > 0 for all t ∈ [0, T ] and i = 1, 2, . . . , n.

Thus the following is a direct consequence of theorems 3.1, 3.3 and 3.4.

Corollary 3.5. Let (H ′
6) hold, then the system (3.1) has a unique strictly

positive T -periodic solution which is globally asymptotically stable in int (Rn
+).
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