GLOBAL STABILITY IN A MODEL OF SINGLE-SPECIES POPULATION DYNAMICS IN A PERIODIC PATCHY ENVIRONMENT

TRINH TUAN ANH

Abstract. We consider a model of single-species population dynamics in a periodic patchy environment and prove a sufficient condition for the existence of a globally asymptotically stable, strictly positive (componentwise) and periodic solution.

1. INTRODUCTION

The purpose of this paper is to study the stability of a system of nonautonomous ordinary differential equations which models the growth of a single-species population distribution over $n (n > 1)$ patches (islands or habitats) and allows for population dispersing from one to the others. This work may be throught of as a continuation of the work in [1-4, 6] where the autonomous case was considered.

The model considered in this paper is described by the following system of nonautonomous ordinary differential equations: (1.1)

$$
\dot{u}_i = u_i g_i(t, u_i) - \varepsilon_i(t) h_i(t, u_i) + \sum_{\substack{j=1 \ j \neq i}}^n d_{ij}(t) \varepsilon_j(t) h_j(t, u_j), \quad i = 1, 2, \dots, n,
$$

where $g_i, h_i: R \times [0, +\infty) \to R$ are continuous and T-periodic in the t-variable $(T > 0)$; ε_i , d_{ij} $(i \neq j)$: $R \to R$ are continuous and T-periodic; $u_i(t)$ represents the population density of the species in the i^{th} patch at time t.

The above model is a natural generalization of the autonomous case describing the growth of the prey-population in Freedman and Takeuchi [4]. Further assumptions on the functions of the system (1.1) are given

Received July 18, 1997; in revised form December 6, 1997.

¹⁹⁹¹ Mathematics Subject Classification. 34 C 25, 34 D 05, 92 D 40

Key words and phrases. Periodic patchy environment, periodic solution

Supported by the Project of numerical methods for solving differential equations QT 96-02

below, which are based on those in [4].

The function $g_i(t, u_i)$ represents the specific growth rate of the population in the i^{th} patch at time t. Due to limited resources at time t, $g_i(t,.) > 0$ if the environment is underpopulated and $g_i(t,.) < 0$ if the environment is overpopulated. Furthermore, we suppose that the growth rate slows down as population increases. Therefore the following assumptions are made on $g_i(t, u_i)$:

 (H_1) $g_i(t,0) > 0$ and $g_i(t,.)$ is strictly decreasing for any fixed $t \in [0,T]$. Moreover, there exists a positive number K_i such that $g_i(t, K_i) < 0$ for any $t \in [0, T]$.

The hypothesis (H_1) is standard in single-species models [2, 4, 6].

The function $h_i(t, u_i)$ represents the pressure or desire for the population to leave the i^{th} patch and seek another patch in the total environment at time t. Clearly, pressure to disperse increases with increasing population. Hence we assume:

 (H_2) $h_i(t, 0) = 0$ and $h_i(t,.)$ is increasing for any fixed $t \in [0, T]$.

 $\varepsilon_i(t)$ is an inverse barrier strength at time t. If $\varepsilon_i(t) = 0$ then the population may not leave the i^{th} patch at time t.

 $(H_3) \varepsilon_i(t) \geq 0$ for any $t \in [0, T]$.

 $d_{ij}(t)$ $(1 \leq i, j \leq n, i \neq j)$ is the probability that a given member of the population, having left the jth patch, will arrive safely at the ith patch at time t. Clearly

$$
(H_4) \ 0 \le d_{ij}(t) \le 1, \ \sum_{\substack{i=1 \\ i \ne j}}^n d_{ij}(t) \le 1, \text{ for any } t \in [0, T].
$$

The following assumption is needed for technical mathematical reasons:

 (H_5) The functions $g_i(t, u_i)$, $h_i(t, u_i)$ are locally Lipschitzian in u_i , uniformly in t, i.e., for each $u_i \in R_+$ there are numbers $\delta > 0$, $L > 0$ such that $|g_i(t, u_i) - g_i(t, \overline{u}_i)| \le L|u_i - \overline{u}_i|$ for $u_i, \overline{u}_i \in R_+ : |u_i - \overline{u}_i| \le \delta$ and $t \in R$; and similarly for h_i .

Our goal is to establish a criterion for the existence of a strictly positive (componentwise) T-periodic solution of (1.1) and to investigate its stability character in the case $h_i(t, u_i) = k_i(t)u_i$ $(1 \leq i \leq n)$.

In the next section we present some basic properties of the system (1.1). The third section is devoted to prove the existence and the global stability of a strictly positive T-periodic solution.

2. Preliminaries

First, we see that the Cauchy problem for (1.1) with the initial condition $u(t_0) = u_0 \in R_+^n$ has a unique forward solution. Indeed, the case $u(t_0) =$

 $u_0 \in \text{int}(R_+^n)$ is trivial, since we know from (H_5) that the right hand side function of (1.1) is locally Lipschitzian in u, uniformly in t. The case $u(t_0) = u_0 \in \partial R_+^n$ can be showed as follows. Setting $F: R \times R_+^n \to R^n$ with

$$
F_i(t, u) = u_i g_i(t, u_i) - \varepsilon_i(t) h_i(t, u_i) + \sum_{\substack{j=1 \ j \neq i}}^n d_{ij}(t) \varepsilon_j(t) h_j(t, u_j),
$$

$$
i = 1, 2, \dots, n.
$$

Let $U_{\varepsilon}(R_+^n) = \left\{ u \in R^n : d(u, R_+^n) < \varepsilon \right\}$, where $d(u, R_+^n) = \inf_{\overline{u} \in R_+^n}$ $\|\overline{u} - u\|,$ and $\varepsilon > 0$. It is easy to see that for each $u \in U_{\varepsilon}(R_+^n) \setminus R_+^n$ there exists

uniquely $\overline{u} \in \partial R_+^n$ such that $d(u, R_+^n) = ||\overline{u} - u||$. Let $\overline{F}(t, u)$ be the extension of $F(t, u)$ on $R \times U_{\varepsilon}(R_+^n)$ such that for $u \in U_{\varepsilon}(R_+^n) \setminus R_+^n$ we have $\overline{F}(t, u) = F(t, \overline{u})$, where $\overline{u} \in \partial R_+^n$ such that $d(u, R_+^n) = ||\overline{u} - u||$. Then, by (H_5) , $\overline{F}(t, u)$ is locally Lipschitzian in $u \in U_{\varepsilon}(R_+^n)$, uniformly in t. Therefore, the Cauchy problem

(2.1) ˙u = F(t, u),

(2.2)
$$
u(t_0) = u_0 \in U_{\varepsilon}(R_+^n),
$$

has a unique solution. Since $\overline{F}_i(t, u) = F_i(t, u) \geq 0$ for $u \in \partial R^n_+$ with $u_i = 0$, it follows that R^n_+ is positively invariant with respect to (2.1). Therefore, the Cauchy problem for (1.1) with the initial condition $u(t_0)$ = $u_0 \in \partial R^n_+$ has a unique forward solution.

The boundedness of the solutions to (1.1) is shown by the following lemma.

Lemma 2.1. There exists $K > 0$ such that

$$
\mathcal{A} = \{(u_1, \dots, u_n) \in R_+^n : 0 \le u_i \le K, \ 1 \le i \le n\}
$$

is positively invariant and strongly attractive with respect to R^n_+ .

Proof. Denote

$$
L = \max_{1 \le i \le n} \{K_i\}, \quad a = \sup_{\substack{0 \le t \le T \\ 1 \le i \le n}} \{g_i(t, 0)\}, \quad b = \sup_{\substack{0 \le t \le T \\ 1 \le i \le n}} \{g_i(t, L)\},
$$

188 TRINH TUAN ANH

$$
K = \left(1 - \frac{a}{b}\right) \sum_{i=1}^{n} K_i.
$$

It follows from (H_1) that $a > 0$, $b < 0$ and $K > L$.

We shall prove that $A = \{(u_1, \ldots, u_n) \in R_+^n : 0 \le u_i \le K, 1 \le i \le n\}$ ª is positively invariant and strongly attractive with respect to R^n_+ . If $u \notin \mathcal{A}$ then there exists at least an index $k \in \{1, 2, ..., n\}$ such that $u_k \geq K$. Therefore

$$
\sum_{i=1}^{n} u_i g_i(t, u_i) = \sum_{\substack{i=1 \ i \neq k}}^{n} u_i g_i(t, u_i) + u_k g_k(t, u_k)
$$

$$
\leq \sum_{\substack{i=1 \ i \neq k}}^{n} K_i a + K g_k(t, L) \leq a \sum_{i=1}^{n} K_i + Kb = b \sum_{i=1}^{n} K_i < 0.
$$

Thus, by (H_3) and (H_4) we have

$$
\sum_{i=1}^{n} \dot{u}_i \le \sum_{i=1}^{n} u_i g_i(t, u_i) < 0
$$

whenever $u \notin \mathcal{A}$. This proves the lemma.

By Lemma 2.1, the solution to (1.1) with $u(t_0) \in R^n_+$ is defined on $[t_0, +\infty)$, and $u(t) \in R_+^n$ for all $t \geq t_0$. Therefore, we may introduce, for any $t \geq t_0$, the Cauchy operator $G(t, t_0)$: it is defined on R^n_+ and maps the initial datum $(u_{01},...,u_{0n})$ into the solution $(u_1(t),...,u_n(t))$ at time t. Straightforward properties of G are: G is continuous and t-differentiable for $t \ge t_0$; $G(t, t_0)R_{+}^n \subset R_{+}^n$ for all $t \ge t_0$; $G(t, s)G(s, t_0) = G(t, t_0)$ for all $t \geq s \geq t_0$; $G(t+T, t_0+T) = G(t, t_0)$ for all $t \geq t_0$; and $G(t_0, t_0) = E$, where E is the identity.

A basic tool in investigating T-periodic solutions is the monodromy (or Poincare) operator $H = G(T, 0)$. In fact, T-periodic solutions are in oneto-one correspondence with fixed points of H ; and the stability character of a T-periodic solution can be read off from that of the corresponding fixed point of H with respect to the discrete semi-dynamical system

(2.3)
$$
\mathbf{N} \times R_+^n \ni (k, p) \mapsto H^k p \in R_+^n.
$$

In particular, if $H^k p$ converges to \hat{p} as $k \to \infty$, then \hat{p} is a fixed point of H. Thus, $G(t,0)\hat{p}$ is a T-periodic solution and $\lim_{t\to\infty} ||G(t,0)p - G(t,0)\hat{p}|| = 0.$

Now we shall prove the monotone property of the operator H . For $u, v \in Rⁿ$, we write $u \leq v$ if $u_i \leq v_i$ for every $i = 1, 2, ..., n$. Similarly, $u < v$ will mean that $u_i < v_i$ for every $i = 1, 2, ..., n$. The most important property of (1.1) is that it is quasi-monotone increasing, because for every pair points (t, u) , $(t, v) \in R \times R_+^n$ and every $i = 1, 2, ..., n$, one gets $F_i(t, u) \leq F_i(t, v)$ whenever $u_i = v_i$ and $u \leq v$.

Solutions to quasi-monotone systems such as (1.1) have the following comparison property (see [5, p. 318]): Let u^+ : $[t_0, \omega) \to R_+^n$ be the maximum solution through some point $(t_0, u_0) \in R \times R_+^n$ of (1.1) and $v: [t_0, \overline{\omega}) \to R^n_+, \overline{\omega} \leq \omega$, a continuous function such that

(i) $v(t_0) \leq u_0$,

(ii) $Dv(t) \leq F(t, v(t))$ for $t \in (t_0, \overline{\omega})$,

where Dv is any Dini derivative of v. Then $v(t) \leq u^+(t)$ for any $t \in (t_0, \overline{\omega})$.

In particular, by the forward uniqueness of solution of (1.1) we have the following:

Lemma 2.2. If $u^1(t)$ and $u^2(t)$ are two solutions of (1.1) with $u^1(t_0) \leq$ $u^2(t_0)$, $(t_0 \in R)$, then $u^1(t) \leq u^2(t)$ for all $t > t_0$. In particular, H is monotone increasing, i.e., $Hx \leq Hy$ whenever $x, y \in R_+^n : x \leq y$.

3. Periodic solutions and global asymptotic stability

In this section we study the existence and global stability of a periodic solution whose components are strictly positive.

Theorem 3.1. Let

$$
(H_6) \inf_{t \in [0,T]} \left\{ g_i(t,0) - \varepsilon_i(t) D_{u_i^+}(h_i(t,0)) \right\} > 0, \quad 1 \le i \le n,
$$

where $D_{u_i^+}(h_i(t,0))$ is the lower right Dini derivative of $h_i(t, u_i)$ at $u_i = 0$. Then the system (1.1) has at least one T-periodic solution $u^0(t)$ whose components are strictly positive. Moreover, if such a solution is unique, then $\lim_{t \to +\infty} |u_i^0(t) - u_i(t)| = 0$ for every $i = 1, 2, ..., n$, where $u(t)$ is any solution of (1.1) with $u(0) > 0$.

Proof. By (H_6) , there exists a positive number δ such that

$$
g_i(t, u_i) - \frac{\varepsilon_i(t)h_i(t, u)}{u_i} > 0
$$

for all $0 < u_i < \delta$ and $1 \leq i \leq n$. This fact and Lemma 2.1 imply that

$$
\mathcal{A}^* = \{(u_1, \ldots, u_n) \in R_+^n : \delta \le u_i \le K, 1 \le i \le n\}
$$

is positively invariant and strongly attractive with respect to $\text{int}(R_+^n)$. Hence $H(\mathcal{A}^*) \subset \mathcal{A}^*$.

Denote $x = (\delta, \ldots, \delta) \in R^n$ and $y = (K, \ldots, K) \in R^n$. Clearly, $Hx \in$ Denote $x = (0, \ldots, 0) \in R^{\infty}$ and $y = (R, \ldots, R^*)^{\infty}$
 A^* . Thus, $Hx \geq x$. By Lemma 2.2, $\{H^k x\}_{k=1}^{\infty}$ $\geq x$. By Lemma 2.2, $\left\{H^k x\right\}_{k=1}^{\infty}$ is monotone increasing. Moreover, ${H^kx}_{k=1}^{\infty}$ is bounded above by y. Consequently, H^kx must converge to some point $p \in \mathcal{A}^*$. Thus, $G(t,0)p$ is a T-periodic solution of (1.1). Moreover, $G(t,0)p \in \mathcal{A}^*$ for all $t \in R$ because \mathcal{A}^* is positively invariant.

ariant.
We now prove the second part of the theorem. Similarly, ${H^ky}_{k-}^{\infty}$ $k=1$ is monotone decreasing and bounded below by x. By the uniqueness
of a strictly positive T-periodic solution, we have that $\{H^k x\}_{k=1}^{\infty}$ and of a strictly positive T-periodic solution, we have that $\{H^k x\}_{k=1}^{\infty}$ and $H^k y\}_{k=1}^{\infty}$ $\sum_{k=1}^{\infty}$ must converge to $p = u^0(0) \in \mathcal{A}^*$ as $k \to \infty$. Let z be any point in \mathcal{A}^* . Clearly, $x \leq z \leq y$. By Lemma 2.2, $H^k y \geq H^k z \geq H^k y$ for all $k \geq 1$. Thus $H^k z$ converges to p, as $k \to \infty$. Therefore, for the discrete semi-dynamical system (2.3) the point p absorbs every point in \mathcal{A}^* . Since \mathcal{A}^* is strongly attractive with respect to $\text{int}(R_+^n)$, p is globally attractive with respect to int (R^n_+) . This proves the second part of the theorem. The theorem is proved.

From now on we consider the special case of the system (1.1) in which $h_i(t, u_i)$ $(1 \le i \le n)$ is linear in u_i , i.e., $h_i(t, u_i) = k_i(t)u_i$:

$$
(3.1) \quad \dot{u}_i = u_i g_i(t, u_i) - \varepsilon_i(t) k_i(t) u_i + \sum_{\substack{j=1 \ j \neq i}}^n d_{ij}(t) \varepsilon_j(t) k_j(t) u_j, \quad 1 \leq i \leq n.
$$

The hypothesis (H_2) now becomes

 (H'_2) $k_i(t) \ge 0$ for all $t \in [0, T]$.

We now prove the uniqueness of a strictly positive T -periodic solution of the system (3.1). Before doing this, we prove the following lemma:

Lemma 3.2. Let α be a positive number. Let $u(t)$ be a solution of (3.1) satisfying $u(t) > 0$ for all $t \geq 0$ and $u(x, t)$ the solution of (3.1) with $u(x, 0) = x := \alpha u(0).$

If $\alpha < 1$, then $u(x, t) > \alpha u(t)$, for all $t > 0$. If $\alpha > 1$, then $u(x, t) < \alpha u(t)$, for all $t > 0$.

Proof. First we consider the case $\alpha < 1$. For $i = 1, 2, ..., n$, we have

$$
\frac{d}{dt}(\alpha u_i(t)) = \alpha \Big[u_i(t)g_i(t, u_i(t)) - \varepsilon_i(t)k_i(t)u_i(t) \Big]
$$

GLOBAL STABILITY 191

+
$$
\sum_{\substack{j=1 \ j \neq i}}^{n} d_{ij}(t) \varepsilon_j(t) k_j(t) u_j(t)
$$

<
$$
< \alpha u_i(t) g_i(t, \alpha u_i(t)) - \varepsilon_i(t) k_i(t) \alpha u_i(t)
$$

+
$$
\sum_{\substack{j=1 \ j \neq i}}^{n} d_{ij}(t) \varepsilon_j(t) k_j(t) \alpha u_j(t),
$$

because $g_i(t, u_i(t)) < g_i(t, \alpha u_i(t))$. It follows from Lemma 2.3 of [5, p. 315] that $u(x, t) > \alpha u(t)$ for all $t > 0$.

Similarly, we can prove that $u(x, t) < \alpha u(t)$ for all $t > 0$ if $\alpha > 1$ by using Lemma 2.4 of [5, p. 316].

Theorem 3.3. The system (3.1) has at most one strictly positive T periodic solution.

Proof. Suppose that the system (3.1) has two different strictly positive Tperiodic solutions, say $\bar{u}(t)$ and $\underline{u}(t)$. Without loss of generality, we may assume that $\overline{u}_1(0) > \underline{u}_1(0)$. Therefore, there exists $\alpha \in (0,1)$ such that $\alpha \overline{u}_1(0) > \underline{u}_1(0)$. Denote $x = \alpha \overline{u}(0)$. By Lemma 3.2, we have $u(x,t) >$ $\alpha \overline{u}(t)$ for all $t > 0$, where $u(x, t)$ is the solution with $u(x, 0) = x$. Thus, by the periodicity of $\overline{u}(t)$,

(3.2)
$$
H(\alpha \overline{u}(0)) > \alpha \overline{u}(0).
$$

Since $\underline{u}(0) \notin$ \overline{a} $z \in R_+^n : z_i \geq x_i, \ 1 \leq i \leq n$ ª , it follows that there exists $\beta > 1$ such that

$$
y := \beta \underline{u}(0) \in \bigcup_{i=1}^{n} \{ z \in R_{+}^{n} : z \geq x, \ z_i = x_i \}.
$$

Thus, Lemma 3.2 implies that $u(y, t) < \beta \underline{u}(t)$ for all $t > 0$, where $u(y, t)$ is the solution with $u(y, 0) = y$. Hence, by the periodicity of $u(t)$,

$$
(3.3) \tH(\beta \underline{u}(0)) < \beta \underline{u}(0).
$$

Clearly, $y = \beta \underline{u}(0) \ge \alpha \overline{u}(0) = x$. Thus, it follows from Lemma 2.2 that

(3.4)
$$
H(\beta \underline{u}(0)) \geq H(\alpha \overline{u}(0)).
$$

It is easy to deduce from (3.2) , (3.3) and (3.4) that

$$
(3.5) \qquad \beta \underline{u}(0) > H(\beta \underline{u}(0)) \ge H(\alpha \overline{u}(0)) > \alpha \overline{u}(0).
$$

But there exists at least one index $j \in$ $\{1, \ldots, n\}$ such that $y_j = x_j$, i.e., $\beta \underline{u}_j(0) = \alpha \overline{u}(0)$. This contradiction proves the theorem.

We now show that the second assertion of Theorem 3.1 is valid for the system (3.1) without requiring the assumption utilized there.

Theorem 3.4. Suppose that the system (3.1) has a unique strictly positive T-periodic solution. Then this solution is globally asymptotically stable in int $(R^n_+).$

Proof. Suppose that $u^0(t)$ is the strictly positive T-periodic solution of (3.1). We consider the discrete semi-dynamical system (2.3). Let $x \in$ int (R_+^n) . Then there exist $\alpha \in (0,1)$ and $\beta > 1$ such that $\alpha u^0(0) \leq x \leq$ $\beta u^0(0)$.

Thus, by Lemma 3.2, $H(\alpha u^0(0)) > \alpha u^0(0)$ and $H(\beta u^0(0)) < \beta u^0(0)$.
Therefore, Lemma 2.2 implies that $\{H^k(\alpha u^0(0))\}_{k=1}^{\infty}$ is monotone increasing and bounded above by $\beta u^0(0)$, that $\{H^k(\beta u^0(0))\}_{k=1}^{\infty}$ is monotone decreasing and bounded below by $\alpha u^0(0)$, and that $H^k(\alpha u^0(0)) \leq H^k(x) \leq$ $H^k(\beta u^0(0))$ for all $k \geq 1$. Thus, the uniqueness of $u^0(t)$ implies that $H^k(\alpha u^0(0)), H^k(\beta u^0(0))$ and $H^k(x)$ must converge to $u^0(0)$ as $k \to \infty$. This implies that $u^0(0)$ is globally attractive with respect to int (R^n_+) .

The stability of $u^0(0)$ follows from the fact that $\{u \in R_+^n : \alpha u^0(0) \leq \}$ The stability of u (0) follows from the fact that $\{u \in \Lambda_+ : \alpha u \ (0) \le u \le \beta u^0(0)\}$ is positively invariant (with respect to (2.3)) for all $0 < \alpha < 1$ and $\beta > 1$. Therefore, the T-periodic solution $u^0(t)$ to (3.1) is stable in int (R^n_+) . The theorem is proved.

In the linear case, i.e. the system (3.1) , the hypothesis (H_6) in Theorem 3.1 becomes

 (H'_6) $g_i(t,0) - \varepsilon_i(t)k_i(t) > 0$ for all $t \in [0,T]$ and $i = 1,2,...,n$.

Thus the following is a direct consequence of theorems 3.1, 3.3 and 3.4.

Corollary 3.5. Let (H_6') hold, then the system (3.1) has a unique strictly positive T-periodic solution which is globally asymptotically stable in $\text{int}(R_+^n)$.

ACKNOWLEDGEMENTS

The author wishes to thank Professor Tran Van Nhung for his encouragement and for reading the manuscript. The author also expresses deep gratitude to the careful referee for valuable comments.

REFERENCES

- 1. H. I. Freedman, Single species migration in two habitats: Persistence and extinction, Math. Model 8 (1987), 778-780.
- 2. H. I. Freedman, B. Rai and P. Waltman, Mathematical models of population interactions with dispersal II: differential survival in a change of habitat, J. Math. Analysis Applic. 115 (1986), 140-154.
- 3. H. I. Freedman and P. Waltman, Mathematical models of population interaction with dispersal I: Stability of two habitats with and without a predator, SIAM J. Appl. Math. 32 (1977), 631-648.
- 4. H. I. Freedman and Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlin. Anal. Th. Meth. Appl. 8 (1989), 993-1002.
- 5. N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method, Springer-Verlag, New York, 1977.
- 6. Y. Takeuchi, Cooperative systems theory and global stability of diffusion models, Acta Applicandae Mathematicae 14 (1989), 49-57.

Faculty of Mathematics, Mechanics and Informatics College of Natural Sciences, Hanoi National University 90 Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam