SPECTRAL CRITERIA OF ABSTRACT FUNCTIONS; INTEGRAL AND DIFFERENCE PROBLEMS

ALAA E. HAMZA AND GILBERT L. MURAZ

ABSTRACT. Let X be a complex Banach space and let M be a closed subspace of $L^{\infty}(J,X)$, where $J \in \{R, R^+\}$. We answer the following question: Under what conditions $\phi_s - \phi \in M$ $\forall s \in J$ implies that $\phi \in M$. Some conditions will be imposed on M to obtain the main result concerning the indefinite integral. These conditions guarantee the following implication : F ∈ $E(J,X) \Longrightarrow F \in M$, where F is the integral $\int_0^t f(s) ds$ of $f \in M \cap C_{ub}(J,X)$. Also, we generalize Loomis' Theorem for almost periodic functions [19, Theorem 5, to a more general class of functions $M\subseteq L^{\infty}(\mathbf{R},X)$ containing $AP(\mathbf{R},X)$. The main result of Part IV is: If ϕ is uniformly continuous, bounded, such that the M-spectrum $\sigma_M(\phi)$ of ϕ is at most countable and, for every $\lambda \in \sigma_M(\phi)$, the function $e^{-i\lambda t}\phi(t)$ is ergodic, then $\phi \in M$.

1. INTRODUCTION

A continuous scalar function f on \bf{R} is called almost periodic (a.p) if the set of all translates $\{f_w : w \in \mathbf{R}\}\$ is relatively compact (r.c) in $C_b(\mathbf{R})$ ($C_b(\mathbf{R})$) is the space of all scalar continuous bounded functions). Bohl and Bohr [8] proved that if f is a scalar almost periodic on \mathbf{R} , then $F(t) = \int_0^t$ 0 $f(s) ds$ is a.p iff F is bounded (see also [22]). The almost periodicity of a function with values in a Banach space is defined similarly. M. I. Kadets [18] generalized this theorem and proved that: if f is an a.p from **R** to X which does not contain c_0 , then F is a.p iff F is bounded. Here, c_0 is the space of all numerical sequences tending to 0. Thereafter, he proved this theorem for arbitrary Banach spaces X when the range of F is weakly relatively compact (w.r.c) in X (see [19]). Instead of the above mentioned integral problem B. Basit [2] considered the difference problem and proved the following result: Suppose that $f \in C_{ub}(G, X)$ such that $f_s - f$ is a.p $\forall s \in G$. If either

(i) X does not contain a subspace isomorphic to c_0 ,

Received November 17, 1996

¹⁹⁹¹ Mathematics Subject Classification. Primary 43A60

Key words and phrases. Almost periodic functions.

or

(ii) $f(G)$ is w.r.c in X,

then f is a.p.

The case $X = \mathbf{R}$ is proved by R. Doss [12]. See also F. Galvin, G. Muraz and P. Szeptycki [15] for a general group (nonabelian) and C. Datry and G. Muraz [11] for G-modules. See also E. Emmam [14] for almost automorphic functions. Here G is a group and $f_s(t) = f(ts)$. Mary L. Boas and R. P. Boas [15] proved that if f is bounded and $f_s - f$ is continuous for every $s \in \mathbf{R}$, then f is continuous. This result is generalized by F. Galvin, G. Muraz and P. Szeptycki [15] and C. Datry and G. Muraz [11], for the uniformly continuous functions defined on a group with values in a Banach space. Levitan [20] proved the almost periodicity of the integral F ,

provided that F is bounded and $\lim_{T \to \infty} (1/2T)$ $\frac{T}{c}$ $-T$ $F(t+s)$ ds exists uniformly

on R. Basit [4] extended Levitan' s result to recurrent functions. C. Datry and G. Muraz [11] extended the result of Levitan to Banach G-modules.

Throughout this paper, X is a complex Banach space with the norm $\| \cdot \|$ and $J \in \{R, R^+\}$. We denote by $L^{\infty}(J, X)$ the Banach space of all essentially bounded measurable functions with the norm $||f||_{\infty} = ess \sup ||f(t)||$. $t\in J$

A function f is called measurable if there exists a sequence of simple functions $\{f_n\}$ such that $f_n \to f$ a.e with respect to the Lebesgue measure m. By a simple function it is meant a function of the form $\sum_{n=1}^{\infty}$ $\sum_{i=1} x_i \chi_{A_i}, x_i \in X$ and χ_{A_i} is the characteristic function of the Lebesgue measurable set A_i with finite measure. Finally, M denotes a closed subspace of $L^{\infty}(J, X)$.

In the sequel, we impose on M at least one of the following two conditions:

(P1) M is invariant under translations, i.e. $\forall f \in M \ \forall s \in J \ (f_s \in M),$ where $f_s(t) = f(t+s)$.

(P2) M contains the constant functions.

In Section 2, we study examples of closed subspaces of $L^{\infty}(\mathbf{R}, X)$ which satisfy one or both of the conditions (P1-P2).

The third section is devoted to extend the previous results of the integral problem or the difference problem to the general space M , i.e. what are the conditions that insure the following implication

$$
f \in M \bigcap C_{ub}(J, X) \Longrightarrow F(t) = \int_{0}^{t} f(s) ds \in M
$$

or

$$
\phi_s - \phi \in M \quad \forall s \in J \Longrightarrow \phi \in M.
$$

When $f \in M = AAP(\mathbf{R}^+, X)$, W. M. Ruess and W. H. Summers [28] proved that if $f \in AAP(\mathbf{R}^+, X)$, then

$$
F(t) = \int_{0}^{t} f(s) ds \in AAP(\mathbf{R}^{+}, X) \quad \text{iff } F \in W(\mathbf{R}^{+}, X).
$$

In this section, the notion of ergodic function in [13], [11] plays an essential role. A function $\phi \in L^{\infty}(J, X)$ is called ergodic if there exists $x \in X$ such that

$$
\lim_{T \to \infty} \|(1/T)\int_{0}^{T} (\phi_s(t) - x) ds\|_{\infty} = 0.
$$

We denote by $E(J, X)$ the space of all ergodic functions. We prove that if ϕ (resp. F) of the difference (resp. integral) problem is ergodic, then $\phi \in M$ (resp. $F \in M$).

In Section 4 M denotes a Banach subspace of $L^{\infty}(\mathbf{R},X)$ which satisfies one or more of the conditions (P1-P3), where (P1-P2) are stated above and condition (P3) is:

(P3) M is invariant under multiplication by characters, i.e. $\forall f \in M$ $\forall \lambda \in$ $\mathbf{R} \; (\breve{\lambda} \; f \in M), \text{ where } \breve{\lambda}(t) = e^{i \lambda t}.$

In Subsection 4.1 the M-spectrum of a function $u \in L^{\infty}(\mathbf{R}, X)$ will be defined by

$$
\sigma_M(u) = Z(I_M(u)) = \{ \alpha \in \mathbf{R} : \hat{f}(\alpha) = 0 \,\,\forall f \in I_M(u) \},
$$

where $\hat{f}(\alpha) =$ | R $f(t)e^{-i\alpha t} dt$, and $I_M(u)$ is the ideal of all $f \in L^1(\mathbf{R})$ such

that $f * u \in M$. In the case $M = \{0\}$, $\sigma_M(u)$ is the well-known classical Beurling spectrum. Some properties of the M-spectrum, which we need in proving our results, will be shown.

When $M = AP(\mathbf{R}, \mathbf{C})$, L. H. Loomis [21] proved that if $u \in C_{ub}(\mathbf{R}, \mathbf{C})$ and $\sigma_{AP(R)}(u)$ (the set of all non-almost periodicity of u) is at most countable, then u is a.p. B. Basit generalized this theorem in [5] to a class of bounded uniformly continuous vector-valued functions defined on \bf{R} with certain properties satisfied by many known classes.

In Subsection 4.2, we extend these results to a general closed subspace M of $L^{\infty}(\mathbf{R}, X)$. In this section, assuming that M satisfies (P1-P3), we prove that if ϕ is uniformly continuous, bounded, such that $\sigma_M(\phi)$ is at most countable, and for every $\lambda \in \sigma_M(\phi)$ the function $\left(-\lambda\right)\phi$ is ergodic, then $\phi \in M$. This theorem plays an essential role in proving the existence of solutions in some classes $M \subseteq L^{\infty}(\mathbf{R}, X)$ for abstract functional equations defined on \bf{R} (see A. Hamza [17]).

Also, we prove the following result : Assume that ϕ is uniformly continuous, bounded, such that $\phi_s - \phi \in M \ \forall s \in \mathbf{R}$. If $0 \notin \sigma_M(\phi)$, then $\phi \in M$.

As a direct consequence, we obtain a result concerning the indefinite As a direct consequence, we obtain a result concerning the indefinite
integral $F(t) = \int_0^t f(s) ds$, where $f \in M \bigcap C_{ub}(\mathbf{R}, X)$: $0 \notin \sigma_M(F)$ implies $F \in M$.

2. Preliminaries and examples

In this section, for the convenience of the reader, we recall some definitions and examples of closed subspaces M satisfying $(P1)$ or $(P2)$ or $(P1)$ and (P2) above. Consider the following closed subspaces of $L^{\infty}(J, X)$. (1) $C_b(J, X) = \{f : J \to X : f \text{ is continuous and bounded}\}.$ (2) $C_{ub}(J, X) = \{f : J \to X : f \text{ is uniformly continuous and bounded}\}.$ (3) $AP(\mathbf{R}, X)$ -the Banach space of all almost periodic (a.p) functions. A function $f \in C_b(\mathbf{R}, X)$ is called a.p if for every $\varepsilon > 0$ the set

$$
E_{\varepsilon}(f) = \{ \tau \in \mathbf{R} : \sup_{t \in \mathbf{R}} ||f(t + \tau) - f(t)|| < \varepsilon \}
$$

is relatively dense (r.d) in **R**. A subset $B \subseteq \mathbf{R}$ is said to be r.d if there exists $\ell > 0$ such that $\forall a \in \mathbf{R}$ $(a, a + \ell) \cap B \neq \emptyset$. A function f is a.p iff $H(f) = \{f_{\omega} : \omega \in \mathbf{R}\}\$ is relatively compact (r.c) in $C_b(\mathbf{R}, X)$, (see [1, 9, 20]).

(4) $AP(\mathbf{R}^+, X) = AP(\mathbf{R}, X)|_{\mathbf{R}^+}$, where $AP(\mathbf{R}, X)|_{\mathbf{R}^+}$ is the restriction of the a.p functions on \mathbb{R}^+ .

$$
(5) C_0(\mathbf{R}, X) = \{ f \in C_b(\mathbf{R}, X) : \lim_{|t| \to \infty} ||f(t)|| = 0 \}.
$$

(6)
$$
C_0(\mathbf{R}^+, X) = \{ f \in C_b(\mathbf{R}^+, X) : \lim_{t \to \infty} ||f(t)|| = 0 \}.
$$

(7)
$$
L_0^{\infty}(J, X) = \{ f \in L^{\infty}(J, X) : \lim_{|t| \to \infty} ||f(t)|| = 0 \}.
$$

(8) $AAP(J, X) = AP(J, X) + C_0(J, X) = \{p+q : p \in AP(J, X), q \in$ $C_0(J, X)$ -the Banach space of all asymptotically almost periodic (a.a.p) functions from J to X. We notice that the decomposition $p + q$, where $p \in AP(J, X)$ and $q \in C_0(J, X)$, is unique. Indeed, if $p \in AP(J, X)$ then $||p||_{\infty} = \limsup ||p(t)||$ (see [31]). So, if $p \in AP(J, X) \cap C_0(J, X)$, then $t\rightarrow\infty$

 $p = 0$. A function $f \in AAP(\mathbf{R}^+, X)$ iff $H(f) = \{f_\omega : \omega \in \mathbf{R}^+\}$ is r.c in $C_b(\mathbf{R}^+, X)$ (see [25, 26]).

(9) $S - AAP(J, X) = AP(J, X) + L_0^{\infty}(J, X)$ -the Banach space of all a.a.p in the sense of Staffans [31]. Also the decomposition $p + q$, where $p \in$ $AP(J, X)$ and $q \in L_0^{\infty}(J, X)$ is unique.

(10) $AA(\mathbf{R}, X)$ -the Banach space of all almost automorphic (a.a) functions from **R** to X. A function $f \in C_b(\mathbf{R}, X)$ is called a.a if for each sequence ${a'_i}$ ${n \choose n} \subset \mathbf{R}$, there exists a subsequence $\{a_n\}$ such that

(i) $\lim_{n\to\infty} f(t + a_n) = g(t), t \in \mathbb{R}$, where g is a continuous function.

(ii) $\lim_{n \to \infty} g(t - a_n) = f(t), t \in \mathbf{R}.$

It is well-known that an a.a function is uniformly continuous and its range is totally bounded. A uniformly continuous function with totally bounded range is a.a iff $\forall \varepsilon > 0 \ \forall r > 0$ the set

$$
E_{\varepsilon,r}(f) = \{ \tau : \sup_{|t| \le r} ||f(t + \tau) - f(t)|| < \varepsilon \}
$$

is r.d in \mathbf{R} , (see [3, 10]). (11) $AA(\mathbf{R}^+, X) = AA(\mathbf{R}, X)|_{\mathbf{R}^+}.$

Lemma 2.1. If $f \in AA(J,X)$, then $||f||_{\infty} = \limsup_{t \to \infty}$ $||f(t)||.$

Proof. We have

(1)
$$
||f||_{\infty} \geq \limsup_{t \to \infty} ||f(t)||.
$$

Let $\varepsilon > 0$, there exists $x_{\varepsilon} \in J$ such that $||f||_{\infty} \leq ||f(x_{\varepsilon})|| + \varepsilon$. Since $E_{\varepsilon,r}(f)$ is r.d, where $r = |x_{\varepsilon}| + 1$, there exists a sequence $\{\tau_n\} \subset E_{\varepsilon,r}(f)$ such that $\tau_n \to \infty$. We have $|| f(x_\varepsilon) || \le || f(x_\varepsilon + \tau_n) || + \varepsilon \ \forall n$, whence $|| f(x_\varepsilon) || \le \limsup ||f(t)|| + \varepsilon$. Hence $t\rightarrow\infty$

$$
||f||_{\infty} \le \limsup_{t \to \infty} ||f(t)|| + 2\varepsilon \quad \forall \varepsilon > 0.
$$

Therefore,

(2)
$$
||f||_{\infty} \leq \limsup_{t \to \infty} ||f(t)||.
$$

We get from (1) and (2), that $||f||_{\infty} = \limsup ||f(t)||$. $t\rightarrow\infty$

(12) $AAA(J, X) = AA(J, X) + C_0(J, X)$ -the Banach space of all asymptotically almost automorphic functions (a.a.a). We have by the previous lemma that $AA(J, X) \bigcap C_0(J, X) = \{0\}.$

(13) $S - AAA(J, X) = AA(J, X) + L_0^{\infty}(J, X)$ -the Banach space of all a.a.a in the sense of Staffans. Also, $AA(J, X) \bigcap L_0^{\infty}(J, X) = \{0\}.$

(14) $W(J, X)$ the Banach space of all weakly almost periodic functions in the sense of Eberlien (w.a.p-E). A function $f \in C_b(J, X)$ is called w.a.p-E if $\{f_\omega : \omega \in J\}$ is w.r.c in $C_b(J, X)$. A function f is w.a.p-E iff f satisfies the double limit property, i.e. $\forall \{\omega_n\} \subseteq J \quad \forall \{t_n\} \subseteq J \quad \forall \{x_n^*\} \subseteq X^*$ such that $||x_n^*|| \leq 1$ we have

$$
\lim_{n \to \infty} \lim_{m \to \infty} x_n^*(f_{\omega_m}(t_n)) = \lim_{m \to \infty} \lim_{n \to \infty} x_n^*(f_{\omega_m}(t_n))
$$

whenever both of the limits exist, see [23].

(15) $E(J, X)$ -the Banach space of all ergodic functions. A function $\phi \in$ $L^{\infty}(J, X)$ is called ergodic if there exists $x \in X$ such that

$$
\lim_{T \to \infty} \|1/T \int_0^T (\phi_s(t) - x) ds\|_{\infty} = 0.
$$

(16) $TE(J, X) = \{ \phi \in L^{\infty}(J, X) : e^{i\lambda t} \phi(t) \in E(J, X) \ \forall \lambda \in \mathbf{R} \}.$

(17) $E_0(J, X) = \{ \phi \in E(J, X) : \lim_{T \to \infty} ||1/T \int_{0}^{T}$ 0 $\phi_s ds \rVert_{\infty} = 0.$

Lemma 2.2. The spaces in Examples (1-17) are closed subspaces of $L^{\infty}(J, X)$ satisfying (P1) and the spaces in Examples (1-4), (8-16) satisfy $(P2)$. The spaces in Examples $(5-7)$ and (17) don't satisfy $(P2)$.

Lemma 2.3. $AP(J, X) \subset AAP(J, X) \subset W(J, X) \subset TE(J, X).$

Proof. We can check that $C_0(J, X) \subset W(J, X)$. Indeed, suppose that $f \in C_0(J, X)$. Let $\{t_n\}$ and $\{\omega_n\}$ be two sequences in J. Let $\{x_n^*\}$ be a sequence in X^* such that $||x_n^*|| \leq 1$ and both of the following iterated limits

$$
\lim_{m \to \infty} \lim_{n \to \infty} x_n^*(f_{\omega_m}(t_n))
$$

and

$$
\lim_{n \to \infty} \lim_{m \to \infty} x_n^*(f_{\omega_m}(t_n))
$$

exist. We have the following cases:

(i) both of $\{t_n\}$ and $\{\omega_n\}$ are unbounded. In this case we can suppose without loss of generality that $t_n \to \infty$ and $\omega_n \to \infty$.

(ii) one of the two sequences, say $\{t_n\}$, is unbounded and the other is bounded. In this case we can suppose that $t_n \to \infty$ and $\omega_n \to a$ for some $a \in J$.

(iii) both of the two sequences are bounded. We can assume in this case that $t_n \to a$ and $\omega_n \to b$ for some a and b in J.

In case (i) both of the iterated limits equal zero. In case (ii), the first iterated limit equals zero. The second iterated limit equals

$$
\lim_{n \to \infty} x_n^*(f_a(t_n)) = 0.
$$

In case (iii) we use the uniform continuity of f to conclude that the two iterated limits are equal. The fact that $W(J, X) \subset TE(J, X)$ is a result of [13]. To show that both of $AP(J, X)$, $AAP(J, X)$ and $W(J, X)$ are subsets of $C_{ub}(J, X)$, see [20, 23, 30].

3.The difference and the integral problem

As before we assume that M is a closed subspace of $L^{\infty}(J, X)$. In this section we study the difference problem, viz we answer the following question: Under what conditions, does $\phi_s - \phi \in M$ $\forall s \in J$ imply that $\phi \in M$. As a direct consequence we get a result concerning the indefinite integral problem (see [2, 8, 14, 18, 20, 22, 28]). L. H. Loomis [21] imposed the condition $\phi \in C_{ub}(\mathbf{R}, \mathbf{C})$ to get $\phi \in AP(\mathbf{R}, \mathbf{C})$. When $M = AP(\mathbf{R}, X)$, B. Basit [2] supposed the same condition $\phi \in C_{ub}(\mathbf{R}, X)$ to get $\phi \in AP(\mathbf{R}, X)$, provided that X does not contain c_0 or the range of ϕ is w.r.c in X. In fact this condition is not necessary because ϕ will be uniformly continuous and bounded according to Theorem 3.0 stated below. In case $M = C_b(\mathbf{R}, \mathbf{R})$, Mary L. Boas and R. P. Boas [15] proved that: If $\phi : \mathbf{R} \to \mathbf{R}$ is bounded on a set of positive measure and $\phi_s - \phi$ is continuous for every $s \in \mathbf{R}$, then ϕ is continuous. We can see some generalizations of this result in [11] and [15].

According to a general result of C. Datry and G. Muraz [11], we have the following theorem:

Theorem 3.0. A bounded function $\phi : \mathbf{R} \to X$ is uniformly continuous iff $\phi_s - \phi$ is uniformly continuous for every $s \in \mathbf{R}$.

Lemma 3.1. Let $\phi \in C_{ub}(J,X)$. If $\phi_s - \phi \in M$ $\forall s \in J$, then $\int_J (\phi_s \phi$) $d\mu(s) \in M$ for every bounded Borel measure on J.

Proof. The function $g: J \to M$ defined by $g(s) = \phi_s - \phi$ is bounded and continuous, since $\phi \in C_{ub}(J, X)$. Suppose that μ is a bounded Borel measure. Hence, g is measurable with respect to μ (see Pettis' Theorem [32, p. 131]). We apply Bochner's Theorem [32, p. 133] to get $\int_J g(s) d\mu(s) \in M$ p. 151]). We apply Bochner
i.e. $\int_J (\phi_s - \phi) d\mu(s) \in M$.

Lemma 3.2. Let $\phi \in L^{\infty}(J,X)$ be such that $\phi_s - \phi \in M \ \forall s \in J$. **Lemma 3.2.** Let $\varphi \in L^{\infty}(J, X)$ be such that $\varphi_s - \varphi \in M$ $\forall s \in J$.
If there exists a bounded Borel measure μ such that $\int_J d\mu(s) \neq 0$ and $\int_J \phi_s d\mu(s) = 0$, then $\phi \in M$.

Theorem 3.3. Let M satisfy (P2). Suppose that $\phi \in C_{ub}(J, X)$ \overline{a} $E(J, X)$. If $\forall s \in J$ $\phi_s - \phi \in M$, then $\phi \in M$.

Proof. There exists $x \in X$ such that $\phi - x \in E_0(J, X)$. By condition (P2) M contains the constant function $x(t) = x, t \in J$. We apply Lemma 3.1 M contains the constant function $x(t) = x$, $t \in J$. We apply Lemma 3.1
to get $\int_J (\phi_s - \phi) d\mu_T(s) \in M$, where $d\mu_T(s) = (1/T) \chi_{[0,T]}(s) ds$, $T > 0$. Hence, $(1/T)$ $\frac{T}{c}$ 0 $(\phi_s - \phi) ds \in M \quad \forall T > 0$. Taking the limit as $T \to \infty$, we get $\phi \in M$ (*M* is closed).

Theorem 3.4. Let M satisfy (P1-P2). Suppose that $f \in M$ \overline{a} $C_{ub}(J, X)$. **If the function** F defined by $F(t) = \int_0^t f(s) ds$ belongs to $E(J, X)$, then $F \in M$.

Proof. We have $(F_s - F)(t) = \int_s^s$ 0 $f_u(t) du$, $s \in J$, $t \in J$. Fix s and let I be the interval with end points 0 and s. The function $g: I \to M$ defined be the interval with end points 0 and s. The function $g: I \to M$ defined
by $g(u) = f_u$ is continuous. Since $\int_J ||g(u)||_{\infty} ds \leq |s| ||f||_{\infty} < \infty$, then $\frac{s}{c}$ 0 $f_u du \in M$. Hence $F_s - F \in M \,\forall s \in J$. By Theorem 3.3, we get $F \in M$.

Corollary 3.5. Let $f \in C_b(J, X)$ and $F(t) = \int_a^t f(t) dt$ 0 $f(s)$ ds. Then the following statements are true.

- (1) If $f \in AP(J, X)$ and $F \in E(J, X)$, then $F \in AP(J, X)$.
- (2) If $f \in AAP(J, X)$ and $F \in E(J, X)$, then $F \in AAP(J, X)$.
- (3) If $f \in AAP(J, X)$ and $F \in W(J, X)$, then $F \in AAP(J, X)$.
- (4) If $f \in AA(J, X)$ and $F \in E(J, X)$, then $F \in AA(J, X)$.
- (5) If $f \in AAA(J, X)$ and $F \in E(J, X)$, then $F \in AAA(J, X)$.

Proof. The statements (1) , (2) , (4) and (5) are true, since all of the following spaces $AP(J, X)$, $AAP(J, X)$, $AA(J, X)$ and $AAA(J, X)$ satisfy (P1-P2). The statement (3) is true, since $W(J, X) \subset TE(J, X)$.

4. Spectral criteria of abstract functions

In this section M denotes a closed subspace of $L^{\infty}(\mathbf{R},X)$ which satisfies one or more conditions on M from the following list:

- (P1) M is invariant under translations, i.e. $\forall f \in M \ \forall s \in \mathbf{R} \ (f_s \in M),$ where $f_s(t) = f(t+s)$.
- (P2) M contains the constant functions.
- (P3) M is invariant under multiplication by characters, i.e. $\forall f \in M$ $\forall \lambda \in$ $\mathbf{R}(\breve{\lambda} f \in M)$, where $\breve{\lambda}(t) = e^{i\lambda t}$.

We consider the closed subspaces of $L^{\infty}(\mathbf{R}, X)$ which are given in Section 2. We can check that all of them satisfy (P3) except the spaces in Examples (15) and (17). We can prove that $W(\mathbf{R}, X)$ satisfies (P3), by showing that for every $f \in W(\mathbf{R}, X)$ and for every $\lambda \in \mathbf{R}$ the function $\check{\lambda}$ f satisfies the double limit property, where $\check{\lambda}(t) = e^{i\lambda t}$.

4.1. The M-spectrum of functions in $L^{\infty}(\mathbf{R},X)$

Definition 4.1.1. For a function $u \in L^{\infty}(\mathbf{R}, X)$ and $f \in L^{1}(\mathbf{R})$ denote by

$$
(f * u)(t) = \int_{\mathbf{R}} f(t - s)u(s) ds, \qquad t \in \mathbf{R}.
$$

Lemma 4.1.2 (see also [5]). If M is a closed subspace of $L^{\infty}(\mathbf{R}, X)$ satisfying (P1), then

$$
\forall f \in L^1(\mathbf{R}) \,\,\forall u \in M \bigcap C_{ub}(\mathbf{R}, X) \,(f * u \in M)\,.
$$

Proof. Let $f \in L^1(\mathbf{R})$ and $u \in M$ \overline{a} $C_{ub}(\mathbf{R}, X)$. Define the function $g: \mathbf{R} \to M$ by

$$
g(s) = u_{-s}.
$$

The function q is continuous and bounded, since u is uniformly continu-The function g is continuous and bounded, since u is uniformly continuous. Applying Bochner's Theorem [32, p. 133], we get $\int_{\mathbf{R}} f(s) u_{-s} ds \in M$, whence $f * u \in M$

Lemma 4.1.3. If $u \in L^{\infty}(\mathbf{R}, X)$, then the following conditions are equivalent

- (i) $u \in C_{ub}(\mathbf{R}, X)$,
- (ii) $\lim_{t \to 0} ||u_t u||_{\infty} = 0,$

(iii)
$$
\lim_{T \to 0} \|\rho_T * u - u\|_{\infty} = 0, \text{ where } \rho_T = \frac{1}{T} \chi_{[-T,0]}, T > 0. \text{ Here } \chi_{[-T,0]}
$$

is the characteristic function of the interval [-T,0].

This is a classical result in the theory of $L^1(G)$ -modules. We can replace $\{\rho_T\}$ by any bounded approximate of identity (see [11]).

Definition 4.1.4 (see [6, 14, 5]). Suppose that M is a closed subspace of $L^{\infty}(\mathbf{R},X)$ such that (P1) holds. Let $u \in L^{\infty}(\mathbf{R},X)$. We denote by

$$
I_M(u) = \{ f \in L^1(\mathbf{R}) : f * u \in M \}.
$$

The set $I_M(u)$ is a closed ideal of $L^1(\mathbf{R})$.

We denote the M-spectrum $\sigma_M(u)$ of $u \in L^\infty(\mathbf{R}, X)$ by

$$
\sigma_M(u) = Z(I_M(u)) = \{ \alpha \in \mathbf{R} : \hat{f}(\alpha) = 0 \quad \forall f \in I_M(u) \},
$$

where $\hat{f}(\alpha) = \int_{\mathbf{R}} f(t)e^{-i\alpha t} dt$. The spectrum $\sigma(u)$ is denoted by $\sigma(u) =$: $\sigma_{\{0\}}(u)$. It is clear that $\sigma_M(u) \subseteq \sigma(u)$.

Lemma 4.1.5 (see also [14, 5]). Let $u \in L^{\infty}(\mathbf{R}, X)$. If M is a closed subspace of $L^{\infty}(\mathbf{R},X)$ satisfying (P1), then the following hold:

- (1) $\sigma_M(u) = \emptyset$ iff $\forall f \in L^1(\mathbf{R})$ $f * u \in M$.
- (2) If $u \in C_{ub}(\mathbf{R}, X)$ then $\sigma_M(u) = \emptyset$ iff $u \in M$.
- (3) If $\sigma_M(u) = \{0\}$, then $f * (u_s u) \in M \ \forall f \in L^1(\mathbf{R}) \quad \forall s \in \mathbf{R}$.
- (4) If $u \in C_{ub}(\mathbf{R}, X)$, then $\sigma_M(u) = \{0\} \Longrightarrow u_s u \in M \ \forall s \in \mathbf{R}$.
- (5) $\sigma_M(f * u) \subseteq \text{supp } \hat{f} \bigcap \sigma_M(u) \ \forall f \in L^1(\mathbf{R}).$
- (6) If in addition M satisfies (P3), then

$$
\sigma_M(\breve{\gamma}u)=\sigma_M(u)+\gamma\,\,\forall \gamma\in{\bf R},
$$

where $\breve{\gamma}(t) = e^{i\gamma t}$.

Proof. (1) We have $Z(I_M(u)) = \emptyset$ iff $I_M(u) = L^1(\mathbf{R})$. Hence $\sigma_M(u) = \emptyset$ iff $\forall f \in L^1(\mathbf{R})$ $f * u \in M$.

(2) Let $u \in C_{ub}(\mathbf{R}, X)$. Suppose that $\sigma_M(u) = \emptyset$. Hence, by (1) we have $f * u \in M \ \forall f \in L^1(\mathbf{R})$. By Lemma 4.1.3 $\lim_{T \to 0} ||\rho_T * u - u||_{\infty} = 0$ whence $u \in M$. Conversely, suppose that $u \in M$. By Lemma 4.1.2, we get that $f * u \in M \ \forall f \in L^1(\mathbf{R})$, which in return implies that $\sigma_M(u) = \emptyset$.

(3) Suppose that $a_M(u) = \{0\}$, i.e. $Z(I_M(u)) = \{0\}$, where $\{0\}$ is a set of spectral synthesis. We have $I_M(u) = \{f \in L^1(\mathbf{R}) : \hat{f}(0) = 0\}$. Hence, $(f_s - f) * u \in M \ \forall s \in \mathbf{R} \ \forall f \in L^1(\mathbf{R})$, whence $f * (u_s - u) \in M \ \forall s \in \mathbf{R}$ $\forall f \in L^1(\mathbf{R}).$

(4) is a direct consequence of (3) and (2).

(5) Let $f \in L^1(\mathbf{R})$. Let $\alpha \in \sigma_M(f * u)$. To show that $\alpha \in \sigma_M(u)$, let

 $h \in L^1(\mathbf{R})$ be such that $h * u \in M$. Then $h * (f * u) = f * (h * u) \in M$. Therefore $\hat{h}(\alpha) = 0$ and we get $\alpha \in \sigma_M(u)$.

Now we show that $\alpha \in \text{supp } \hat{f}$. Suppose on the contrary that $\alpha \notin \text{supp } \hat{f}$. Then there exists $g \in L^1(\mathbf{R})$ such that $\hat{g}(\alpha) \neq 0$ and $\hat{g}(\text{supp }\hat{f}) = \{0\}.$ We have $g * f = 0$ whence $g * f * u = 0 \in M$. Hence $\hat{g}(\alpha) = 0$ which is a contradiction.

(6) We denote by $g = \gamma_0 u, \gamma_0 \in \mathbf{R}$. Let $\gamma \in \sigma_M(g)$. Let $f \in L^1(\mathbf{R})$ be such that $f * u \in M$. A simple calculation shows that

$$
(\breve{\gamma_0}f)*g = \breve{\gamma_0}(f*u).
$$

Hence $(\breve{\gamma_0} f) * g \in M$, whence $(\breve{\gamma_0} f) (\gamma) = 0$, i.e. $\hat{f}(\gamma - \gamma_0) = 0$ and we get $\gamma - \gamma_0 \in \sigma_M(u)$. Conversely, let $\gamma \in \sigma_M(u)$ and $f \in L^1(\mathbf{R})$ be such that $f * g \in M$. We have

$$
f * g = (\check{\gamma_0}) [((-\gamma_0) \check{f}) * u].
$$

Hence, $((-\gamma_0) f) * u \in M$, whence $((-\gamma_0) f)(\gamma) = 0$, i.e. $\hat{f}(\gamma + \gamma_0) = 0$ and we get $\gamma + \gamma_0 \in \sigma_M(q)$.

4.2. Spectral characterization of the classes M

A theorem of Loomis [21] states that: If $\phi \in C_{ub}(\mathbf{R})$ and $\sigma_{AP(\mathbf{R})}(\phi)$ is at most countable, then $\phi \in AP(\mathbf{R})$. In this section, we generalize this theorem to more general classes of functions $M \subseteq L^{\infty}(\mathbf{R}, X)$ containing $AP(\mathbf{R}, X)$. We prove the following result: If ϕ is uniformly continuous, bounded, such that the M-spectrum $\sigma_M(\phi)$ of ϕ is at most countable and, for every $\lambda \in \sigma_M(\phi)$, the function $e^{-i\lambda t}\phi(t)$ is ergodic, then $\phi \in M$.

Lemma 4.2.1. If $\lambda_0 \in \mathbb{R}$ is such that $(-\lambda_0) \phi \in E(\mathbb{R}, X) \cap$ $C_{ub}(\mathbf{R}, X),$ then λ_0 cannot be an isolated point of $\sigma_M(\phi)$.

Proof. Let $\lambda_0 \in \mathbb{R}$ be such that $(-\lambda_0) \phi \in E(\mathbb{R}, X) \cap$ $C_{ub}(\mathbf{R}, X)$. Suppose on the contrary that λ_0 is an isolated point of $\sigma_M(\phi)$. There exists a compact neighbourhood V of λ_0 such that $V \bigcap (\sigma_M(\phi) \setminus {\lambda_0}) = \emptyset$. Choose $f \in L^1(\mathbf{R})$ such that $\hat{f}(\lambda_0) \neq 0$ and $\hat{f}(\mathcal{C}V) = \{0\}$. Here, $\mathcal{C}V$ is the complement of V. Hence, $\sigma_M(f * \phi) \subseteq \sigma_M(\phi) \cap \text{supp } \hat{f} \subseteq {\lambda_0},$ whence $\sigma_M(f * \phi) = {\lambda_0}.$ By Lemma 4.1.5., we get

$$
[(-\lambda_0 \breve{)}(f * \phi)]_s - [(-\lambda_0 \breve{)}(f * \phi)] \in M \quad \forall s \in \mathbf{R}.
$$

Since $(-\lambda_0)(f * \phi) = (-\lambda_0) \check{f} * (-\lambda_0) \check{\phi} \in E(\mathbf{R}, X) \cap$ $C_{ub}(\mathbf{R}, X)$, then, by Theorem 3.3, we get $(-\lambda_0)(f * \phi) \in M$, whence $f * \phi \in M$. Hence, $\hat{f}(\lambda_0) = 0$, which is a contradiction.

Theorem 4.2.2. Let $\phi \in C_{ub}(\mathbf{R}, X)$. If $\sigma_M(\phi)$ is at most countable such that the function $(-\lambda) \phi \in E(\mathbf{R}, X)$ for every $\lambda \in \sigma_M(\phi)$, then $\phi \in M$.

Proof. Suppose that $\phi \in C_{ub}(\mathbf{R}, X)$ satisfies the hypothesis of the theorem. We show that $\sigma_M(\phi) = \emptyset$. Suppose on the contrary that $\sigma_M(\phi) \neq \emptyset$. Then $\sigma_M(\phi)$ (at most countable) has an isolated point λ_0 [7]. Since $(-\lambda_0)\phi \in$ $E(\mathbf{R}, X) \bigcap C_{ub}(\mathbf{R}, X)$, then by Lemma 4.2.1, we get that λ_0 is not an isolated point of $\sigma_M(\phi)$ which is a contradiction.

Corollary 4.2.3. Let M be as in Theorem 4.2.2 and let $\phi \in C_{ub}(\mathbf{R}, X)$ $\bigcap TE(\mathbf{R}, X)$. If $\sigma_M(\phi)$ is at most countable, then $\phi \in M$.

Proof. It is an immediate consequence of the previous theorem.

In the following theorem we impose a condition on $\sigma_M(\phi)$ that insures the following implication:

$$
\phi_s - \phi \in M \,\,\forall s \in \mathbf{R} \Longrightarrow \phi \in M.
$$

Theorem 4.2.4. Assume that M is a closed subspace of $L^{\infty}(\mathbf{R}, X)$. Let $\phi \in L^{\infty}(\mathbf{R}, X)$ be such that $0 \notin \sigma_M(\phi)$. If $\phi_s - \phi \in M \cap C_{ub}(\mathbf{R}, X)$ $\forall s \in \mathbf{R}$, then $\phi \in M$.

Proof. By Theorem 3.0, $\phi \in C_{ub}(\mathbf{R}, X)$. Since $0 \notin \sigma_M(\phi)$, there exists $f \in L^1(\mathbf{R})$ such that $f * \phi \in M$ and $\hat{f}(0) = 1$. By Lemma 3.1, we get $f * \phi - \phi \in M$, whence $\phi \in M$.

Corollary 4.2.5. Assume that M is a closed subspace of $L^{\infty}(\mathbf{R}, X)$ satisfying (P1). Let $f \in M$ $\bigcap C_{ub}({\bf R},X)$. Define F by $F(t) = \int_0^t$ 0 $f(s) ds$. If $0 \notin \sigma_M(F)$, then $F \in M$.

Proof. We have $(F_s - F)(t) = \int_s^s$ 0 $f_u(t) du, s \in \mathbf{R}, t \in \mathbf{R}$. By the same argument as in Theorem 3.4, it follows that $F_s - F \in M \ \forall s \in \mathbf{R}$. By Theorem 4.2.4, we get $F \in M$.

In the applications of all these results given by A. Hamza in [17] for the solutions of functional equations or differential equations, the condition " ϕ is continuous" is not a restriction, because in general case, it is more than continuous.

To stay complete, we must report the Banach space $BAUC(J, X)$ of all bounded asymptotically uniformly continuous functions from J to X (see [31]); sometimes such function is called *slowly oscillating* [24]. $\phi \in$ $BAUC(J, X)$ if $\phi \in L^{\infty}(J, X)$ and lim $\lim_{(t,x)\to(\infty,0)} |\phi_x(t) - \phi(t)| = 0.$

In fact, we have $BAUC(J, X) = C_{ub}(J, X) + L_0^{\infty}(J, X)$. This space verifies the properties (P1), (P2), (P3) and have some importance for the application in [17].

REFERENCES

- 1. L. Amerio and G. Prouse, Almost Periodic Functions and Functional Equations, Van Nostrand, 1971.
- 2. B. Basit, Generalizations of two theorems of Kadets on the indefinite integral of abstract almost periodic functions, Math. Notes. 9 (1970), 180-184.
- 3. B. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions, Vestnik Mosk. State Univ. 4 (1971), 11-15.
- 4. B. Basit, Note on a theorem of Levitan for the integral of almost periodic functions, Rend. Inst. di Matem. Univ. Trieste 5 (1973), 9-14.
- 5. B. Basit, Spectral characterization of abstract functions, Analele stiintifice ale Universitatii AI. I. Guza din Iast XXVIII, S. Ia (1982 f.1).
- 6. A. G. Baskakov, Spectral criteria of almost periodicity of solutions of functional equations, Math. Notes 24 (1978), 195-205.
- 7. J. J. Benedetto, Spectral Synthesis, Teubner-Stuttgart, 1975.
- 8. Besicovitch, Almost Periodic Functions, Cambridge Univ. Press, Cambridge, 1932.
- 9. S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. USA 48 (1962), 2039-2043.
- 10. S. Bochner, General almost automorphy, Proc. Nat. Acad. Sci. USA 72 (1975), 3815- 3818.
- 11. C. Datry and G. Muraz, Analyse harmonique dans les modules de Banach Part I: propriétés générales, Bull. Sci. Math. Paris 119 (1995), 244-337. Part II: presque-périodicité et ergodicité, Bull. Sci. Math. Paris 120 (1996), 493-536.
- 12. R. Doss, On bounded functions with almost peridic differences, Proc. Amer. Math. Soc. 12 (1961), 488-489.
- 13. W. F. Eberlien, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240.
- 14. E. Emam, Almost Periodic and Almost Automorphic Solutions of Functional Equations in Locally Convex Spaces, Ph. D. Thesis, 1977.
- 15. F. Galvin, G. Muraz et P. Szeptycki, Fonctions aux différences $f(x) f(a + x)$ continues, C. R. Acad. Sci. Paris, series 1, 315 (1992), 397-400.
- 16. H. Günzler, *Integration of almost periodic functions*, Math. Z. 102 (1967), 153-287.
- 17. A. E. Hamza, Solutions of Functional Equations, Ph. D. Thesis, 1993.
- 18. M. I. Kadets, The integration of almost periodic functions with values in Banach spaces, Funct. Anal. i Pril. 3 (1969), 228-230.
- 19. M. I. Kadets, Method of equivalent norms in the theory of abstract almost periodic functions, Studia Math. 31 (1968), 197-202.
- 20. B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge, 1982.
- 21. L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math. 72 (1960), 362-368.
- 22. Y. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser Verlag, Basel Boston Berlin, 1988.
- 23. P. Milnes, On vector-valued weakly almost periodic functions, J. London Math. Soc. 22 (1980), 467-472.
- 24. W. Rudin, Fourier Analysis on Group, Interscience Publisher, 1962.
- 25. W. M. Ruess and W. H. Summers, Asymptotic almost periodicity and motions of semigroups of operators, Linear Algebra Appl. 84 (1986), 335-351.
- 26. W. M. Ruess and W. H. Summers, Minimal sets of almost periodic motions, Math. Ann. 276 (1986), 145-156.
- 27. W. M. Ruess and W. H. Summers, Compactness in spaces of vector-valued continuous functions and asymptotic almost periodicity, Math. Nachr. 135 (1988), 7-33.
- 28. W. M. Ruess and W. H. Summers, Integration of asymptotic almost periodic functions and weakly asymptotically almost periodic functions, Dissertationes Math. 279 (1989), 38pp.
- 29. W. M. Ruess and W. H. Summers, Weakly almost periodic semigroups of operators, Pacific J. Math. 143 (1990) 175-193.
- 30. W. M. Ruess and W. H. Summers, Ergodic theorems for semigroups of operators, Proc. Amer. Math. Soc. 114 (1992), 423-432.
- 31. O. J. Staffans, An asymptotically almost periodic solutions of a convolution equations, Trans. Amer. Math. Soc. **266** (1981), 603-616.
- 32. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1974.
- 33. S. Zaidman, Almost Periodic Functions in Abstract Spaces, Pitman Publ. Inc. London, Research Notes in Math. 1985.

Department of Mathematics Faculty of Sciences, Cairo University, Giza, Egypt E-mail: ahamza@egfrcuvx.bitnet

INSTITUT FOURIER, UNIVÉRSITÉ DE GRENOBLE I UMR 5582 C.N.R.S.-UJF, BP 74, 38402 Saint-Martin D'H`eres Cedex, France E-mail: muraz@fourier.ujf-grenoble.fr