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SPECTRAL CRITERIA OF ABSTRACT FUNCTIONS;
INTEGRAL AND DIFFERENCE PROBLEMS

ALAA E. HAMZA AND GILBERT L. MURAZ

Abstract. Let X be a complex Banach space and let M be a closed
subspace of L∞(J,X), where J∈{R,R+}. We answer the following ques-
tion: Under what conditions φs−φ∈M ∀s∈J implies that φ∈M . Some
conditions will be imposed on M to obtain the main result concerning the
indefinite integral. These conditions guarantee the following implication :
F∈E(J,X)=⇒F∈M , where F is the integral

∫ t
0 f(s) ds of f∈M∩Cub(J,X).

Also, we generalize Loomis’ Theorem for almost periodic functions [19,
Theorem 5], to a more general class of functions M⊆L∞(R,X) containing
AP (R,X). The main result of Part IV is: If φ is uniformly continuous,
bounded, such that the M-spectrum σM (φ) of φ is at most countable and,
for every λ∈σM (φ), the function e−iλtφ(t) is ergodic, then φ∈M .

1. Introduction

A continuous scalar function f on R is called almost periodic (a.p)
if the set of all translates {fw : w ∈ R} is relatively compact (r.c) in
Cb(R) (Cb(R) is the space of all scalar continuous bounded functions).
Bohl and Bohr [8] proved that if f is a scalar almost periodic on R,

then F (t) =
t∫
0

f(s) ds is a.p iff F is bounded (see also [22]). The almost

periodicity of a function with values in a Banach space is defined similarly.
M. I. Kadets [18] generalized this theorem and proved that: if f is an a.p
from R to X which does not contain c0, then F is a.p iff F is bounded.
Here, c0 is the space of all numerical sequences tending to 0. Thereafter,
he proved this theorem for arbitrary Banach spaces X when the range of
F is weakly relatively compact (w.r.c) in X (see [19]). Instead of the above
mentioned integral problem B. Basit [2] considered the difference problem
and proved the following result: Suppose that f ∈ Cub(G,X) such that
fs − f is a.p ∀s ∈ G. If either

(i) X does not contain a subspace isomorphic to c0,
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or
(ii) f(G) is w.r.c in X,

then f is a.p.
The case X = R is proved by R. Doss [12]. See also F. Galvin, G.
Muraz and P. Szeptycki [15] for a general group (nonabelian) and C. Datry
and G. Muraz [11] for G-modules. See also E. Emmam [14] for almost
automorphic functions. Here G is a group and fs(t) = f(ts). Mary L. Boas
and R. P. Boas [15] proved that if f is bounded and fs − f is continuous
for every s ∈ R, then f is continuous. This result is generalized by F.
Galvin, G. Muraz and P. Szeptycki [15] and C. Datry and G. Muraz [11],
for the uniformly continuous functions defined on a group with values in a
Banach space. Levitan [20] proved the almost periodicity of the integral F ,

provided that F is bounded and lim
T→∞

(1/2T )
T∫
−T

F (t+s) ds exists uniformly

on R. Basit [4] extended Levitan’ s result to recurrent functions. C. Datry
and G. Muraz [11] extended the result of Levitan to Banach G-modules.

Throughout this paper, X is a complex Banach space with the norm ‖ ‖
and J ∈ {R,R+}. We denote by L∞(J,X) the Banach space of all essen-
tially bounded measurable functions with the norm ‖f‖∞ = ess sup

t∈J
‖f(t)‖.

A function f is called measurable if there exists a sequence of simple func-
tions {fn} such that fn → f a.e with respect to the Lebesgue measure m.

By a simple function it is meant a function of the form
n∑

i=1

xiχAi , xi ∈ X

and χAi is the characteristic function of the Lebesgue measurable set Ai

with finite measure. Finally, M denotes a closed subspace of L∞(J,X).
In the sequel, we impose on M at least one of the following two condi-

tions:
(P1) M is invariant under translations, i.e. ∀f ∈ M ∀s ∈ J (fs ∈ M),

where fs(t) = f(t + s).
(P2) M contains the constant functions.

In Section 2, we study examples of closed subspaces of L∞(R, X) which
satisfy one or both of the conditions (P1-P2).

The third section is devoted to extend the previous results of the inte-
gral problem or the difference problem to the general space M , i.e. what
are the conditions that insure the following implication

f ∈ M
⋂

Cub(J,X) =⇒ F (t) =

t∫

0

f(s) ds ∈ M
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or
φs − φ ∈ M ∀s ∈ J =⇒ φ ∈ M.

When f ∈ M = AAP (R+, X), W. M. Ruess and W. H. Summers [28]
proved that if f ∈ AAP (R+, X), then

F (t) =

t∫

0

f(s) ds ∈ AAP (R+, X) iff F ∈ W (R+, X).

In this section, the notion of ergodic function in [13], [11] plays an essential
role. A function φ ∈ L∞(J,X) is called ergodic if there exists x ∈ X such
that

lim
T→∞

‖(1/T )

T∫

0

(φs(t)− x) ds‖∞ = 0.

We denote by E(J,X) the space of all ergodic functions. We prove that
if φ (resp. F ) of the difference (resp. integral) problem is ergodic, then
φ ∈ M (resp. F ∈ M).

In Section 4 M denotes a Banach subspace of L∞(R, X) which satisfies
one or more of the conditions (P1-P3), where (P1-P2) are stated above
and condition (P3) is:
(P3) M is invariant under multiplication by characters, i.e. ∀f ∈ M ∀λ ∈

R (λ̆ f ∈ M), where λ̆(t) = eiλt.
In Subsection 4.1 the M -spectrum of a function u ∈ L∞(R, X) will be

defined by

σM (u) = Z(IM (u)) = {α ∈ R : f̂(α) = 0 ∀f ∈ IM (u)},

where f̂(α) =
∫
R

f(t)e−iαt dt, and IM (u) is the ideal of all f ∈ L1(R) such

that f ∗ u ∈ M . In the case M = {0}, σM (u) is the well-known classical
Beurling spectrum. Some properties of the M -spectrum, which we need
in proving our results, will be shown.
When M = AP (R,C), L. H. Loomis [21] proved that if u ∈ Cub(R,C) and
σAP (R)(u) (the set of all non-almost periodicity of u) is at most countable,
then u is a.p. B. Basit generalized this theorem in [5] to a class of bounded
uniformly continuous vector-valued functions defined on R with certain
properties satisfied by many known classes.

In Subsection 4.2, we extend these results to a general closed subspace
M of L∞(R, X). In this section, assuming that M satisfies (P1-P3), we
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prove that if φ is uniformly continuous, bounded, such that σM (φ) is at
most countable, and for every λ ∈ σM (φ) the function ˘(−λ)φ is ergodic,
then φ ∈ M . This theorem plays an essential role in proving the exis-
tence of solutions in some classes M ⊆ L∞(R, X) for abstract functional
equations defined on R (see A. Hamza [17]).

Also, we prove the following result : Assume that φ is uniformly con-
tinuous, bounded, such that φs − φ ∈ M ∀s ∈ R. If 0 /∈ σM (φ), then
φ ∈ M .

As a direct consequence, we obtain a result concerning the indefinite
integral F (t) =

∫ t

0
f(s) ds, where f ∈ M

⋂
Cub(R, X): 0 /∈ σM (F ) implies

F ∈ M .

2. Preliminaries and examples

In this section, for the convenience of the reader, we recall some defini-
tions and examples of closed subspaces M satisfying (P1) or (P2) or (P1)
and (P2) above. Consider the following closed subspaces of L∞(J,X).
(1) Cb(J,X) = {f : J → X : f is continuous and bounded}.
(2) Cub(J,X) = {f : J → X : f is uniformly continuous and bounded}.
(3) AP (R, X)-the Banach space of all almost periodic (a.p) functions. A
function f ∈ Cb(R, X) is called a.p if for every ε > 0 the set

Eε(f) = {τ ∈ R : sup
t∈R

‖f(t + τ)− f(t)‖ < ε}

is relatively dense (r.d) in R. A subset B ⊆ R is said to be r.d if there
exists ` > 0 such that ∀a ∈ R (a, a + `) ∩ B 6= ∅. A function f is a.p iff
H(f) = {fω : ω ∈ R} is relatively compact (r.c) in Cb(R, X), (see [1, 9,
20]).
(4) AP (R+, X) = AP (R, X)|R+ , where AP (R, X)|R+ is the restriction
of the a.p functions on R+.
(5) C0(R, X) = {f ∈ Cb(R, X) : lim

|t|→∞
‖f(t)‖ = 0}.

(6) C0(R+, X) = {f ∈ Cb(R+, X) : lim
t→∞

‖f(t)‖ = 0}.
(7) L∞0 (J,X) = {f ∈ L∞(J,X) : lim

|t|→∞
‖f(t)‖ = 0}.

(8) AAP (J,X) = AP (J,X) + C0(J,X) = {p + q : p ∈ AP (J,X), q ∈
C0(J,X)}-the Banach space of all asymptotically almost periodic (a.a.p)
functions from J to X. We notice that the decomposition p + q, where
p ∈ AP (J,X) and q ∈ C0(J,X), is unique. Indeed, if p ∈ AP (J,X) then
‖p‖∞ = lim sup

t→∞
‖p(t)‖ (see [31]). So, if p ∈ AP (J,X)

⋂
C0(J,X), then
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p = 0. A function f ∈ AAP (R+, X) iff H(f) = {fω : ω ∈ R+} is r.c in
Cb(R+, X) (see [25, 26]).
(9) S−AAP (J,X) = AP (J,X) + L∞0 (J,X)-the Banach space of all a.a.p
in the sense of Staffans [31]. Also the decomposition p + q, where p ∈
AP (J,X) and q ∈ L∞0 (J,X) is unique.
(10) AA(R, X)-the Banach space of all almost automorphic (a.a) functions
from R to X. A function f ∈ Cb(R, X) is called a.a if for each sequence
{a′n} ⊂ R, there exists a subsequence {an} such that
(i) lim

n→∞
f(t + an) = g(t), t ∈ R, where g is a continuous function.

(ii) lim
n→∞

g(t− an) = f(t), t ∈ R.
It is well-known that an a.a function is uniformly continuous and its range
is totally bounded. A uniformly continuous function with totally bounded
range is a.a iff ∀ε > 0 ∀r > 0 the set

Eε,r(f) = {τ : sup
|t|≤r

‖f(t + τ)− f(t)‖ < ε}

is r.d in R, (see [3, 10]).
(11) AA(R+, X) = AA(R, X)|R+ .

Lemma 2.1. If f ∈ AA(J,X), then ‖f‖∞ = lim sup
t→∞

‖f(t)‖.

Proof. We have

(1) ‖f‖∞ ≥ lim sup
t→∞

‖f(t)‖.

Let ε > 0, there exists xε ∈ J such that ‖f‖∞ ≤ ‖f(xε)‖ + ε. Since
Eε,r(f) is r.d, where r = |xε|+ 1, there exists a sequence {τn} ⊂ Eε,r(f)
such that τn → ∞. We have ‖f(xε)‖ ≤ ‖f(xε + τn)‖ + ε ∀n, whence
‖f(xε)‖ ≤ lim sup

t→∞
‖f(t)‖+ ε. Hence

‖f‖∞ ≤ lim sup
t→∞

‖f(t)‖+ 2ε ∀ε > 0.

Therefore,

(2) ‖f‖∞ ≤ lim sup
t→∞

‖f(t)‖.

We get from (1) and (2), that ‖f‖∞ = lim sup
t→∞

‖f(t)‖.
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(12) AAA(J,X) = AA(J,X) + C0(J,X)-the Banach space of all asymp-
totically almost automorphic functions (a.a.a). We have by the previous
lemma that AA(J,X)

⋂
C0(J,X) = {0}.

(13) S−AAA(J,X) = AA(J,X)+L∞0 (J,X)-the Banach space of all a.a.a
in the sense of Staffans. Also, AA(J,X)

⋂
L∞0 (J,X) = {0}.

(14) W (J,X) the Banach space of all weakly almost periodic functions in
the sense of Eberlien (w.a.p-E). A function f ∈ Cb(J,X) is called w.a.p-E
if {fω : ω ∈ J} is w.r.c in Cb(J,X). A function f is w.a.p-E iff f satisfies
the double limit property, i.e. ∀{ωn} ⊆ J ∀{tn} ⊆ J ∀{x∗n} ⊆ X∗ such
that ‖x∗n‖ ≤ 1 we have

lim
n→∞

lim
m→∞

x∗n(fωm(tn)) = lim
m→∞

lim
n→∞

x∗n(fωm(tn))

whenever both of the limits exist, see [23].
(15) E(J,X)-the Banach space of all ergodic functions. A function φ ∈
L∞(J,X) is called ergodic if there exists x ∈ X such that

lim
T→∞

‖1/T

∫ T

0

(φs(t)− x) ds‖∞ = 0.

(16) TE(J,X) = {φ ∈ L∞(J,X) : eiλtφ(t) ∈ E(J,X) ∀λ ∈ R}.
(17) E0(J,X) = {φ ∈ E(J,X) : lim

T→∞
‖1/T

T∫
0

φs ds‖∞ = 0.

Lemma 2.2. The spaces in Examples (1-17) are closed subspaces of
L∞(J,X) satisfying (P1) and the spaces in Examples (1-4), (8-16) sat-
isfy (P2). The spaces in Examples (5-7) and (17) don’t satisfy (P2).

Lemma 2.3. AP (J,X) ⊂ AAP (J,X) ⊂ W (J,X) ⊂ TE(J,X).

Proof. We can check that C0(J,X) ⊂ W (J,X). Indeed, suppose that
f ∈ C0(J,X). Let {tn} and {ωn} be two sequences in J . Let {x∗n} be
a sequence in X∗ such that ‖x∗n‖ ≤ 1 and both of the following iterated
limits

lim
m→∞

lim
n→∞

x∗n(fωm(tn))

and
lim

n→∞
lim

m→∞
x∗n(fωm(tn))

exist. We have the following cases:
(i) both of {tn} and {ωn} are unbounded. In this case we can suppose
without loss of generality that tn →∞ and ωn →∞.
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(ii) one of the two sequences, say {tn}, is unbounded and the other is
bounded. In this case we can suppose that tn →∞ and ωn → a for some
a ∈ J .
(iii) both of the two sequences are bounded. We can assume in this case
that tn → a and ωn → b for some a and b in J .
In case (i) both of the iterated limits equal zero. In case (ii), the first
iterated limit equals zero. The second iterated limit equals

lim
n→∞

x∗n(fa(tn)) = 0.

In case (iii) we use the uniform continuity of f to conclude that the two
iterated limits are equal. The fact that W (J,X) ⊂ TE(J,X) is a result
of [13]. To show that both of AP (J,X), AAP (J,X) and W (J,X) are
subsets of Cub(J,X), see [20, 23, 30].

3.The difference and the integral problem

As before we assume that M is a closed subspace of L∞(J,X). In
this section we study the difference problem, viz we answer the follow-
ing question: Under what conditions, does φs − φ ∈ M ∀s ∈ J imply
that φ ∈ M . As a direct consequence we get a result concerning the in-
definite integral problem (see [2, 8, 14, 18, 20, 22, 28]). L. H. Loomis
[21] imposed the condition φ ∈ Cub(R,C) to get φ ∈ AP (R,C). When
M = AP (R, X), B. Basit [2] supposed the same condition φ ∈ Cub(R, X)
to get φ ∈ AP (R, X), provided that X does not contain c0 or the range
of φ is w.r.c in X. In fact this condition is not necessary because φ will
be uniformly continuous and bounded according to Theorem 3.0 stated
below. In case M = Cb(R,R), Mary L. Boas and R. P. Boas [15] proved
that: If φ : R → R is bounded on a set of positive measure and φs − φ
is continuous for every s ∈ R, then φ is continuous. We can see some
generalizations of this result in [11] and [15].
According to a general result of C. Datry and G. Muraz [11], we have the
following theorem:

Theorem 3.0. A bounded function φ : R → X is uniformly continuous
iff φs − φ is uniformly continuous for every s ∈ R.

Lemma 3.1. Let φ ∈ Cub(J,X). If φs − φ ∈ M ∀s ∈ J , then
∫

J
(φs −

φ) dµ(s) ∈ M for every bounded Borel measure on J .

Proof. The function g : J → M defined by g(s) = φs − φ is bounded and
continuous, since φ ∈ Cub(J,X). Suppose that µ is a bounded Borel mea-
sure. Hence, g is measurable with respect to µ (see Pettis’ Theorem [32,
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p. 131]). We apply Bochner’s Theorem [32, p. 133] to get
∫

J
g(s) dµ(s) ∈ M

i.e.
∫

J
(φs − φ) dµ(s) ∈ M .

Lemma 3.2. Let φ ∈ L∞(J,X) be such that φs − φ ∈ M ∀s ∈ J .
If there exists a bounded Borel measure µ such that

∫
J

dµ(s) 6= 0 and∫
J

φs dµ(s) = 0, then φ ∈ M .

Theorem 3.3. Let M satisfy (P2). Suppose that φ ∈ Cub(J,X)
⋂

E(J,X).
If ∀s ∈ J φs − φ ∈ M , then φ ∈ M .

Proof. There exists x ∈ X such that φ− x ∈ E0(J,X). By condition (P2)
M contains the constant function x(t) = x, t ∈ J . We apply Lemma 3.1
to get

∫
J
(φs − φ) dµT (s) ∈ M , where dµT (s) = (1/T )χ[0,T ](s) ds, T > 0.

Hence, (1/T )
T∫
0

(φs − φ) ds ∈ M ∀T > 0. Taking the limit as T →∞, we

get φ ∈ M (M is closed).

Theorem 3.4. Let M satisfy (P1-P2). Suppose that f ∈ M
⋂

Cub(J,X).
If the function F defined by F (t) =

∫ t

0
f(s) ds belongs to E(J,X), then

F ∈ M .

Proof. We have (Fs − F )(t) =
s∫
0

fu(t) du, s ∈ J , t ∈ J . Fix s and let I

be the interval with end points 0 and s. The function g : I → M defined
by g(u) = fu is continuous. Since

∫
J
‖g(u)‖∞ ds ≤ |s|‖f‖∞ < ∞, then

s∫
0

fu du ∈ M . Hence Fs−F ∈ M ∀s ∈ J . By Theorem 3.3, we get F ∈ M .

Corollary 3.5. Let f ∈ Cb(J,X) and F (t) =
t∫
0

f(s) ds. Then the follow-

ing statements are true.
(1) If f ∈ AP (J,X) and F ∈ E(J,X), then F ∈ AP (J,X).
(2) If f ∈ AAP (J,X) and F ∈ E(J,X), then F ∈ AAP (J,X).
(3) If f ∈ AAP (J,X) and F ∈ W (J,X), then F ∈ AAP (J,X).
(4) If f ∈ AA(J,X) and F ∈ E(J,X), then F ∈ AA(J,X).
(5) If f ∈ AAA(J,X) and F ∈ E(J,X), then F ∈ AAA(J,X).

Proof. The statements (1), (2), (4) and (5) are true, since all of the
following spaces AP (J,X), AAP (J,X), AA(J,X) and AAA(J,X) satisfy
(P1-P2). The statement (3) is true, since W (J,X) ⊂ TE(J,X).
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4. Spectral criteria of abstract functions

In this section M denotes a closed subspace of L∞(R, X) which satisfies
one or more conditions on M from the following list:
(P1) M is invariant under translations, i.e. ∀f ∈ M ∀s ∈ R (fs ∈ M),

where fs(t) = f(t + s).
(P2) M contains the constant functions.
(P3) M is invariant under multiplication by characters, i.e. ∀f ∈ M ∀λ ∈

R(λ̆ f ∈ M), where λ̆(t) = eiλt.
We consider the closed subspaces of L∞(R, X) which are given in Sec-

tion 2. We can check that all of them satisfy (P3) except the spaces in
Examples (15) and (17). We can prove that W (R, X) satisfies (P3), by
showing that for every f ∈ W (R, X) and for every λ ∈ R the function
λ̆ f satisfies the double limit property, where λ̆(t) = eiλt.

4.1. The M-spectrum of functions in L∞(R, X)

Definition 4.1.1. For a function u ∈ L∞(R, X) and f ∈ L1(R) denote
by

(f ∗ u)(t) =
∫

R

f(t− s)u(s) ds, t ∈ R.

Lemma 4.1.2 (see also [5]). If M is a closed subspace of L∞(R, X)
satisfying (P1), then

∀f ∈ L1(R) ∀u ∈ M
⋂

Cub(R, X) (f ∗ u ∈ M) .

Proof. Let f ∈ L1(R) and u ∈ M
⋂

Cub(R, X). Define the function
g : R → M by

g(s) = u−s.

The function g is continuous and bounded, since u is uniformly continu-
ous. Applying Bochner’s Theorem [32, p. 133], we get

∫
R

f(s)u−s ds ∈ M ,
whence f ∗ u ∈ M

Lemma 4.1.3. If u ∈ L∞(R, X), then the following conditions are equiv-
alent
(i) u ∈ Cub(R, X),
(ii) lim

t→0
‖ut − u‖∞ = 0,

(iii) lim
T→0

‖ρT ∗ u − u‖∞ = 0, where ρT =
1
T

χ[−T,0], T > 0. Here χ[−T,0]

is the characteristic function of the interval [−T, 0].
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This is a classical result in the theory of L1(G)-modules. We can replace
{ρT } by any bounded approximate of identity (see [11]).

Definition 4.1.4 (see [6, 14, 5]). Suppose that M is a closed subspace of
L∞(R, X) such that (P1) holds. Let u ∈ L∞(R, X). We denote by

IM (u) = {f ∈ L1(R) : f ∗ u ∈ M}.

The set IM (u) is a closed ideal of L1(R).
We denote the M -spectrum σM (u) of u ∈ L∞(R, X) by

σM (u) = Z(IM (u)) = {α ∈ R : f̂(α) = 0 ∀f ∈ IM (u)},

where f̂(α) =
∫
R

f(t)e−iαt dt. The spectrum σ(u) is denoted by σ(u) =:
σ{0}(u). It is clear that σM (u) ⊆ σ(u).

Lemma 4.1.5 (see also [14, 5]). Let u ∈ L∞(R, X). If M is a closed
subspace of L∞(R, X) satisfying (P1), then the following hold:

(1) σM (u) = ∅ iff ∀f ∈ L1(R) f ∗ u ∈ M.
(2) If u ∈ Cub(R, X) then σM (u) = ∅ iff u ∈ M.
(3) If σM (u) = {0}, then f ∗ (us − u) ∈ M ∀f ∈ L1(R) ∀s ∈ R.
(4) If u ∈ Cub(R, X), then σM (u) = {0} =⇒ us − u ∈ M ∀s ∈ R.

(5) σM (f ∗ u) ⊆ supp f̂
⋂

σM (u) ∀f ∈ L1(R).
(6) If in addition M satisfies (P3), then

σM (γ̆u) = σM (u) + γ ∀γ ∈ R,

where γ̆(t) = eiγt.

Proof. (1) We have Z(IM (u)) = ∅ iff IM (u) = L1(R). Hence σM (u) = ∅
iff ∀f ∈ L1(R) f ∗ u ∈ M.
(2) Let u ∈ Cub(R, X). Suppose that σM (u) = ∅. Hence, by (1) we have
f ∗ u ∈ M ∀f ∈ L1(R). By Lemma 4.1.3 lim

T→0
‖ρT ∗ u − u‖∞ = 0 whence

u ∈ M. Conversely, suppose that u ∈ M. By Lemma 4.1.2, we get that
f ∗ u ∈ M ∀f ∈ L1(R), which in return implies that σM (u) = ∅.
(3) Suppose that aM (u) = {0}, i.e. Z(IM (u)) = {0}, where {0} is a set
of spectral synthesis. We have IM (u) = {f ∈ L1(R) : f̂(0) = 0}. Hence,
(fs − f) ∗ u ∈ M ∀s ∈ R ∀f ∈ L1(R), whence f ∗ (us − u) ∈ M ∀s ∈ R
∀f ∈ L1(R).
(4) is a direct consequence of (3) and (2).
(5) Let f ∈ L1(R). Let α ∈ σM (f ∗ u). To show that α ∈ σM (u), let
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h ∈ L1(R) be such that h ∗ u ∈ M. Then h ∗ (f ∗ u) = f ∗ (h ∗ u) ∈ M.

Therefore ĥ(α) = 0 and we get α ∈ σM (u).
Now we show that α ∈ supp f̂ . Suppose on the contrary that α /∈ supp f̂ .
Then there exists g ∈ L1(R) such that ĝ(α) 6= 0 and ĝ(supp f̂) = {0}.
We have g ∗ f = 0 whence g ∗ f ∗ u = 0 ∈ M. Hence ĝ(α) = 0 which is a
contradiction.
(6) We denote by g = γ̆0u, γ0 ∈ R. Let γ ∈ σM (g). Let f ∈ L1(R) be
such that f ∗ u ∈ M. A simple calculation shows that

(γ̆0f) ∗ g = γ̆0(f ∗ u).

Hence (γ̆0f) ∗ g ∈ M , whence (γ̆0f )̂(γ) = 0, i.e. f̂(γ − γ0) = 0 and we get
γ − γ0 ∈ σM (u). Conversely, let γ ∈ σM (u) and f ∈ L1(R) be such that
f ∗ g ∈ M . We have

f ∗ g = ˘(γ0)[((−γ0)̆ f) ∗ u].

Hence, ((−γ0)̆ f) ∗ u ∈ M , whence ((−γ0)̆ f )̂(γ) = 0, i.e. f̂(γ + γ0) = 0
and we get γ + γ0 ∈ σM (g).

4.2. Spectral characterization of the classes M
A theorem of Loomis [21] states that: If φ ∈ Cub(R) and σAP (R)(φ)

is at most countable, then φ ∈ AP (R). In this section, we generalize this
theorem to more general classes of functions M ⊆ L∞(R, X) containing
AP (R, X). We prove the following result: If φ is uniformly continuous,
bounded, such that the M -spectrum σM (φ) of φ is at most countable and,
for every λ ∈ σM (φ), the function e−iλtφ(t) is ergodic, then φ ∈ M.

Lemma 4.2.1. If λ0 ∈ R is such that (−λ0)̆φ ∈ E(R, X)
⋂

Cub(R, X),
then λ0 cannot be an isolated point of σM (φ).

Proof. Let λ0 ∈ R be such that (−λ0)̆φ ∈ E(R, X)
⋂

Cub(R, X). Suppose
on the contrary that λ0 is an isolated point of σM (φ). There exists a
compact neighbourhood V of λ0 such that V

⋂
(σM (φ)\{λ0}) = ∅. Choose

f ∈ L1(R) such that f̂(λ0) 6= 0 and f̂(CCCV ) = {0}. Here, CCCV is the
complement of V . Hence, σM (f ∗φ) ⊆ σM (φ)

⋂
supp f̂ ⊆ {λ0}, whence

σM (f ∗ φ) = {λ0}. By Lemma 4.1.5., we get

[(−λ0)̆(f ∗ φ)]s − [(−λ0)̆(f ∗ φ)] ∈ M ∀s ∈ R.
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Since (−λ0)̆(f ∗ φ) = (−λ0)̆f ∗ (−λ0)̆φ ∈ E(R, X)
⋂

Cub(R, X), then,
by Theorem 3.3, we get (−λ0)̆(f ∗ φ) ∈ M , whence f ∗ φ ∈ M . Hence,
f̂(λ0) = 0, which is a contradiction.

Theorem 4.2.2. Let φ ∈ Cub(R, X). If σM (φ) is at most countable such
that the function (−λ)̆φ ∈ E(R, X) for every λ ∈ σM (φ), then φ ∈ M.

Proof. Suppose that φ ∈ Cub(R, X) satisfies the hypothesis of the theorem.
We show that σM (φ) = ∅. Suppose on the contrary that σM (φ) 6= ∅. Then
σM (φ) (at most countable) has an isolated point λ0 [7]. Since (−λ0)̆φ ∈
E(R, X)

⋂
Cub(R, X), then by Lemma 4.2.1, we get that λ0 is not an

isolated point of σM (φ) which is a contradiction.

Corollary 4.2.3. Let M be as in Theorem 4.2.2 and let φ ∈ Cub(R, X)⋂
TE(R, X). If σM (φ) is at most countable, then φ ∈ M .

Proof. It is an immediate consequence of the previous theorem.
In the following theorem we impose a condition on σM (φ) that insures

the following implication:

φs − φ ∈ M ∀s ∈ R =⇒ φ ∈ M.

Theorem 4.2.4. Assume that M is a closed subspace of L∞(R, X). Let
φ ∈ L∞(R, X) be such that 0 /∈ σM (φ). If φs − φ ∈ M

⋂
Cub(R, X)

∀s ∈ R, then φ ∈ M .

Proof. By Theorem 3.0, φ ∈ Cub(R, X). Since 0 /∈ σM (φ), there exists
f ∈ L1(R) such that f ∗ φ ∈ M and f̂(0) = 1. By Lemma 3.1, we get
f ∗ φ− φ ∈ M , whence φ ∈ M .

Corollary 4.2.5. Assume that M is a closed subspace of L∞(R, X) sat-

isfying (P1). Let f ∈ M
⋂

Cub(R, X). Define F by F (t) =
t∫
0

f(s) ds. If

0 /∈ σM (F ), then F ∈ M .

Proof. We have (Fs − F )(t) =
s∫
0

fu(t) du, s ∈ R, t ∈ R. By the same

argument as in Theorem 3.4, it follows that Fs − F ∈ M ∀s ∈ R. By
Theorem 4.2.4, we get F ∈ M .

In the applications of all these results given by A. Hamza in [17] for the
solutions of functional equations or differential equations, the condition
“φ is continuous” is not a restriction, because in general case, it is more
than continuous.
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To stay complete, we must report the Banach space BAUC(J,X) of
all bounded asymptotically uniformly continuous functions from J to X
(see [31]); sometimes such function is called slowly oscillating [24]. φ ∈
BAUC(J,X) if φ ∈ L∞(J,X) and lim

(t,x)→(∞,0)
|φx(t)− φ(t)| = 0.

In fact, we have BAUC(J,X) = Cub(J,X) + L∞o (J,X). This space ver-
ifies the properties (P1), (P2), (P3) and have some importance for the
application in [17].
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