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WIDTH OF COMPLEXES OF MODULES

SIAMAK YASSEMI

Abstract. The concept of the width of complex of modules (that is
a dual of depth) is introduced and the dual of the generalization of the
Auslander-Buchsbaum equality is proved.

Introduction

The extension of homological algebra from modules to complexes of
modules was started already in the last chapter of [CE] and pursued in
[H] and [F]. Finiteness of injective and flat dimensions of certain complexes
is a key ingredient in [H], while the actual values of these dimensions are
studied in [F], where also the concept of depth of complexes is introduced,
and the formula

depth(X ⊗
=

Y ) = depth Y − sup(k ⊗
=

X)

is proved for bounded complexes X and Y such that X is of finite flat
dimension. Here ⊗

=
is the derived of the tensor product functor and sup(X)

is supremum of ` ∈ Z such that H`(X) 6= 0).
If, in addition, Hi(X) is finite for all i ∈ Z then sup(k ⊗

=
X) = pdX,

the projective dimension of X. Thus for Y = R (considered as a complex
concentrated in degree zero) the above formula reads

depth R = pd X + depth X,

that is, the Auslander-Buchsbaum equation for complexes of R-modules.
Also in [F], the formula

id Y = depth X − inf H
=

om (X, Y )

is proved for bounded complexes X and Y such that Hi(X) and Hi(Y )
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are finite for all i ∈ Z and Y is of finite injective dimension. (Here H
=

om

is the derived of the homomorphism functor and inf(X) is infimum of
` ∈ Z such that H`(X) 6= 0). Thus for X = R (consider as a complex
concentrated in degree zero) the above formula reads

id Y = depth R− inf(Y ),

that is the Bass’s theorem for complexes of R-modules.
In Section 2, for any complex X we introduce width X; this is a dual

of depth X. We prove that the dual of the above generalization of the
Auslander-Buchsbaum equality, that is, if X is a bounded complex of
finite injective dimension then

width H
=

om(Y, X) = depth Y + inf(H
=

om(k, X))

for all bounded complexes X.
If, in addition, Hi(X) is Artinian for all i ∈ Z then − inf H

=
om(k, X) =

id X, the injective dimension of X. Thus for Y = R (considered as a
complex concentrated in degree zero) the above formula reads

depth R = id X + width X,

that is, the dual Auslander-Buchsbaum equation for complexes of R-
modules.

Also, for a bounded complex X with finite flat dimension, if Hi(X) is
Artinian for all i ∈ Z then

fd X = depth R + sup(X).

That is the dual of Bass’s theorem.
Finally, for a bounded complex X with finite injective dimension we

show that
id X = sup

p
(depthRpRp − widthRpXp).

The above equality is proved for modules in [C], and a corresponding for-
mula for finite flat dimension of complexes is proved in [F]. This is actually
also a generalized dual version of the Auslander-Buchsbaum equality.

Throughout this paper the ring R is commutative Noetherian with a
non-zero identity element.
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1. Homological algebra

First we bring some definitions about complexes that we use in the rest
of this paper. The reader is referred to [F] for details of the following brief
summary of the homological theory of complexes of modules.

A complex X of R-modules is a sequence of R-linear homomorphisms{
∂n : Xn → Xn−1

}
n∈Z

such that ∂n∂n+1 = 0 for all n. (We only use
subscripts and all differentials have degree −1). We set

inf(X) = inf{n ∈ Z
∣∣Hn(X) 6= 0} and

sup(X) = sup{n ∈ Z
∣∣Hn(X) 6= 0}.

We identify any module M with a complex of R-modules, which has
M in degree zero and is trivial elsewhere.

A homology isomorphism is a morphism α : X → Y such that H(α) is
an isomorphism; homology isomorphisms are marked by the sign ', while
∼= is used for isomorphisms. The equivalence relation generated by the
homology isomorphisms is also denoted by '.

The derived category of the category of modules over R, cf. [H], is
denoted by C.

The full subcategory of C consisting of complexes with finite homology
modules is denoted by Cf , and we write C+, C−, Cb, C0, for the full sub-
categories defined by Hn(X) = 0 for, respectively, n ¿ 0, n À 0, |n| À 0,
n 6= 0.

The left derived functor of the tensor product functor of R-complexes
is denoted by −⊗

=R
−, and the right derived functor of the homomorphism

functor of complexes of the R-modules is denoted by H
=

omR(−,−). Thus,

for arbitrary X, Y ∈ C there are complexes X⊗
=R

Y and H
=

omR(X,Y ) which

are defined uniquely up to isomorphism in C, and possess the expected
functorial properties.

Familiar invariants of R-modules have been extended to complexes in
several non-equivalent ways. We use the notions introduced in [F].

The (Krull) dimension of an R-complex is defined in terms of the
(Krull) dimensions of its homology modules by the formula:

dimR(X) = sup{dimR(Hi(X)− i
∣∣i ∈ Z},

with the convention that the dimension of the zero module is equal to
−∞. The depth of an R-complex X is defined by the formula

depthR(X) = − sup H
=

omR(k, X),
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hence −∞ ≤ depthRX ≤ ∞. In case X is an R-module the notions of
dimension and depth coincide with the standard ones.

For any X ∈ Cb we set:

idRX = sup
{
− inf

(
H
=

omR(M,X)
)∣∣M ∈ Cf

0

}
,

fdRX = sup
{

sup
(
X⊗

=R
M)

)∣∣M ∈ Cf
0

}
.

We call idRX (resp. fdRX) the injective (resp. flat) dimension of X over
R.

2. Width of complexes of modules

In this section we introduce the notion of width of complexes. This is
a dual notion to the depth of complexes.

Definition 2.1. If X ∈ C+ the width of X is defined by

width X = inf
(
k ⊗

=
X

)
.

Here and always when the word “width” is mentioned in the future, the
ring (R,m) is supposed to be local and k = R/m.

We use the notation Cart for the class of all complexes X such that
H`(X) is an Artinian R-module for all ` ∈ Z.

Lemma 2.2. Let (R,m) be local and let −∨ = Hom(−, E(R/m)) be the
Matlis duality. Then for X ∈ C+ the following holds:

depthX∨ = widthX.

Proof. We use the definition of depth and width

depthX∨ = − sup
(
H
=

om(k, X∨)
)

= − sup
(
k ⊗

=
X

)∨ [F, 5.2]

= inf(k ⊗
=

X)

= widthX.

Lemma 2.3. If (R,m) is a local ring, then the following are equivalent
for X ∈ Cb.
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(i) m ∈ supp(X), in other words X ⊗
=

k 6' 0.

(ii) depth X < ∞.
(iii) width X < ∞.

Proof. It follows by [F, 6.3].

The first part of the next result is more general than [F, 6.5].

Theorem 2.4. For X ∈ C+ we have
(a) depth H

=
om(X, Y ) = width X + depth Y for Y ∈ C−.

(b) width
(
X ⊗

=
Y

)
= width X + width Y for Y ∈ C+.

Proof. (a): We have

depth H
=

om(X, Y ) = − sup
(
H
=

om(k, H
=

om(X,Y ))
)

= − sup
(
H
=

om(k, Y )
)

+ inf(k ⊗
=

X) [F, 5.9]

= depth Y + width X.

(b): We have

width
(
X ⊗

=
Y

)
= depth(X ⊗

=
Y

)∨ (2.2)

= depth
(
H
=

om(X,Y ∨)
)

[F, 5.2]

= depthY ∨ + widthX (a)

= widthY + widthX. (2.2)

Lemma 2.5. If X ∈ C+ is non-trivial then

width X ≥ inf(X)

and the equality holds if and only if m ∈ Coass H− inf(x)(X).

Proof. We have

widthX = depth X∨

≥ − sup(X∨)

= inf(X).

Since Hsup(X∨)(X∨) ∼=
(
Hinf(X)(X)

)∨, we have the equality
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AssHsup(X∨)(X∨) = Coass Hinf(X)(X) (see [Y, 1.7]. Now the assertion
follows by [F, 6.6].

For X ∈ Cb with fd X < ∞ we have

depth(X ⊗
=

Y ) = − sup(k ⊗
=

X) + depth Y for Y ∈ Cb [F, 6.37].

As mentioned in the introduction this is a generalization of the Auslander-
Buchsbaum equality for complexes of modules.

Now we provide the dual of the above results.

Lemma 2.6. If X, Y ∈ Cb with id Y < ∞, then the following hold:
(a) width H

=
om(X,Y ) = depth X + inf(H

=
om(k, Y )),

(b) width Y = depth R + inf(H
=

om(k, Y )).

(c) width H
=

om(X, Y ) = width Y + depth X − depth R.

Proof. (a): We have

width H
=

om(X,Y ) = inf(k ⊗
=

H
=

om(X,Y ))

= − sup
(
H
=

om(k,X)
)

+ inf
(
H
=

om(k, Y )
)

[F, 5.11]

= depth X + inf
(
H
=

om(k, Y )
)
.

(b) is (a) with X = R. Also (c) is (a) combined with (b)

Corollary 2.7. If X, Y ∈ Cb and id Y < ∞, then

width H
=

om(X,Y ) = depth(X ⊗
=

Y ∨)
.

Proof. We have

(2.6a) width H
=

om(X, Y ) = depth X + inf
(
H
=

om(k, Y )
)
.

Since fd Y ∨ is finite, we have

depth(X ⊗
=

Y ∨) = depth X − sup
(
k ⊗

=
Y ∨)

[F, 6.37].

The assertion follows from the equality

inf
(
H
=

om(k, Y )
)

= − sup
(
H
=

om(k, Y )
)∨ = − sup

(
k ⊗

=
Y ∨).
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Theorem 2.8. If Y ∈ Cart
b has finite injective dimension, then

width H
=

om(X, Y ) = depth X − id Y.

In particular, depth R = id Y + width Y .

Proof. Since Y ∈ Cart
b , we have Supp Y = {m} by [Y, 2.10]. Since

id Y = sup
{
− i

∣∣µi(p, Y ) 6= 0 for some p ∈ SuppY
}

by [F, 6.22], we have that idY = − inf
(
H
=

om(k, Y )
)
. Now the assertion

follows from (2.6).

For X ∈ Cf
b with id X < ∞ we have

depth R− inf (X) = idX

by [F, 6.29]. This is the Bass Theorem, cf. [B, 3.3], for complexes of
modules. Now we give the dual of this result.

Theorem 2.9. For X ∈ Cart
b with fd X < ∞ we have

depth R + sup(X) = fd X.

Proof. It follows from [Y, 2.10] that Supp X = {m} so we have depth X =
− sup(X) by [F, 6.6]. Since

fdX = sup
{

n
∣∣βAp

n (Xp) 6= 0 for some p ∈ SuppX
}

by [F, 6.34], we have that fd X = sup(k ⊗
=

X). Now the assertion follows

from depth X = depth A−sup(k⊗
=

X), which is Auslander and Buchsbaum

equality, cf. [F, 6.37].

For an R-module M with finite flat dimension

fdM = sup
p∈Spec R

(
depthRp Rp − depthRp Mp

)
[C, 1.2]

and for an R-module M with finite injective dimension

id M = sup
p∈Spec R

(
depthRpRp − widthRpMp

)
[C, 3.1].
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Also for X ∈ Cb with fd X < ∞ we have

fd X = sup
p∈SpecR

(
depthRpRp − depthRpXp

)
[F, 6.39].

Now we provide the dual of this result.

Theorem 2.10. If X ∈ Cb has id X < ∞ then

id X = sup
p∈Spec R

(
depthRpRp − widthRpXp

)
.

Proof. “≥” We have

depthRpRp − widthRpXp = − inf
(
H
=

om(k(p), Xp)
)

(2.6)

≤ idRpXp [F, 6.22]

≤ id X [F, 6.23]

“≤” If ` ≤ id X then there exists n ∈ Z and p ∈ Spec R such that ` ≤ n
and µn(p, X) 6= 0 by [F, 6.22]. Thus we have

n ≤ − inf
(
H
=

om(k(p), Xp)
)

[F, 3.16]

= depthRpRp − widthRpXp.(2.6)

Therefore ` ≤ n ≤ depthRpRp − widthRpXp.

If the ring R is local and has a dualizing complex D, cf. [F, 8.1], then for
X ∈ Cf

+ Foxby introduced the dual with respect to D by X† = H
=

om(X, D),

and he proved some results showing the duality between X and X†. Now
we use this notion to find relations between the depth and the width of X
and X†.

Theorem 2.11. Let dim R = d and X ∈ Cb, then
(a) width X† = depth X − d.
(b) depth X† = width X + d.

Proof. (a): We have

width X† = inf(k ⊗
=

X†)

= − sup
(
H
=

om(k, X) + inf(k†) [F, 5.11]

= depth X − d [F, 8.12].
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(b): We have

depthX† = − sup
(
H
=

om(k,X†)

= − sup(k†) + inf(k ⊗
=

X) [F, 5.9]

= d + width X [F, 8.12].
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