WIDTH OF COMPLEXES OF MODULES

SIAMAK YASSEMI

Abstract. The concept of the width of complex of modules (that is a dual of depth) is introduced and the dual of the generalization of the Auslander-Buchsbaum equality is proved.

INTRODUCTION

The extension of homological algebra from modules to complexes of modules was started already in the last chapter of [CE] and pursued in [H] and [F]. Finiteness of injective and flat dimensions of certain complexes is a key ingredient in [H], while the actual values of these dimensions are studied in [F], where also the concept of depth of complexes is introduced, and the formula

$$
\mathrm{depth}(X\underset{=}{\otimes}Y)=\mathrm{depth}\,Y-\sup(k\underset{=}{\otimes}X)
$$

is proved for bounded complexes X and Y such that X is of finite flat $\text{dimension. Here} \bigotimes_{i=1}^{\infty} \mathbb{I}\text{ is the derived of the tensor product functor and } \text{sup}(X)$ is supremum of $\ell \in Z$ such that $H_{\ell}(X) \neq 0$.

If, in addition, $H_i(X)$ is finite for all $i \in \mathbb{Z}$ then $\sup(k \underset{=}{\otimes} X) = \text{pd}X$, the projective dimension of X. Thus for $Y = R$ (considered as a complex concentrated in degree zero) the above formula reads

$$
\operatorname{depth} R = \operatorname{pd} X + \operatorname{depth} X,
$$

that is, the Auslander-Buchsbaum equation for complexes of R-modules.

Also in $|F|$, the formula

$$
\operatorname{id} Y = \operatorname{depth} X - \inf \operatorname{\operatorname{\underline{Hom}}}\nolimits \left(X, Y \right)
$$

is proved for bounded complexes X and Y such that $H_i(X)$ and $H_i(Y)$

Received September 26, 1996

¹⁹⁹¹ Mathematics Subject Classification. 13D05, 13D25

are finite for all $i \in Z$ and Y is of finite injective dimension. (Here \underline{Hom} is the derived of the homomorphism functor and $\inf(X)$ is infimum of $\ell \in \mathbb{Z}$ such that $H_{\ell}(X) \neq 0$. Thus for $X = R$ (consider as a complex concentrated in degree zero) the above formula reads

$$
id Y = depth R - inf(Y),
$$

that is the Bass's theorem for complexes of R-modules.

In Section 2, for any complex X we introduce width X ; this is a dual of depth X . We prove that the dual of the above generalization of the Auslander-Buchsbaum equality, that is, if X is a bounded complex of finite injective dimension then

width
$$
\underline{\operatorname{Hom}}(Y, X) = \operatorname{depth} Y + \inf(\underline{\operatorname{Hom}}(k, X))
$$

for all bounded complexes X.

If, in addition, $H_i(X)$ is Artinian for all $i \in \mathbb{Z}$ then $-\inf$ $\lim_{n \to \infty} (k, X) =$ id X, the injective dimension of X. Thus for $Y = R$ (considered as a complex concentrated in degree zero) the above formula reads

$$
\operatorname{depth} R = \operatorname{id} X + \operatorname{width} X,
$$

that is, the dual Auslander-Buchsbaum equation for complexes of Rmodules.

Also, for a bounded complex X with finite flat dimension, if $H_i(X)$ is Artinian for all $i \in \mathbb{Z}$ then

$$
dX = \operatorname{depth} R + \sup(X).
$$

That is the dual of Bass's theorem.

Finally, for a bounded complex X with finite injective dimension we show that

$$
\mathrm{id}\,X=\sup_p(\mathrm{depth}_{R_p}R_p-\mathrm{width}_{R_p}X_p).
$$

The above equality is proved for modules in [C], and a corresponding formula for finite flat dimension of complexes is proved in [F]. This is actually also a generalized dual version of the Auslander-Buchsbaum equality.

Throughout this paper the ring R is commutative Noetherian with a non-zero identity element.

1. Homological algebra

First we bring some definitions about complexes that we use in the rest of this paper. The reader is referred to $[F]$ for details of the following brief summary of the homological theory of complexes of modules.

A complex X of R -modules is a sequence of R -linear homomorphisms \overline{a} $\partial_n: X_n \to X_{n-1}$ _{n∈Z} such that $\partial_n \partial_{n+1} = 0$ for all *n*. (We only use subscripts and all differentials have degree -1). We set

$$
inf(X) = inf{n \in \mathbf{Z} | H_n(X) \neq 0} \text{ and}
$$

\n
$$
sup(X) = sup{n \in \mathbf{Z} | H_n(X) \neq 0}.
$$

We identify any module M with a complex of R-modules, which has M in degree zero and is trivial elsewhere.

A homology isomorphism is a morphism $\alpha: X \to Y$ such that $H(\alpha)$ is an isomorphism; homology isomorphisms are marked by the sign \approx , while ∼= is used for isomorphisms. The equivalence relation generated by the homology isomorphisms is also denoted by \simeq .

The *derived category* of the category of modules over R , cf. [H], is denoted by \mathcal{C} .

The full subcategory of $\mathcal C$ consisting of complexes with finite homology modules is denoted by \mathcal{C}^f , and we write \mathcal{C}_+ , \mathcal{C}_- , \mathcal{C}_b , \mathcal{C}_0 , for the full subcategories defined by $H_n(X) = 0$ for, respectively, $n \ll 0$, $n \gg 0$, $|n| \gg 0$, $n \neq 0$.

The left derived functor of the tensor product functor of R-complexes is denoted by −⊗ $=$ R −, and the right derived functor of the homomorphism functor of complexes of the R-modules is denoted by $Hom_R(-, -)$. Thus, = for arbitrary $X, Y \in \mathcal{C}$ there are complexes $X \otimes$ $=$ R Y and $\underset{=}{\text{Hom}}_R(X, Y)$ which are defined uniquely up to isomorphism in \mathcal{C} , and possess the expected functorial properties.

Familiar invariants of R-modules have been extended to complexes in several non-equivalent ways. We use the notions introduced in [F].

The (Krull) dimension of an R-complex is defined in terms of the (Krull) dimensions of its homology modules by the formula:

$$
\dim_R(X) = \sup\{\dim_R(H_i(X) - i | i \in \mathbf{Z}\},\
$$

with the convention that the dimension of the zero module is equal to $-\infty$. The *depth* of an R-complex X is defined by the formula

$$
depth_R(X) = - \sup \underset{=}{\text{Hom}} R(k, X),
$$

hence $-\infty \leq$ depth $_R X \leq \infty$. In case X is an R-module the notions of dimension and depth coincide with the standard ones.

For any $X \in \mathcal{C}_b$ we set:

$$
\mathrm{id}_{R} X = \mathrm{sup} \Big\{ - \mathrm{inf} \big(\underline{\mathrm{Hom}}_{R}(M, X) \big) \big| M \in \mathcal{C}_{0}^{f} \Big\},
$$

$$
\mathrm{fd}_{R} X = \mathrm{sup} \Big\{ \mathrm{sup} \big(X \underset{=R}{\otimes} M \big) \big| M \in \mathcal{C}_{0}^{f} \Big\}.
$$

We call $\mathrm{id}_{R}X$ (resp. $\mathrm{fd}_{R}X$) the injective (resp. flat) dimension of X over R.

2. Width of complexes of modules

In this section we introduce the notion of width of complexes. This is a dual notion to the depth of complexes.

Definition 2.1. If $X \in C_+$ the *width* of X is defined by

$$
\mathrm{width}\, X=\mathrm{inf}\,\big(k\underset{=}{\otimes} X\big).
$$

Here and always when the word "width" is mentioned in the future, the ring (R, \mathbf{m}) is supposed to be local and $k = R/\mathbf{m}$.

We use the notation \mathcal{C}^{art} for the class of all complexes X such that $H_{\ell}(X)$ is an Artinian R-module for all $\ell \in \mathbb{Z}$.

Lemma 2.2. Let (R, m) be local and let $-\vee = \text{Hom}(-, E(R/m))$ be the Matlis duality. Then for $X \in \mathcal{C}_+$ the following holds:

$$
depth X^{\vee} = width X.
$$

Proof. We use the definition of depth and width

$$
depth X^{\vee} = - \sup \left(\underline{Hom}(k, X^{\vee}) \right)
$$

= - \sup (k \underset{=}{\otimes} X)^{\vee} [F, 5.2]
= \inf (k \underset{=}{\otimes} X)
= width X. \qquad \Box

Lemma 2.3. If (R, m) is a local ring, then the following are equivalent for $X \in \mathcal{C}_b$.

(i) $\mathbf{m} \in \text{supp}(X)$, in other words $X \underset{=}{\otimes} k \not\cong 0$.

- (ii) depth $X < \infty$.
- (iii) width $X < \infty$.
- Proof. It follows by [F, 6.3].

The first part of the next result is more general than [F, 6.5].

Theorem 2.4. For $X \in \mathcal{C}_+$ we have

- (a) depth $\underline{Hom}(X,Y) = \text{width } X + \text{depth } Y \text{ for } Y \in \mathcal{C}_-.$ \mathbf{a}^{\prime}
- (b) width $\left(\overline{X} \underset{=}{\otimes} Y\right)$ $=$ width X + width Y for $Y \in C_+$.

Proof. (a): We have

depth
$$
\underline{\text{Hom}}(X, Y) = -\sup \left(\underline{\text{Hom}}(k, \underline{\text{Hom}}(X, Y)) \right)
$$

\n
$$
= -\sup \left(\underline{\text{Hom}}(k, Y) \right) + \inf (k \underset{=}{\otimes} X) \quad [F, 5.9]
$$
\n
$$
= \text{depth } Y + \text{width } X.
$$

(b): We have

$$
\text{width}(X \underset{=}{\otimes} Y) = \text{depth}(X \underset{=}{\otimes} Y)^{\vee} \qquad (2.2)
$$
\n
$$
= \text{depth}(\underset{=}{\text{Hom}}(X, Y^{\vee})) \quad [F, 5.2]
$$
\n
$$
= \text{depth}Y^{\vee} + \text{width}X \qquad (a)
$$
\n
$$
= \text{width}Y + \text{width}X. \qquad (2.2) \quad \Box
$$

Lemma 2.5. If $X \in \mathcal{C}_+$ is non-trivial then

width $X \ge \inf(X)$

and the equality holds if and only if $\mathbf{m} \in \text{Coass } H_{-\inf(x)}(X)$. Proof. We have

$$
\begin{aligned} \text{width } X &= \text{depth } X^{\vee} \\ &\geq -\text{sup}(X^{\vee}) \\ &= \text{inf}(X). \end{aligned}
$$

Since $H_{\text{sup}(X^{\vee})}(X^{\vee}) \cong ($ $H_{\text{inf}(X)}(X)$ ^{\vee}, we have the equality \Box

Ass $H_{\text{sup}(X^{\vee})}(X^{\vee}) = \text{Coass } H_{\text{inf}(X)}(X)$ (see [Y, 1.7]. Now the assertion follows by [F, 6.6]. \Box

For $X \in C_b$ with fd $X < \infty$ we have

$$
depth(X \underset{=}{\otimes} Y) = -\sup(k \underset{=}{\otimes} X) + depth Y \text{ for } Y \in C_b \quad [F, 6.37].
$$

As mentioned in the introduction this is a generalization of the Auslander-Buchsbaum equality for complexes of modules.

Now we provide the dual of the above results.

Lemma 2.6. If X, $Y \in C_b$ with id $Y < \infty$, then the following hold: (a) width $\text{Hom}(X, Y) = \text{depth } X + \text{inf}(\text{Hom}(k, Y)),$

- = = (b) width $Y = \operatorname{depth} R + \inf(\operatorname{Hom}(k, Y)).$ =
- (c) width $\operatorname{Hom}_X(X, Y) = \text{width } Y + \text{depth } X \text{depth } R.$

Proof. (a): We have

width
$$
\underline{\text{Hom}}(X, Y) = \inf(k \underset{=}{\otimes} \underline{\text{Hom}}(X, Y))
$$

\n $= -\sup (\underline{\text{Hom}}(k, X)) + \inf (\underline{\text{Hom}}(k, Y))$ [F, 5.11]
\n $= \operatorname{depth} X + \inf (\underline{\text{Hom}}(k, Y)).$

(b) is (a) with $X = R$. Also (c) is (a) combined with (b) \Box Corollary 2.7. If X, $Y \in C_b$ and id $Y < \infty$, then

width
$$
\underline{\operatorname{Hom}}(X, Y) = \operatorname{depth}(X \underset{=}{\otimes} Y^{\vee}).
$$

Proof. We have

(2.6a) width
$$
\underline{\text{Hom}}(X, Y) = \text{depth } X + \inf \left(\underline{\text{Hom}}(k, Y) \right)
$$
.

Since $\mathrm{fd}\,Y^{\vee}$ is finite, we have

$$
\mathrm{depth}(X\underset{=}{\otimes}Y^{\vee})=\mathrm{depth}\,X-\sup\big(k\underset{=}{\otimes}Y^{\vee}\big)\quad[\mathrm{F},\,6.37].
$$

The assertion follows from the equality

$$
\inf \left(\underline{\mathrm{Hom}}(k, Y) \right) = - \sup \left(\underline{\mathrm{Hom}}(k, Y) \right)^{\vee} = - \sup \left(k \underset{=}{\otimes} Y^{\vee} \right). \qquad \Box
$$

Theorem 2.8. If $Y \in \mathcal{C}_b^{art}$ has finite injective dimension, then

$$
\text{width } \lim_{\equiv} (X, Y) = \text{depth } X - \text{id } Y.
$$

In particular, depth $R = id Y + width Y$.

Proof. Since $Y \in \mathcal{C}_b^{art}$, we have Supp $Y = \{m\}$ by [Y, 2.10]. Since

$$
\operatorname{id} Y = \sup \Big\{ -i \big| \mu^i(\mathbf{p}, Y) \neq 0 \quad \text{for some } \mathbf{p} \in \operatorname{Supp} Y \Big\}
$$

by [F, 6.22], we have that $\mathrm{id} Y = -\inf \left(\underline{\mathrm{Hom}}(k, Y) \right)$ ¢ . Now the assertion follows from (2.6). \Box

For $X \in \mathcal{C}_b^f$ with $\mathrm{id} X < \infty$ we have

$$
depth R - inf (X) = idX
$$

by [F, 6.29]. This is the Bass Theorem, cf. [B, 3.3], for complexes of modules. Now we give the dual of this result.

Theorem 2.9. For $X \in \mathcal{C}_b^{art}$ with $\text{fd } X < \infty$ we have

$$
\operatorname{depth} R + \sup(X) = \operatorname{fd} X.
$$

Proof. It follows from [Y, 2.10] that Supp $X = \{m\}$ so we have depth $X =$ $-\sup(X)$ by [F, 6.6]. Since

$$
\operatorname{fd} X = \sup \left\{ n \big| \beta_n^{A_p}(X_p) \neq 0 \text{ for some } \mathbf{p} \in \operatorname{Supp} X \right\}
$$

by [F, 6.34], we have that $\mathrm{fd} X = \sup_k (k \underset{=}{\otimes} X)$. Now the assertion follows from depth $X = \operatorname{depth} A - \sup(k\mathop{\otimes} X),$ which is Auslander and Buchsbaum equality, cf. [F, 6.37]. \Box

For an R -module M with finite flat dimension

fd
$$
M = \sup_{\mathbf{p} \in \text{Spec } R} (\text{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \text{depth}_{R_{\mathbf{p}}} M_{\mathbf{p}}) \quad [C, 1.2]
$$

and for an R-module M with finite injective dimension

$$
\mathrm{id}\,M = \sup_{\mathbf{p} \in \mathrm{Spec}\,R} \left(\mathrm{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \mathrm{width}_{R_{\mathbf{p}}} M_{\mathbf{p}} \right) \quad [\mathrm{C},\,3.1].
$$

Also for $X \in \mathcal{C}_b$ with fd $X < \infty$ we have

fd
$$
X = \sup_{\mathbf{p} \in \text{Spec} R} (\text{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \text{depth}_{R_{\mathbf{p}}} X_{\mathbf{p}}) \quad [F, 6.39].
$$

Now we provide the dual of this result.

Theorem 2.10. If $X \in \mathcal{C}_b$ has id $X < \infty$ then

$$
\mathrm{id}\,X = \sup_{\mathbf{p} \in \mathrm{Spec}\, R} \big(\mathrm{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \mathrm{width}_{R_{\mathbf{p}}} X_{\mathbf{p}} \big).
$$

Proof. " \geq " We have

(2.6)
$$
\operatorname{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \operatorname{width}_{R_{\mathbf{p}}} X_{\mathbf{p}} = -\inf \left(\underline{\operatorname{Hom}}(k(\mathbf{p}), X_{\mathbf{p}}) \right) \leq \operatorname{id}_{R_{\mathbf{p}}} X_{\mathbf{p}} \qquad [\text{F, 6.22}] \leq \operatorname{id} X \qquad [\text{F, 6.23}]
$$

" \leq " If $\ell \leq id X$ then there exists $n \in \mathbb{Z}$ and $p \in \mathrm{Spec} R$ such that $\ell \leq n$ and $\mu^{n}(\mathbf{p}, X) \neq 0$ by [F, 6.22]. Thus we have

(2.6)
$$
n \le - \inf \left(\underline{\text{Hom}}(k(\mathbf{p}), X_{\mathbf{p}}) \right) \qquad \text{[F, 3.16]}
$$

$$
= \text{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \text{width}_{R_{\mathbf{p}}} X_{\mathbf{p}}.
$$

Therefore $\ell \leq n \leq \mathrm{depth}_{R_{\mathbf{p}}} R_{\mathbf{p}} - \mathrm{width}_{R_{\mathbf{p}}} X_{\mathbf{p}}.$

If the ring R is local and has a dualizing complex D , cf. [F, 8.1], then for $X \in \mathcal{C}_+^f$ Foxby introduced the dual with respect to D by $X^\dagger = \text{Hom}(X, D)$, and he proved some results showing the duality between X and X^{\dagger} . Now we use this notion to find relations between the depth and the width of X and X^{\dagger} .

Theorem 2.11. Let dim $R = d$ and $X \in \mathcal{C}_b$, then (a) width $X^{\dagger} =$ depth $X - d$. (b) depth X^{\dagger} = width $X + d$.

Proof. (a): We have

width
$$
X^{\dagger} = \inf(k \underset{=}{\otimes} X^{\dagger})
$$

\n $= -\sup \left(\underset{=}{\text{Hom}}(k, X) + \inf(k^{\dagger}) \right) \quad [\text{F}, 5.11]$
\n $= \operatorname{depth} X - d$ [F, 8.12].

 \Box

(b): We have

$$
\begin{aligned} \operatorname{depth} X^{\dagger} &= -\sup \left(\underline{\operatorname{Hom}}(k, X^{\dagger}) \right) \\ &= -\sup (k^{\dagger}) + \inf (k \underset{\cong}{\otimes} X) \quad \text{[F, 5.9]} \\ &= d + \operatorname{width} X \qquad \qquad \text{[F, 8.12].} \quad \Box \end{aligned}
$$

ACKNOWLEDGMENT

The author would like to express his gratitude to Professor H.-B. Foxby for all his helpfulness and for suggesting many of the topics considered in this paper. Also the author would like to thank University of Tehran for its partially support.

REFERENCES

- [B] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- [CE] H. Cartan and S. E. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton N. J., 1958.
- [C] Leo G. Chouinard II, On finite weak and injective dimension, Proc. Amer. Math. Soc. 60 (1976), 57-60.
- [F] H.-B. Foxby, A homological theory of complexes of modules, Preprint Series no 19a,b, Dept. of Math., Univ. of Copenhagen, 1981.
- [H] R. Hartshorne, Residues and Duality, Lecture Notes in Math., Vol. 20, Springer Verlag, 1971.
- [M] H. Matsumura, Commutative Ring Theory, Cambr. Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1986.
- [Y] S. Yassemi, Coassociated primes, Comm. Alg. 23 (1995), 1473-1498.

Department of Mathematics, University of Tehran P. O. Box 13145-448, Tehran, Iran E-mail: yassemi@rose.ipm.ac.ir