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1. INTRODUCTION

This paper is concerned with Gratzer’s problem: find conditions under
which Sub(L) determines L up to isomorphism (see [5], Problem 1.4).

In [1], [2] we proposed the concept of contractible sublattice and gave a
condition on a lattice L without contractible sublattices, such that Sub(L)
determines L up to an isomorphism or a dual isomorphism. In [3] we
described a class K of lattices satisfying this condition.

The main aim of this paper is to study the lattices which have con-
tractible sublattices. By contractible sublattice method we construct such
lattices L which are determined by Sub(L) up to an isomorphism or a dual
isomorphism (see Theorem 2.5). It is worth to mention that these lattices
do not belong to K.

2. RESULTS
First, we recall some concepts and results from [1], [2], [3].

Definition I. A proper sublattice A of the lattice L with |A| > 1 is called
a contractible sublattice if A satisfies the following conditions:

(a) A is convex

(b) c€ A< d e A, for any square (a, b;c,d) in L.

Remark. Suppose that A is contractible and (a, b; c,d) is a square in L.
According to (a) and (b), if an element of {c,d} belongs to A then the
sublattice {a,b,c,d} is contained in A. Therefore, instead of (b), we can
shortly say that “sublattice A absorbs the squares”.

In what follows, it will be denoted by aSb (resp. a|b), when a is
comparable (resp. incomparable) with b.

Lemma II. Let A be a contractible sublattice of L and k € L'\ A, a € A,
Then:
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(P1) Ifk <a then k <z, Vx € A.
(Py) Ifk>a then k >z, Vo € A.
(P3) If k||a then k||x, Vo € A.

We recall that a one-to-one and onto map ¢ : L — L’ for two arbitrary
lattices L. L' is called a square preserving bijection if: (a,b;c, d) is a square
in L < (p(a),o(b); o(c), p(d)) is a square in L'.

Proposition I11. Let L be a lattice having no contractible sublattices and
¢ : L — L' a square preserving bijection. Then o is either an isomorphism
or a dual isomorphism.

Now, we prove some lemmas concerning the contractible sublattices
and the lattices having no linear decomposition.

We say that a lattice L has a linear decomposition if there exist a chain
I with |I| > 1 and sublattices L;, ¢ € I of L such that L = |J L; and for

il

i,7 €1,1<jthen a <bforevery a € L;, be Lj.
Lemma 2.1. If A, B are contractible sublattices of L such that A € B,
BZ A and AN B # (), then AU B is a linearly decomposable sublattice.

Proof. Let C = ANBand X = A\C,Y = B\ C. Clearly, C is a
sublattice. Take x,y € X such that z||y. If at least one of two elements
x Ay, z Vy belongs to C, then x,y € B because of the contractibility of
B. This is a contradiction, since X N B = (). Therefore x Ay, xVy € X,
i.e. X is a sublattice. Analogously, Y is also a sublattice.

Now we consider arbitrary elements x € X, y € Y and ¢ € C. If z||c
then it is easy to deduce that xAc, xVe € B and so, we have zAc < ¢ < Ve
with x A¢c, z Ve € A\ B. Since B is contractible and ¢ € B, by Lemma
IT it implies that x Ac < b < x V¢, Vb € B. Because of the convexity of A
we have B C A, which contradicts the assumption of the lemma. Thus,
we have xSc and by Lemma II it implies either z < ¢ <y or x > ¢ > y.
This means that AU B is a sublattice which is linearly decomposed into
X, CY.

The proof is complete.

Lemma 2.2. If a lattice L has no linear decomposition and A, B are
different maximal contractible sublattices of L, then AN B = .

Proof. Let C = ANB. If C # (), then AU B is a linear decomposed sub-
lattice of L as shown in Lemma 2.1. Since L is not linearly decomposable,
AU B must be a proper sublattice. Evidently, AU B absorbs the squares.
Now, we show that AU B is convex. Take x € L such that u < x < v with
u,v € AUB. We have to prove that x € AUB. The cases, where u,v € A
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or u,v € B, are trivial by virtue of convexity of A and B. Hence we may
assume that u € A\ C, v € B\ C and = ¢ A. According to (P3) we have
x > a, Va € A and thus z > ¢ for some c € C C B. From v > x > ¢ with
v,c € B we conclude x € BC AU B.

In conclusion, AU B is a contractible sublattice, which contradicts the
fact that A is maximal. Thus, we have ANB = () and the lemma is proved.

Lemma 2.3. Let L be a lattice having no linear decomposition, and ¢ :
L — L’ a square preserving bijection for some lattice L'. If A is a mazimal
contractible sublattice of L, then p(A) is a contractible sublattice of L’.

Proof. For the sake of convenience we denote ¢(z) by 2’ and ¢(X) by X',
where x € L and X C L. Since ¢ is a bijection, any element of L’ is writte
uniquely in the form 2/, x € L.

Let A be a maximal contractible sublattice of L. Take z/, ¢y € A’
with 2'||y’. Then (x,y;x A y,z V y) is a square in A. It implies that
(', y'5 2" Ny 2" Vo) is a square in A’. Thus we have 2/ Ay, ' Vy' € A,
so A’ is a sublattice of L.

Further, if (a’,0'; ¢/, d") is a square in L’ with, for example, ¢’ € A’, the
(a,b;c,d) is a square in L with ¢ € A. According to (b) of Definition I we
have d € A, i.e. d € A’. Thus, A’ absorbs the squares.

Now, we verify the convexity of A’. We assume by contrary that there
exist A/ € A" and v/ < I/ < v with «/, v" € A’. From v’ < h' it follows
by Lemma II that A Swu and so, h S a, Va € A. Therefore we have h'S a’,
Va' € A’. Denoting X' = {2/ € A'|l2/ < W'} and Y ={y € A'ly > 1’}
(v € X',v' € Y'), we obtain A’ = X’ UY’ as a linearly decomposed
lattice.

Since h S u and the proof for the case of u > h is similar to the case of
u < h, we shall prove only the case h > u. According to (P3), we have
h > a, Va € A. We denote:

Z={z€Lllz>a,Vae Aand 2/ <2 <y, Va' € X', Vy € Y'},

K={kelL3z€Z:2>k>a, Yac A}.

It is easy to see that Z £ 0 (h€ Z), Z C K and K N A = (). In order
to prove the convexity of A’ we need the following claims.

Claim 1. Z is a sublattice.

Proof. Considering arbitrary zj,zo € Z with 21|22, we have z1 V 2o >
z1 > 21Nz > a,Va € A. If 21 A 29 = a, then 21 A 29 € A. From
the contractibility of A it follows that {z1, z2; 21 A 22,21 V 22} C A, which
contradicts the fact that ZNA = (). Hence 21 Az > a. On the other hand,
for any o’ € X', ¢ € Y’, we always have 2/ < 2] Az}, 21V 25 <. (If, for
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example, &’ = 2] Az} then 21,20 € AN Z, a contradiction). Consequently,
we obtain z1 A 29, 21 V 29 € Z, i.e. Z is a sublattice.

Claim 2. K is a sublattice.

Proof. Take ki,ko € K such that ki||ks. Then ki V ko > ki A ko > a,
Ya € A. Moreover, since k1 < z1 and ko < zo with 21,20 € Z, we have
ki V ko < z1V zo € Z. Therefore k1 A ko, k1 V ko € K.

We observe that K is convex by its definition.

Claim 3. K absorbs the squares.

Proof. Let us consider a square (e, f; ¢, d) in L with ¢ < d we have to show
that ce K & de K.

Necessity. Let ¢ € K. Thend > e > ¢ > a, Va € A (see Fig. 1a).
Therefore d'Sa’, Va' € A’.

We have two alternative cases.

(1) c € Z. In this case 2’ < ¢ <y, Vo' € X', Vy’ € Y'. Consider the
square (¢, f'; ¢, d’), where, without loss of generality, we can assume that
¢ < d (see Fig. 1b).

Fig. 1
Note that

(*) vy eY =9y >d.

Indeed, since y € Y and e, f > ¢ > y we have y/Se’, f'. Ity <€, f/,
then 3/ < e’ A f’ = ¢/, which contradicts ¢’ < y’. Thus, v’ > €', f/ and so
y' > d'. Since d ¢ A, it implies that ¢y’ > d'.

By the assumption we have d > a, Va € A and 2’ < d’, V2’ € X'. By
(*),d <y ,Vy' €Y'. Henced € Z C K.

(2) ¢ ¢ Z. Since ¢Sa, Ya € A and the condition 2’ < ¢ <y, V2’ € X',
Vy' € Y’ does not hold, we have to examine 4 possibilities:
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(2a) ¢ < a',Va' € A'.

(2b) I, ¢ e X' : p/ < < (.

(2¢) ¢ > d',Va' € A"

(2d) I, ¢ €Y' : p' < <.

We shall only examine the cases (2a) and (2b). The proof of (2c) and
(2d) is similar. We may assume that ¢ < d’.

Case (2a) is shown in Fig. 2a, where 2’ is an arbitrary element of Z'.
Applying (*) to an arbitrary 2’ € X’ we obtain d’ < z’ and hence, d’ < 2'.

Fig. 2

For the case (2b) we denote P’ = {2/ € X'|2’ < ¢’} and Q' = {2’ €
X'|xz" > ¢'}. This case is shown in Fig. 2b, where 2’ is an arbitrary element
in Z’. Considering ¢’ € Q" and using statement (x) we have d’ < ¢’ < 2.

Since €/, f’ < d’, and by (2a) and (2b) we always have e S z and f S z,
Vze Z. Ife, f >z, Vz€ Z, thenc=eA f >z, Vz € Z. This contradicts
the definition of K. Therefore, there exists zy € Z such that zq is greater
than one of the elements e, f. Since e||f, d = eV f < zy which shows that
de K.

Sufficiency. Let d € K. If d € Z then 2’ < d' <y, Va' € X', Vy' € Y'.
As in part (1) of Necessity we have ¢ € Z. Assume that d ¢ Z. Then
a < d< z for all a € A and some zy € Z. Consider (¢, f';,d’), where
we can assume that ¢ < d’. We show that a Se, f, Va € A. Indeed:

a) If ' < z{ then ¢/, f' < d' <z <y, Vy €Y'. Therefore ¢Sy and
f Sy, for some y € A.

b) If d’ > z{, using the condition that e, f < d < zp we have €'S z{,
f'S z{. Therefore z, < €/, f’. This means that €', f' > 2/, V2’ € X’ and
hence e Sx and f Sz for some x € A.

From a) , b) and by Lemma IT we obtain that a Se, f, Va € A.

Ife, f <ag, for ag € A then d =eV f < ag which contradicts the fact
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that d > a, Va € A. Thuse,f >a,Vac€ Aandsoc=eAf >a,Va e A,
or in other words, ¢ € K. Claim 3 is proved.

Now we can finish the proof of Lemma 2.3 as follows. Observe that
a <k,Va € A, Vk € K. This implies that AU K is a linearly decomposed
sublattice. By the assumption that L is not linearly decomposable, it
implies that A U K # L. Furthermore, since A is contractible, K is
convex and K absorbs the squares, A U K is a contractible sublattice.
This contradicts the maximality of A. Hence A’ is convex. Summing up,
A’ is a contractible sublattice.

The proof of Lemma 2.3 is now complete.

Remark. Lemmas 2.2 and 2.3 are not true for the linearly decomposable
lattices. Indeed, consider the lattices L and L’ in Fig. 3.

Fig. 3

The lattice L is linearly decomposed into A, B, C' such that a < b <
¢, Va € A, Vb € B, Ve € C. If we assume that A,C are not linearly
decomposable then AU B, BUC' are the maximal contractible sublattices
in L, whose intersection is non-empty.

On the other hand, L’ consists of the same sublattices A, B,C as in L,
which form a linear decomposition of L’ satisfying the condition a < ¢ < b,
Va € A, Ve < C, Vb € B. Using the identities id 4, idg, idc as lattice
isomorphisms on A, B, C, respectively, we construct a square preserving
bijection ¢ : L — L’ such that <,0|A =id4, go‘B =1idp, |, =idc. It C'is
not linearly decomposable, then AU B is a maximal contractible sublattice
of L, but sublattice ¢(A U B) is not contractible in L.

Now, let L be a lattice which has contractible sublattices. If we denote
by C the family of all contractible sublattices of L, then C is partially
ordered with the inclusion relation C. Suppose that {C;|i € I} is a chain

in C, it is easy to check that C' = [J C; is a sublattice of L satisfying
iel
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(a), (b) of Definition I. But in general C' is not contractible, since it is
not always proper. Consider the lattice L in Fig.4. We observe that
A, = |an,by], n € N (natural numbers) are contractible sublattices of L

and |J 4, =0L.
neN

Fig. 4

We say that condition (M) holds for a lattice L if every contractible
sublattice of L is included in a maximal one. By Zorn’s Lemma, this is
equivalent to the fact that if {C;|i € I} is a chain in C, then |J C; € C.

il

In what follows, we consider only the lattices which are not linearly
decomposable and satisfy condition (M).

Let {A;|i € I} be the family of all maximal contractible sublattices of
L. According to Lemma 2.2, A, NA; =0, Vi,j € I, i # j. This allows
us to define an equivalence p on L, whose equivalence classes are the sets
A;, i € I, and the one-elements sets {z}, z € L'\ |J A;. The equivalence

icl
relation p is said to be induced by the family {Al‘z el}.

Lemma 2.4. The equivalence p is a congruence.

Proof. Let (a,a’), (b,b’) € p. We have to prove that (a Ab,a’ AV) € p
and (a V b,a’ V) € p. When a =d', b =1V or a,b,d,b € A; for some
1 € I, it is trivial. For the remaining cases, it is sufficient to examine only
the case where a # a/, b # b’ and a,d’ € A;, b,b' € A;, for some i,j € I,
i#j. Putc=aAband ¢ =a' AV

If ¢ € A; then also b € A; since A; absorbs the squares. This is
impossible, because A; N A; = (. Hence ¢ ¢ A;. Since ¢ < a, by (P1) we
get c < a'.
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Analogously, we have ¢ < b'. Thus ¢ < a’ Ab = ¢/. By the symmetrical
role of ¢ and ¢’ we also have ¢/ < ¢ and hence, ¢ = ¢/, i.e. (¢,c) € p.
By duality we can show that (aVb,a’Vb') € p and the proof is complete.

Remark. Lemma 2.4 is valid for an arbitrary family of contractible sub-
lattices {Az}z € I} such that A, NA; =0, Vi,j € I, i # j. Here the
maximality of A;, ¢ € I is necessary for obtaining the quotient lattice L/p
having no contractible sublattices.

Before proving the main theorem we recall a theorem of N. D. Filippov
[4], which states that:

(F) Let L, L' be arbitrary lattices. Then Sub(L) = Sub(L’) if and only
if there exists a square preserving bijection ¢ : L — L.

For brevity we say that condition (G) holds for a lattice L if L is
determined by Sub(L) up to an isomorphism, that is, if Sub(L) = Sub(L’)
for some lattice L' then L = L'.

Thus, according to (F) whenever the lattice L satisfies (G) then every
square preserving bijection ¢ : L — L’ induces an isomorphism f : L — L’.
Now, we are ready to state the main result:

Theorem 2.5. Let L be a lattice having no linear decomposition and
satisfying condition (M). Let {Az‘z € I} be the family of all mazimal
contractible sublattices of L. If A; satisfies (G) for every i € I, then L is
determined by Sub(L) up to an isomorphism or a dual isomorphism.

Proof. Assume that Sub(L) = Sub(L’) for some lattice L’. We have to

prove that L = L' or L ~ (dually isomorphic).

According to (F) there exists a square preserving bijection ¢ : L — L.
Consider A; for some fixed index i € I. Put ¢(4;) = B;. By Lemma 2.3,
B, is a contractible sublattice of L’. Denote by ; : A; — B; the restriction
of ¢ on A;. Note that p; is also a square preserving bijection. Since A;
satisfies (G), by virtue of (F), ¢; induces an isomorphism f; : A; — B;.

On the other hand, taking the dual mapping d; : B; — B} (d;(z) =z
and z < y < d;(z) > d;(y), Vx,y € B;) we have a square preserving
bijection d;o f;: A; — B}, which determines an isomorphism h; : A; — B}
(by virtue of (F)). Let d; ' : Bf — B; be the dual isomorphism of d;. Set
gi =d; Yoh;: A; — B, Clearly, g; is a dual isomorphism.

Further, applying Lemmas 2.4 to the family {A4;|i € I}, we obtain
a congruence p on L. Since A;, i € I are maximal, the quotient lat-
tice L/p of L has no contractible sublattice. Since ¢ is a bijection, we
have B, B; =0, for all i,j € I, i # j. Again by Lemma 2.4, {B;|i € I}
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defines a congruence p’ on L’. So we have the quotient lattice L'/p" of
L’. Obviously ¢ induces a square preserving bijection @ : L/p — L'/p'.
Since L/p has no contractible sublattice, by Proposition 111, % is either an
isomorphism or a dual isomorphism.

To finish the proof, we consider two cases:

a) If 7 is an isomorphism, then based on @ and the family of isomor-
phisms { f;|i € I} we can establish an isomorphism f : L — L’ as follows:

1)aecL)\ U[Az-, ?({a}) = {b} = fla) =0.
i€
2)a € A; = f(a) = fi(a), Viel.

b) If ¥ is a dual isomorphism, then based on @ and the family of dual
isomorphisms {g;|i € I} we define a dual isomorphism g : L — L' as
follows:

)aelL\ UI A, p({a}) = {b} = g(a) = b.
ic
2)a€ A; = g(a) =gi(a), Viel.
The theorem is proved.

Examples. We give now two examples of lattices which satisfy Theorem
2.5.

Fig. 5

The maximal contractible sublattices Aq,..., A4 of L satisfy (G) and
determine L/p, while the maximal contractible sublattices By, By of L;
determine L;/p;.
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