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1. Introduction

This paper is concerned with Grätzer’s problem: find conditions under
which Sub(L) determines L up to isomorphism (see [5], Problem 1.4).

In [1], [2] we proposed the concept of contractible sublattice and gave a
condition on a lattice L without contractible sublattices, such that Sub(L)
determines L up to an isomorphism or a dual isomorphism. In [3] we
described a class K of lattices satisfying this condition.

The main aim of this paper is to study the lattices which have con-
tractible sublattices. By contractible sublattice method we construct such
lattices L which are determined by Sub(L) up to an isomorphism or a dual
isomorphism (see Theorem 2.5). It is worth to mention that these lattices
do not belong to K.

2. Results

First, we recall some concepts and results from [1], [2], [3].

Definition I. A proper sublattice A of the lattice L with |A| > 1 is called
a contractible sublattice if A satisfies the following conditions:

(a) A is convex
(b) c ∈ A ⇔ d ∈ A, for any square 〈a, b; c, d〉 in L.

Remark. Suppose that A is contractible and 〈a, b; c, d〉 is a square in L.
According to (a) and (b), if an element of {c, d} belongs to A then the
sublattice {a, b, c, d} is contained in A. Therefore, instead of (b), we can
shortly say that “sublattice A absorbs the squares”.

In what follows, it will be denoted by aS b (resp. a‖b), when a is
comparable (resp. incomparable) with b.

Lemma II. Let A be a contractible sublattice of L and k ∈ L \A, a ∈ A,
Then:
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(P1) If k < a then k < x, ∀x ∈ A.
(P2) If k > a then k > x, ∀x ∈ A.
(P3) If k‖a then k‖x, ∀x ∈ A.

We recall that a one-to-one and onto map ϕ : L → L′ for two arbitrary
lattices L. L′ is called a square preserving bijection if: 〈a, b; c, d〉 is a square
in L ⇔ 〈ϕ(a), ϕ(b); ϕ(c), ϕ(d)〉 is a square in L′.

Proposition III. Let L be a lattice having no contractible sublattices and
ϕ : L → L′ a square preserving bijection. Then ϕ is either an isomorphism
or a dual isomorphism.

Now, we prove some lemmas concerning the contractible sublattices
and the lattices having no linear decomposition.

We say that a lattice L has a linear decomposition if there exist a chain
I with |I| > 1 and sublattices Li, i ∈ I of L such that L =

⋃
i∈I

Li and for

i, j ∈ I, i < j then a < b for every a ∈ Li, b ∈ Lj .

Lemma 2.1. If A, B are contractible sublattices of L such that A 6⊆ B,
B 6⊆ A and A ∩B 6= ∅, then A ∪B is a linearly decomposable sublattice.

Proof. Let C = A ∩ B and X = A \ C, Y = B \ C. Clearly, C is a
sublattice. Take x, y ∈ X such that x‖y. If at least one of two elements
x ∧ y, x ∨ y belongs to C, then x, y ∈ B because of the contractibility of
B. This is a contradiction, since X ∩B = ∅. Therefore x ∧ y, x ∨ y ∈ X,
i.e. X is a sublattice. Analogously, Y is also a sublattice.

Now we consider arbitrary elements x ∈ X, y ∈ Y and c ∈ C. If x‖c
then it is easy to deduce that x∧c, x∨c 6∈ B and so, we have x∧c < c < x∨c
with x ∧ c, x ∨ c ∈ A \ B. Since B is contractible and c ∈ B, by Lemma
II it implies that x∧ c < b < x∨ c, ∀b ∈ B. Because of the convexity of A
we have B ⊆ A, which contradicts the assumption of the lemma. Thus,
we have xSc and by Lemma II it implies either x < c < y or x > c > y.
This means that A ∪ B is a sublattice which is linearly decomposed into
X, C, Y .

The proof is complete.

Lemma 2.2. If a lattice L has no linear decomposition and A, B are
different maximal contractible sublattices of L, then A ∩B = ∅.
Proof. Let C = A ∩B. If C 6= ∅, then A ∪B is a linear decomposed sub-
lattice of L as shown in Lemma 2.1. Since L is not linearly decomposable,
A∪B must be a proper sublattice. Evidently, A∪B absorbs the squares.
Now, we show that A∪B is convex. Take x ∈ L such that u < x < v with
u, v ∈ A∪B. We have to prove that x ∈ A∪B. The cases, where u, v ∈ A
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or u, v ∈ B, are trivial by virtue of convexity of A and B. Hence we may
assume that u ∈ A \ C, v ∈ B \ C and x 6∈ A. According to (P2) we have
x > a, ∀a ∈ A and thus x > c for some c ∈ C ⊆ B. From v > x > c with
v, c ∈ B we conclude x ∈ B ⊆ A ∪B.

In conclusion, A∪B is a contractible sublattice, which contradicts the
fact that A is maximal. Thus, we have A∩B = ∅ and the lemma is proved.

Lemma 2.3. Let L be a lattice having no linear decomposition, and ϕ :
L → L′ a square preserving bijection for some lattice L′. If A is a maximal
contractible sublattice of L, then ϕ(A) is a contractible sublattice of L′.

Proof. For the sake of convenience we denote ϕ(x) by x′ and ϕ(X) by X ′,
where x ∈ L and X ⊆ L. Since ϕ is a bijection, any element of L′ is writte
uniquely in the form x′, x ∈ L.

Let A be a maximal contractible sublattice of L. Take x′, y′ ∈ A′

with x′‖y′. Then 〈x, y;x ∧ y, x ∨ y〉 is a square in A. It implies that
〈x′, y′; x′ ∧ y′, x′ ∨ y′〉 is a square in A′. Thus we have x′ ∧ y′, x′ ∨ y′ ∈ A′,
so A′ is a sublattice of L′.

Further, if 〈a′, b′; c′, d′〉 is a square in L′ with, for example, c′ ∈ A′, the
〈a, b; c, d〉 is a square in L with c ∈ A. According to (b) of Definition I we
have d ∈ A, i.e. d′ ∈ A′. Thus, A′ absorbs the squares.

Now, we verify the convexity of A′. We assume by contrary that there
exist h′ 6∈ A′ and u′ < h′ < v′ with u′, v′ ∈ A′. From u′ < h′ it follows
by Lemma II that hS u and so, hS a, ∀a ∈ A. Therefore we have h′S a′,
∀a′ ∈ A′. Denoting X ′ = {x′ ∈ A′|x′ < h′} and Y ′ = {y′ ∈ A′|y′ > h′}
(u′ ∈ X ′, v′ ∈ Y ′), we obtain A′ = X ′ ∪ Y ′ as a linearly decomposed
lattice.

Since hS u and the proof for the case of u > h is similar to the case of
u < h, we shall prove only the case h > u. According to (P2), we have
h > a, ∀a ∈ A. We denote:

Z = {z ∈ L|z > a, ∀a ∈ A and x′ < z′ < y′, ∀x′ ∈ X ′, ∀y′ ∈ Y ′},
K = {k ∈ L|∃z ∈ Z : z ≥ k > a, ∀a ∈ A}.
It is easy to see that Z 6= ∅ (h ∈ Z), Z ⊆ K and K ∩ A = ∅. In order

to prove the convexity of A′ we need the following claims.

Claim 1. Z is a sublattice.

Proof. Considering arbitrary z1, z2 ∈ Z with z1‖z2, we have z1 ∨ z2 >
z1 > z1 ∧ z2 ≥ a, ∀a ∈ A. If z1 ∧ z2 = a, then z1 ∧ z2 ∈ A. From
the contractibility of A it follows that {z1, z2; z1 ∧ z2, z1 ∨ z2} ⊆ A, which
contradicts the fact that Z∩A = ∅. Hence z1∧z2 > a. On the other hand,
for any x′ ∈ X ′, y′ ∈ Y ′, we always have x′ < z′1 ∧ z′2, z′1 ∨ z′2 < y′. (If, for
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example, x′ = z′1 ∧ z′2 then z1, z2 ∈ A∩Z, a contradiction). Consequently,
we obtain z1 ∧ z2, z1 ∨ z2 ∈ Z, i.e. Z is a sublattice.

Claim 2. K is a sublattice.

Proof. Take k1, k2 ∈ K such that k1‖k2. Then k1 ∨ k2 > k1 ∧ k2 > a,
∀a ∈ A. Moreover, since k1 < z1 and k2 < z2 with z1, z2 ∈ Z, we have
k1 ∨ k2 < z1 ∨ z2 ∈ Z. Therefore k1 ∧ k2, k1 ∨ k2 ∈ K.

We observe that K is convex by its definition.

Claim 3. K absorbs the squares.

Proof. Let us consider a square 〈e, f ; c, d〉 in L with c < d we have to show
that c ∈ K ⇔ d ∈ K.

Necessity. Let c ∈ K. Then d > e > c > a, ∀a ∈ A (see Fig. 1a).
Therefore d′S a′, ∀a′ ∈ A′.

We have two alternative cases.
(1) c ∈ Z. In this case x′ < c′ < y′, ∀x′ ∈ X ′, ∀y′ ∈ Y ′. Consider the

square 〈c′, f ′; c′, d′〉, where, without loss of generality, we can assume that
c′ < d′ (see Fig. 1b).

Fig. 1

Note that

(*) y′ ∈ Y ′ ⇒ y′ > d′.

Indeed, since y ∈ Y and e, f > c > y we have y′Se′, f ′. If y′ < e′, f ′,
then y′ ≤ e′ ∧ f ′ = c′, which contradicts c′ < y′. Thus, y′ > e′, f ′ and so
y′ ≥ d′. Since d 6∈ A, it implies that y′ > d′.

By the assumption we have d > a, ∀a ∈ A and x′ < d′, ∀x′ ∈ X ′. By
(*), d′ < y′, ∀y′ ∈ Y ′. Hence d ∈ Z ⊆ K.

(2) c 6∈ Z. Since cSa, ∀a ∈ A and the condition x′ < c′ < y′, ∀x′ ∈ X ′,
∀y′ ∈ Y ′ does not hold, we have to examine 4 possibilities:
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(2a) c′ < a′, ∀a′ ∈ A′.
(2b) ∃p′, q′ ∈ X ′ : p′ < c′ < q′.
(2c) c′ > a′, ∀a′ ∈ A′.
(2d) ∃p′, q′ ∈ Y ′ : p′ < c′ < q′.
We shall only examine the cases (2a) and (2b). The proof of (2c) and

(2d) is similar. We may assume that c′ < d′.
Case (2a) is shown in Fig. 2a, where z′ is an arbitrary element of Z ′.

Applying (*) to an arbitrary x′ ∈ X ′, we obtain d′ < x′ and hence, d′ < z′.

Fig. 2

For the case (2b) we denote P ′ = {x′ ∈ X ′|x′ < c′} and Q′ = {x′ ∈
X ′|x′ > c′}. This case is shown in Fig. 2b, where z′ is an arbitrary element
in Z ′. Considering q′ ∈ Q′ and using statement (∗) we have d′ < q′ < z′.

Since e′, f ′ < d′, and by (2a) and (2b) we always have e S z and f S z,
∀z ∈ Z. If e, f > z, ∀z ∈ Z, then c = e ∧ f > z, ∀z ∈ Z. This contradicts
the definition of K. Therefore, there exists z0 ∈ Z such that z0 is greater
than one of the elements e, f . Since e‖f , d = e∨ f ≤ z0 which shows that
d ∈ K.

Sufficiency. Let d ∈ K. If d ∈ Z then x′ < d′ < y′, ∀x′ ∈ X ′, ∀y′ ∈ Y ′.
As in part (1) of Necessity we have c ∈ Z. Assume that d 6∈ Z. Then
a < d < z0 for all a ∈ A and some z0 ∈ Z. Consider 〈e′, f ′; c′, d′〉, where
we can assume that c′ < d′. We show that aS e, f , ∀a ∈ A. Indeed:

a) If d′ < z′0 then e′, f ′ < d′ < z′0 < y′, ∀y′ ∈ Y ′. Therefore e S y and
f S y, for some y ∈ A.

b) If d′ > z′0, using the condition that e, f < d < z0 we have e′S z′0,
f ′S z′0. Therefore z′0 < e′, f ′. This means that e′, f ′ > x′, ∀x′ ∈ X ′ and
hence e S x and f S x for some x ∈ A.

From a) , b) and by Lemma II we obtain that aS e, f , ∀a ∈ A.
If e, f < a0, for a0 ∈ A then d = e ∨ f ≤ a0 which contradicts the fact
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that d > a, ∀a ∈ A. Thus e, f > a, ∀a ∈ A and so c = e ∧ f > a, ∀a ∈ A,
or in other words, c ∈ K. Claim 3 is proved.

Now we can finish the proof of Lemma 2.3 as follows. Observe that
a < k, ∀a ∈ A, ∀k ∈ K. This implies that A∪K is a linearly decomposed
sublattice. By the assumption that L is not linearly decomposable, it
implies that A ∪ K 6= L. Furthermore, since A is contractible, K is
convex and K absorbs the squares, A ∪ K is a contractible sublattice.
This contradicts the maximality of A. Hence A′ is convex. Summing up,
A′ is a contractible sublattice.

The proof of Lemma 2.3 is now complete.

Remark. Lemmas 2.2 and 2.3 are not true for the linearly decomposable
lattices. Indeed, consider the lattices L and L′ in Fig. 3.

Fig. 3

The lattice L is linearly decomposed into A,B, C such that a < b <
c, ∀a ∈ A, ∀b ∈ B, ∀c ∈ C. If we assume that A,C are not linearly
decomposable then A∪B, B ∪C are the maximal contractible sublattices
in L, whose intersection is non-empty.

On the other hand, L′ consists of the same sublattices A,B,C as in L,
which form a linear decomposition of L′ satisfying the condition a < c < b,
∀a ∈ A, ∀c < C, ∀b ∈ B. Using the identities idA, idB , idC as lattice
isomorphisms on A,B, C, respectively, we construct a square preserving
bijection ϕ : L → L′ such that ϕ

∣∣
A

= idA, ϕ
∣∣
B

= idB , ϕ
∣∣
C

= idC . If C is
not linearly decomposable, then A∪B is a maximal contractible sublattice
of L, but sublattice ϕ(A ∪B) is not contractible in L′.

Now, let L be a lattice which has contractible sublattices. If we denote
by C the family of all contractible sublattices of L, then C is partially
ordered with the inclusion relation ⊆. Suppose that {Ci

∣∣i ∈ I} is a chain
in C, it is easy to check that C =

⋃
i∈I

Ci is a sublattice of L satisfying
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(a), (b) of Definition I. But in general C is not contractible, since it is
not always proper. Consider the lattice L in Fig. 4. We observe that
An = [an, bn], n ∈ N (natural numbers) are contractible sublattices of L
and

⋃
n∈N

An = L.

Fig. 4

We say that condition (M) holds for a lattice L if every contractible
sublattice of L is included in a maximal one. By Zorn’s Lemma, this is
equivalent to the fact that if {Ci

∣∣i ∈ I} is a chain in C, then
⋃
i∈I

Ci ∈ C.

In what follows, we consider only the lattices which are not linearly
decomposable and satisfy condition (M).

Let {Ai

∣∣i ∈ I} be the family of all maximal contractible sublattices of
L. According to Lemma 2.2, Ai ∩ Aj = ∅, ∀i, j ∈ I, i 6= j. This allows
us to define an equivalence ρ on L, whose equivalence classes are the sets
Ai, i ∈ I, and the one-elements sets {x}, x ∈ L \ ⋃

i∈I

Ai. The equivalence

relation ρ is said to be induced by the family {Ai

∣∣i ∈ I}.

Lemma 2.4. The equivalence ρ is a congruence.

Proof. Let (a, a′), (b, b′) ∈ ρ. We have to prove that (a ∧ b, a′ ∧ b′) ∈ ρ
and (a ∨ b, a′ ∨ b′) ∈ ρ. When a = a′, b = b′ or a, b, a′, b′ ∈ Ai for some
i ∈ I, it is trivial. For the remaining cases, it is sufficient to examine only
the case where a 6= a′, b 6= b′ and a, a′ ∈ Ai, b, b′ ∈ Aj , for some i, j ∈ I,
i 6= j. Put c = a ∧ b and c′ = a′ ∧ b′.

If c ∈ Ai then also b ∈ Ai since Ai absorbs the squares. This is
impossible, because Ai ∩ Aj = ∅. Hence c 6∈ Ai. Since c < a, by (P1) we
get c < a′.
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Analogously, we have c < b′. Thus c ≤ a′∧ b′ = c′. By the symmetrical
role of c and c′ we also have c′ ≤ c and hence, c = c′, i.e. (c, c′) ∈ ρ.

By duality we can show that (a∨b, a′∨b′) ∈ ρ and the proof is complete.

Remark. Lemma 2.4 is valid for an arbitrary family of contractible sub-
lattices {Ai

∣∣i ∈ I} such that Ai ∩ Aj = ∅, ∀i, j ∈ I, i 6= j. Here the
maximality of Ai, i ∈ I is necessary for obtaining the quotient lattice L/ρ
having no contractible sublattices.

Before proving the main theorem we recall a theorem of N. D. Filippov
[4], which states that:

(F) Let L, L′ be arbitrary lattices. Then Sub(L) ∼= Sub(L′) if and only
if there exists a square preserving bijection ϕ : L → L′.

For brevity we say that condition (G) holds for a lattice L if L is
determined by Sub(L) up to an isomorphism, that is, if Sub(L) ∼= Sub(L′)
for some lattice L′ then L ∼= L′.

Thus, according to (F) whenever the lattice L satisfies (G) then every
square preserving bijection ϕ : L → L′ induces an isomorphism f : L → L′.

Now, we are ready to state the main result:

Theorem 2.5. Let L be a lattice having no linear decomposition and
satisfying condition (M). Let {Ai

∣∣i ∈ I} be the family of all maximal
contractible sublattices of L. If Ai satisfies (G) for every i ∈ I, then L is
determined by Sub(L) up to an isomorphism or a dual isomorphism.

Proof. Assume that Sub(L) ∼= Sub(L′) for some lattice L′. We have to

prove that L ∼= L′ or L
∗∼= L′ (dually isomorphic).

According to (F) there exists a square preserving bijection ϕ : L → L′.
Consider Ai for some fixed index i ∈ I. Put ϕ(Ai) = Bi. By Lemma 2.3,
Bi is a contractible sublattice of L′. Denote by ϕi : Ai → Bi the restriction
of ϕ on Ai. Note that ϕi is also a square preserving bijection. Since Ai

satisfies (G), by virtue of (F), ϕi induces an isomorphism fi : Ai → Bi.
On the other hand, taking the dual mapping di : Bi → B∗

i (di(x) = x
and x < y ⇔ di(x) > di(y), ∀x, y ∈ Bi) we have a square preserving
bijection di◦fi: Ai → B∗

i , which determines an isomorphism hi : Ai → B∗
i

(by virtue of (F)). Let d−1
i : B∗

i → Bi be the dual isomorphism of di. Set
gi = d−1

i ◦ hi: Ai → Bi. Clearly, gi is a dual isomorphism.
Further, applying Lemmas 2.4 to the family {Ai|i ∈ I}, we obtain

a congruence ρ on L. Since Ai, i ∈ I are maximal, the quotient lat-
tice L/ρ of L has no contractible sublattice. Since ϕ is a bijection, we
have Bi ∩ Bj = ∅, for all i, j ∈ I, i 6= j. Again by Lemma 2.4, {Bi|i ∈ I}
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defines a congruence ρ′ on L′. So we have the quotient lattice L′/ρ′ of
L′. Obviously ϕ induces a square preserving bijection ϕ : L/ρ → L′/ρ′.
Since L/ρ has no contractible sublattice, by Proposition III, ϕ is either an
isomorphism or a dual isomorphism.

To finish the proof, we consider two cases:
a) If ϕ is an isomorphism, then based on ϕ and the family of isomor-

phisms {fi

∣∣i ∈ I} we can establish an isomorphism f : L → L′ as follows:
1) a ∈ L \ ⋃

i∈I

Ai, ϕ({a}) = {b} ⇒ f(a) = b.

2) a ∈ Ai ⇒ f(a) = fi(a), ∀i ∈ I.
b) If ϕ is a dual isomorphism, then based on ϕ and the family of dual

isomorphisms {gi

∣∣i ∈ I} we define a dual isomorphism g : L → L′ as
follows:

1) a ∈ L \ ⋃
i∈I

Ai, ϕ({a}) = {b} ⇒ g(a) = b.

2) a ∈ Ai ⇒ g(a) = gi(a), ∀i ∈ I.
The theorem is proved.

Examples. We give now two examples of lattices which satisfy Theorem
2.5.

Fig. 5

The maximal contractible sublattices A1, . . . , A4 of L satisfy (G) and
determine L/ρ, while the maximal contractible sublattices B1, B2 of L1

determine L1/ρ1.
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