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CONVEX VECTOR FUNCTIONS AND
THEIR SUBDIFFERENTIAL

DINH THE LUC∗, NGUYEN XUAN TAN∗ AND PHAN NHAT TINH∗∗

Abstract. The continuity of a convex vector function on relative interior
points of its domain is studied. As a corollary of this we can see that a
convex vector function is Lipschitz near any relative interior point of its do-
main. A new concept of subdifferential of a convex function is introduced
and some its properties similar to those in the scalar case are shown. The
inclusive relations between generalized Jacobian and subdifferential, the
convexcity of a vector function and the monotonicity of its subdifferential
are also established. Further, some neccessary and sufficient conditions
for the existence of efficient solutions of vector optimization problems are
also proved.

1. Introduction

Convex analysis is now a standard subject and a must in undergraduate
and graduate study. It offers several ideas and methods of thinking to
approach nonlinear functions from both theoretical and computational
points of view. Convex vector functions have interested several authors, in
particular those working in vector optimizations. Some results have been
obtained on properties of these functions, their relationship with convex
scalar functions. Applications have also been made in obtaining optimality
conditions for vector problems (see [1]). However, to our knowledge, very
few attention was paid to differential of convex vector functions and their
characterizations. The aim of the present paper is to investigate convex
vector functions and their subdifferential. We do not intend to make direct
extension of results of convex analysis to the vector case. We rather use
a new approach of nonsmooth analysis to tackle the problem and by this
enlighten the structure of vector functions.

The paper is organized as follows. The next section contains some
preliminaries which are needed in the sequel. Section 3 is devoted to
continuity properties of convex vector functions. Unlike the scalar case, a
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convex vector function is not necessarily continuous in the interior of its
domain. Section 4 deals with subdifferential of convex vector functions.
We define the subdifferential in a standard way and compare it with gen-
eralized Jacobian introduced by Clarke. Calculus rules are provided for
the subdifferential of convex vector functions. The last section is about
the monotonicity of the subdifferential introduced above. We show that
a vector function is convex if and only if its local convex subdifferential
admits a monotone selection.

2. Preliminaries

Suppose that a convex cone C ⊆ Rm specifies a partial order ’ºC ’ as
follows.

x, y ∈ Rm, x ºC y if x− y ∈ C.

Sometimes we write º instead of ºC if it is clear which cone is under
consideration. Let f be a function from a nonempty convex subset D ⊆ Rn

to Rm. We recall that f is said to be convex (or more precisely C-convex)
on D if for every x, y ∈ D, λ ∈ (0, 1), one has

λf(x) + (1− λ)f(y) º f(λx + (1− λ)y).

Denote by C ′ the positive polar cone of C, i.e.

C ′ :=
{
ξ ∈ L(Rm, R) : ξ(c) ≥ 0, for all c ∈ C

}
,

where L(Rm, R) denotes the space of linear functionals on Rm.
Denote by lC the set C ∩ (−C). The cone C is said to be pointed if

lC = {0}.
The following result from [1] will be needed in the sequel.

Lemma 2.1. If C is closed, then f is convex if and only if the composition
ξ ◦ f is a scalar convex function on D, for every ξ ∈ C ′.

Lemma 2.2. If f is convex with respect to C, then it is also convex with
respect to any cone larger than C.

Proof.The proof is straightforward. We omit it.

3. Continuity

It is known that scalar convex functions are Lipschitz near any relative
interior point of their domains. A natural question arises whether this is
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true for vector functions. We shall show that if the cone C satisfies certain
properties, then the answer is affirmative.

Theorem 3.1. Assume that the closure clC of the cone C is pointed and
f is a convex vector function from a convex subset D ⊆ Rn to Rm. Then
f is locally Lipschitz on the relative interior of D.

Proof. From Remark 1.6 and Proposition 1.10, Chapter 1 in [1], it follows
that clC has a convex compact base and int (clC)′ 6= ∅. Then there are
m linearly independent vectors ξ1, ξ2, . . . , ξm ∈ (clC)′. By Lemma 2.2,
f is convex with respect to the cone clC and by Lemma 2.1, ξi ◦ f is a
scalar convex function, for every i = 1, 2, . . . , m. Hence, ξi ◦ f is locally
Lipschitz on riD, for every i = 1, 2, . . . ,m. Let ξ ∈ L(Rm, R) be arbitrary,

we can represent ξ as ξ =
m∑

i=1

αiξi for some α1, α2, · · · , αm ∈ R. Then

ξf =
m∑

i=1

αi(ξif). Hence ξ ◦f is locally Lipschitz on riD. Since this is true

for all ξ ∈ L(Rm, R) then f is locally Lipschitz on riD.

It should be noted that if the closure of the cone C is not pointed,
then Theorem 3.1 is not valid. To see this, let f1 be a convex function, f2

be a discontinuous function from R to R. Then f = (f1, f2) is a convex
vector function from R to R2 with respect to the cone C := {(x, y) ∈ R2 :
x ≥ 0}. Of course this function is not continuous. Hence, it is not locally
Lipschitz on R. Observe that clC = {(x, y) : x ≥ 0} is not pointed.

4. Subdifferential

Throughout this section we assume that C ⊆ Rm is a closed pointed
convex cone. Let f be a convex function from a convex subset D ⊆ Rn to
Rm and x0 ∈ D. We define the subdifferential of f at x0 as the set

∂f(x0) := {A ∈ L(Rn, Rm) : f(x)− f(x0) º A(x− x0), for all x ∈ D},

where L(Rn, Rm) denotes the space of linear continuous mappings from
Rn into Rm which is also considered as the space of (m× n)-matrices.

First, we consider a relation between the generalized Jacobian and the
subdifferential of the convex vector function f . Assume that intD 6= ∅.
Let x0 ∈ intD. By Theorem 3.1, f is Lipschitz near x0. By Rademacher’s
Theorem f is differentiable almost everywhere on some neighborhood of
x0. The generalized Jacobian Jf(x0) of f at x0 in Clarke’s sense [2] is
defined as the convex hull of all (m × n) matrices obtained as the limits
of sequences of the form

(
Df(xi)

)
i
, where

(
xi

)
i

converges to x0 and the
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classical Jacobian matrix Df(xi) of f at xi exists. It is known that for
m = 1 one always has equality ∂f(x) = Jf(x), x ∈ intD. For m > 1 this
is not true in general. However, the inclusion Jf(x) ⊆ ∂f(x), x ∈ intD is
still valid.

Lemma 4.1. For every x ∈ D, ∂f(x) is a closed convex set.

Proof. From the definition of subdifferential we have immediately the
convexity of ∂f(x). Now, we verify the closedness of ∂f(x). Assume that
a sequence

(
Ai

)
i
⊆ ∂f(x) converges to some A ∈ L(Rn, Rm). For every

y ∈ D, one has
f(y)− f(x)−Ai(y − x) ∈ C.

Taking i →∞, by the closedness of C, we have

f(y)− f(x)−A(y − x) ∈ C.

Hence, A ∈ ∂f(x). Thus, ∂f(x) is closed.

Lemma 4.2. If f is differentiable at x ∈ intD, then Df(x) ∈ ∂f(x).

Proof. Since f is differentiable at x, then ξ◦f is also differentiable at x, for
every ξ ∈ C ′. By Theorem 25.1 in [3], ξ◦Df(x) = D(ξ◦f)(x) ∈ ∂(ξ◦f)(x).
By the definition of subdifferentials, for every ξ ∈ C ′, y ∈ D, we have

(ξ ◦ f)(y)− (ξ ◦ f)(x)− (ξ ◦Df(x))(y − x) ≥ 0,

or
ξ (f(y)− f(x)−Df(x)(y − x)) ≥ 0.

Hence,
f(y)− f(x)−Df(x)(y − x) º 0.

Thus, Df(x) ∈ ∂f(x).

Lemma 4.3. The set-valued map ∂f from D into L(Rn, Rm) is closed at
any point x ∈ D at which f is continuous.

Proof. Assume f is continuous at x ∈ D. Let (xi, Ai)i∈N be a sequence
which converges to (x,A), for some A ∈ L(Rn, Rm), where Ai ∈ ∂f(xi).
For every y ∈ D, one has

f(y)− f(xi)−Ai(y − xi) ∈ C.

Taking i →∞, since f is continuous at x and since C is closed, we have

f(y)− f(x)−A(y − x) ∈ C.
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It follows that A ∈ ∂f(x). This completes the proof of the lemma.

Theorem 4.4. Let f be a convex function from a convex subset D ⊆ Rn

to Rm with intD 6= ∅. Then Jf(x) ⊆ ∂f(x), for all x ∈ intD.

Proof. Let A be the limit of a sequence of the form (Df(xi))i∈N , where
(xi)i∈N converges to x and the classical Jacobian matrix Df(xi) of f
at xi exists. By Lemma 4.2, Df(xi) ∈ ∂f(xi). By Theorem 3.1, f is
continuous at x. From Lemma 4.3 one has A ∈ ∂f(x). Since ∂f(x) is
convex, Jf(x) ⊆ ∂f(x).

It should be noted that in general the inclusion of Theorem 4.4 is strict.
For instance, let f1(x) = f2(x) = |x|, x ∈ R. The vector function f =
(f1, f2) is convex with respect to the cone R2

+. It is not difficult to see
that

∂f(0) = ∂f1(0)× ∂f2(0) = [−1, 1]× [−1, 1]

and
Jf(0) = [(−1,−1), (1, 1)],

where [(−1,−1), (1, 1)] denotes the line segment {λ(−1,−1)+(1−λ)(1, 1) :
λ ∈ [0, 1]} ⊂ R2. Hence, Jf(0) 6= ∂f(0).

Let A ⊆ L(Rn, Rm), ξ ∈ L(Rm, R) be arbitrary. Let us denote by ξA
the set {ξ ◦A : A ∈ A}.
Corollary 4.5. Let f be a convex function from a convex subset D ⊆ Rn

to Rm with intD 6= ∅. If x ∈ intD, then for every ξ ∈ C ′, ξJf(x) =
ξ∂f(x) (i.e. the projections of ∂f(x) and Jf(x) on every direction ξ ∈ C ′

coincide).

Proof. Let x ∈ intD. By Theorem 2.6.6 in [2], ξJf(x) = J(ξ◦f)(x), for all
ξ ∈ C ′. Since ξ ◦ f is scalar convex then J(ξ ◦ f)(x) = ∂(ξ ◦ f)(x). From
the definition of subdifferentials we have ∂(ξ ◦ f)(x) ⊇ ξ∂f(x). Hence,
ξJf(x) ⊇ ξ∂f(x). The converse inclusion is immediate from Theorem 4.4.
The proof is complete.

Now, we shall present some calculus rules for subdifferentials of convex
vector functions.

Theorem 4.6. Let f be a convex function from a convex subset D ⊆ Rn

to Rm, x ∈ D and ξ ∈ C ′. If one of the following conditions holds
i) intD 6= ∅, x ∈ intD,
ii) intD = ∅, x ∈ riD, ξ 6= 0,

then

(1) ∂(ξ ◦ f)(x) = ξ∂f(x).
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Proof. i) Let x ∈ intD. For every ξ ∈ C ′, since ξ ◦ f is a scalar convex
function, we have

∂(ξ ◦ f)(x) = J(ξ ◦ f)(x).

By Theorem 2.6.6 in [2],

J(ξ ◦ f)(x) = ξJf(x).

By Corollary 4.5,
ξJf(x) = ξ∂f(x).

Hence,
∂(ξ ◦ f)(x) = ξ∂f(x).

ii) By a translation we may assume 0 ∈ D. Without loss of the gen-
erality we may also assume that the subspace generated by D is Rk for
some k < n. Define a function f̄ : D ⊆ Rk → Rm as follows

f̄(y) = f(y),

for all y ∈ D. Obviously, f̄ is convex. Since x is a relative interior point
of D in Rn, then x is an interior point of D in the subspace Rk. Let
ξ ∈ C ′ \ {0} and A ∈ ∂(ξ ◦ f)(x). Denote by A′ the restriction of A to Rk,
then A′ ∈ ∂(ξ ◦ f̄)(x). By i), one has

∂(ξ ◦ f̄)(x) = ξ∂f̄(x).

Then there is some B′ ∈ ∂f̄(x) such that A′ = ξ ◦B′. Let {e1, e2, · · · , ek}
be a base of Rk and {e1, · · · , ek, ek+1, · · · , en} be a base of Rn. Since
ξ 6= 0, then for every i = k + 1, · · · , n, there exists a vector yi ∈ Rm such
that ξ(yi) = A(ei). Define a linear map B : Rn → Rm as follows

B(ei) =
{

B′(ei) i = 1, 2, · · · , k,

yi i = k + 1, · · · , n.

Then B ∈ ∂f(x) and A = ξ ◦ B ∈ ξ∂f(x). Hence, ∂(ξ ◦ f)(x) ⊆ ξ∂f(x).
The converse inclusion is trivial. This completes the proof of the theorem.

It can be easily seen that if intD 6= ∅ and x /∈ intD, then in general, (1)
does not hold. For instance, let f be any convex function from [0,1]⊆ R
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to R. Set ξ = 0, x = 0. Then ∂(ξ ◦ f)(x) = (−∞, 0] while ξ∂f(x) ⊆ {0}.
for x = 0 /∈ int [0, 1].

If intD = ∅, x ∈ riD and ξ = 0, then in general, (1) also does not hold.
For instance, set D = [(−1, 0), (1, 0)] ⊆ R2. Consider the function

f : x ∈ D ⊆ R2 → 0 ∈ R.

Let ξ = 0, we have ξ∂f(0) = {0} and ∂(ξ ◦ f)(0) = {(0, t) : t ∈ R}.
Hence, ∂(ξ ◦ f)(0) 6= ξ∂f(0).

Now, let g be another convex function from another convex subset
D′ ⊆ Rn to Rm. We shall establish the subdifferential of the sum f + g.

Theorem 4.7. For every x ∈ D ∩D′ we have

∂(f + g)(x) ⊇ ∂f(x) + ∂g(x).

If the cone C is generated by linearly independent vectors and riD∩riD′ 6=
∅, then equality holds for every x ∈ D ∩D′.

We need four following lemmata.

Lemma 4.8. Let X be a convex subset of Rm with nonempty interior
and let h : X ⊆ Rn → R be affine. Then h can be affinely extended on the
whole space.

Proof. By a translation we may assume 0 ∈ intX and h(0) = 0. Then
x ∈ X if ‖x‖ = ε for some ε > 0. Define the function H : Rn → R by

H(x) =




‖x‖
ε

h
( εx

‖x‖
)

x 6= 0,

0 x = 0.

A direct verification shows that H is affine. Moreover, H(x) = h(x), for
all x ∈ X. This completes the proof of the lemma.

Let X be a subset of Rm. Let us denote by 〈X〉 the subspace generated
by X. Let x ∈ 〈X〉 and let ε be a positive number. Denote by B̄〈X〉(x, ε)
the ball {y ∈ 〈X〉 : ‖y − x‖ ≤ ε}.
Lemma 4.9. Let X, Y be subsets of Rm. If riX∩riY 6= ∅ and 0 ∈ X∩Y ,
then

〈X〉 > ∩〈Y 〉 = 〈X ∩ Y 〉.

Proof. First, we consider the case 0 ∈ riX ∩ riY . We can find a positive
number ε such that B̄〈X〉(0, ε) ⊆ X, B̄〈Y 〉(0, ε) ⊆ Y . Then B̄〈X〉(0, ε) ∩
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B̄〈Y 〉(0, ε) ⊆ X ∩ Y . Let z ∈ 〈X〉 ∩ 〈Y 〉 with z 6= 0. Then
εz

‖z‖ ∈
B̄〈X〉(0, ε) ∩ B̄〈Y 〉(0, ε). Hence, z ∈ 〈X ∩ Y 〉. Thus, 〈X〉 ∩ 〈Y 〉 ⊆ 〈X ∩ Y 〉.
The converse inclusion is obvious.

Now, assume riX ∩ riY 6= ∅ and 0 ∈ X ∩Y . Let x0 ∈ riX ∩ riY . Then
0 ∈ ri(X − x0) ∩ ri(Y − x0). From the proof above we have

〈(X − x0)〉 ∩ 〈(Y − x0)〉 = 〈((X − x0) ∩ (Y − x0)〉.

Since 0 ∈ X ∩ Y , then 〈(X − x0)〉 = 〈X〉, 〈(Y − x0)〉 = 〈Y 〉,
〈(X − x0) ∩ (Y − x0)〉 = 〈X ∩ Y − x0〉 = 〈X ∩ Y 〉. Hence,

〈X〉 ∩ 〈Y 〉 = 〈X ∩ Y 〉.

This completes the proof of the lemma.

Lemma 4.10. Assume that three functions h : X ⊆ Rn → R, k : Y ⊆
Rn → R, A : Rn → R are given and that

a) X, Y are convex , riX ∩ riY 6= ∅,
b) 0 ∈ X ∩ Y , h(0) = k(0) = 0,
c) h, k are affine on X, Y ,
d) A is linear and A(x) = h(x) + k(x), for all x ∈ X ∩ Y .

Then h, k have linear extensions H, K on Rn such that A = H + K.

Proof. Assume that {e1, e2, · · · , er}, {e1, e2, · · · , er, u1, u2, · · · , us},
{e1, e2, · · · , er, v1, v2, · · · , vt} are bases of 〈X ∩Y 〉, 〈X〉, 〈Y 〉, respectively.
By Lemma 4.9, we have

dim(〈X〉+ 〈Y 〉) = dim〈X〉+ dim〈Y 〉 − dim〈X ∩ Y 〉 = r + s + t.

Hence, e1, · · · , er, u1, · · · , us, v1, · · · , vt are linearly independent. Then we
can find w1, w2, · · · , wq ∈ Rn such that e1, · · · , er, u1, · · · , us, v1, · · · , vt,
w1, · · · , wq is a base of Rn. It follows from Lemma 4.8 and h(0) = k(0) =
0 that h, k have linear extensions H1, K1 on the subspaces 〈X〉, 〈Y 〉,
respectively. Define the linear maps H : Rn → R, K : Rn → R as follows

H(ei) = H1(ei),
H(ui) = H1(ui),
H(vi) = A(vi)−K1(vi),

H(wi) =
A(wi)

2
·

K(ei) = K1(ei),
K(vi) = K1(vi),
K(ui) = A(ui)−H1(ui),
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K(wi) =
A(wi)

2
·

Then H, K are linear extensions of h, k on Rn and A = H + K. This
completes the proof of the lemma.

Now, assume that the cone C is generated by the convex hull of some
linearly independent vectors, i.e. C = cone(co{c1, c2, · · · , ck}), where
c1, c2, · · · , ck are linearly independent vectors in Rm. We can find m − k
vectors ck+1, · · · , cm such that {c1, c2, · · · , cm} is a base of Rm. For every

x ∈ Rm, we can represent x =
m∑

i=1

αici, for some α1, α2, · · · , αm ∈ R. It is

easily seen that x ∈ C if and only if

{
α1, α2, · · · , αk ≥ 0,

αk+1 = · · · = αm = 0.

Let h : D ⊆ Rn → Rm. Represent h as

h(x) =
m∑

i=1

hi(x)ci,

Lemma 4.11. h is C-convex if and only if h1, h2, · · · , hk are scalar convex
and hk+1, · · · , hm are affine.

Proof. For every x, y ∈ D, λ ∈ [0, 1], one has (h is convex)

⇔ h(λx + (1− λ)y) ¹C λh(x) + (1− λ)h(y)

⇔
m∑

i=1

[λhi(x) + (1− λ)hi(y)− hi(λx + (1− λ)y)]ci ∈ C

⇔
{

λhi(x) + (1− λ)hi(y)− hi(λx + (1− λ)y) ≥ 0, i = 1, 2, · · · , k,

λhi(x) + (1− λ)hi(y)− hi(λx + (1− λ)y) = 0, i = k + 1, · · · ,m.

⇔
{

h1, h2, · · · , hk are convex,

hk+1, · · · , hm are affine.

The proof is complete.

Proof of Theorem 4.7. Let x ∈ D ∩ D′ be arbitrary. The inclusion
∂(f +g)(x) ⊇ ∂f(x)+∂g(x) is obviously true without any additional con-
dition. Now assume that C is generated by linearly independent vectors,
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i.e. C = cone (co {c1, c2, · · · , ck}), where c1, c2, · · · , ck are linearly inde-
pendent vectors in Rm. We show the inclusion ∂(f+g)(x) ⊆ ∂f(x)+∂g(x).
Indeed, we can find m− k vectors ck+1, · · · , cm such that {c1, c2, · · · , cm}
is a base of Rm. For A ∈ ∂(f + g)(x), we represent A, f , g, f + g as

A(y) =
m∑

i=1

Ai(y)ci,

f(y) =
m∑

i=1

fi(y)ci,

g(y) =
m∑

i=1

gi(y)ci,

(f + g)(y) =
m∑

i=1

(f + g)i(y)ci.

Obviously, A1, A2, · · · , Am are linear and (f+g)i = fi+gi, i = 1, 2, · · · ,m.
By Lemma 4.11, f1, · · · , fk, g1, · · · , gk are convex and fk+1, · · · , fm, gk+1,
· · · , gm are affine. By the definition of subdifferentials, we have

(f + g)(y)− (f + g)(x)−A(y − x) ∈ C,

for all y ∈ D ∩D′. It follows that

m∑

i=1

[(f + g)i(y)− (f + g)i(x)−Ai(y − x)]ci ∈ C,

or

(2) (f + g)i(y)− (f + g)i(x)−Ai(y − x) ≥ 0, i = 1, 2, · · · , k,

(3) (f + g)i(y)− (f + g)i(x)−Ai(y − x) = 0, i = k + 1, · · · , m.

From (2) one has Ai ∈ ∂(fi + gi)(x), i = 1, 2, · · · , k. Then by Theorem
23.8, Chapter 5 in [3], Ai ∈ ∂fi(x)+∂gi(x), i = 1, 2, · · · , k. Hence for any
i we can find two linear maps Fi ∈ ∂fi(x), Gi ∈ ∂gi(x) such that

Ai = Fi + Gi, i = 1, 2, · · · , k.

For every i = k+1, · · · ,m, we define the functions f ′i : D−{x} → R, g′i :
D′ − {x} → R as follows
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f ′i(z) := fi(y)− fi(x), where z = y − x, y ∈ D.

g′i(z) := gi(y)− gi(x), where z = y − x, y ∈ D′.

Since fi, gi are affine on D, D′, respectively, then f ′i , g′i are affine on
D−{x}, D′−{x}, respectively. It is clear that f ′i(0) = g′i(0) = 0. By (3),
Ai(z) = f ′i(z)+ g′i(z), for all z ∈ (D−{x})∩ (D′−{x}). Then by Lemma
4.10, f ′i , g′i have linear extensions Fi, Gi on Rn such that Ai = Fi + Gi.

Set F =
m∑

i=1

Fici and G =
m∑

i=1

Gici. A direct verification shows that F ∈
∂f(x), G ∈ ∂g(x) and A = F + G. Hence, ∂(f + g)(x) ⊆ ∂f(x) + ∂g(x).
This completes the proof of the theorem.

Now, we show that if the cone C is not generated by linearly indepen-
dent vectors, then in general the equality ∂(f + g)(x) = ∂f(x) + ∂g(x)
doesn’t hold.

For this we consider functions f , g : [−1, 1] → R3 defined by

f(x) =
{

(x, 0,−x) x ∈ [−1, 0],
(0,−x, x) x ∈ [0, 1].

g(x) =
{

(−x, 0,−x) x ∈ [−1, 0],
(0, x, x) x ∈ [0, 1].

Hence,

(f + g)(x) =
{

(0, 0,−2x) x ∈ [−1, 0],
(0, 0, 2x) x ∈ [0, 1].

The space R3 is ordered by the cone C which is generated by the set
D = {(x, y, 1) : x, y ∈ [−1, 1]}. It is easily seen that C is not generated
by linearly independent vectors. Let (x, y, z) ∈ R3. By the definition of
C, we have (x, y, z) ∈ C if and only if

(4) (x = y = z = 0) or





z > 0,

−1 ≤ x

z
≤ 1,

−1 ≤ y

z
≤ 1.

A direct verification shows that f , g are C-convex.
The sets ∂f(x0), ∂g(x0), ∂(f + g)(x0), ∂f(x0) + ∂g(x0) are defined as

follows
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a) Let A = (k1, k2, k3) ∈ L(R,R3) be arbitrary. Then

A ∈ ∂f(0)

⇔ f(x)−A(x) ∈ C, (∀x ∈ [−1, 1]).

⇔
{

(x, 0,−x)− (k1x, k2x, k3x) ∈ C, x ∈ [−1, 0),
(0,−x, x)− (k1x, k2x, k3x) ∈ C, x ∈ (0, 1].

⇔
{

x(1− k1,−k2,−1− k3) ∈ C, x ∈ [−1, 0),
x(−k1,−1− k2, 1− k3) ∈ C, x ∈ (0, 1].

⇔
{

(−1 + k1, k2, 1 + k3) ∈ C,

(−k1,−1− k2, 1− k3) ∈ C.

⇔





(−1 + k1 = k2 = 1 + k3 = 0) or





1 + k3 > 0,

−1 ≤ −1 + k1

1 + k3
≤ 1,

−1 ≤ k2

1 + k3
≤ 1,

(−k1 = −1− k2 = 1− k3 = 0) or





1− k3 > 0,

−1 ≤ −k1

1− k3
≤ 1,

−1 ≤ −1− k2

1− k3
≤ 1.

Solving this system, ∂f(0) is defined as a convex polyhedron whose ver-

tices are A1(1, 0,−1), A2

(
− 1

2
,−3

2
,
1
2

)
, A3

(
− 1

2
,−1

2
,
1
2

)
, A4

(1
2
,
1
2
,−1

2

)
,

A5(0,−1, 1), A6

(1
2
,−3

2
,
1
2

)
, A7

(3
2
,−1

2
,−1

2

)
, A8

(3
2
,
1
2
,−1

2

)
.

b) Let A = (k1, k2, k3) ∈ L(R, R3) be arbitrary. Then

A ∈ ∂g(0)

⇔ g(x)−A(x) ∈ C, (∀x ∈ [−1, 1]).

⇔
{

(−x, 0,−x)− (k1x, k2x, k3x) ∈ C, x ∈ [−1, 0),
(0, x, x)− (k1x, k2x, k3x) ∈ C, x ∈ (0, 1].

⇔
{

x(−1− k1,−k2,−1− k3) ∈ C, x ∈ [−1, 0),
x(−k1, 1− k2, 1− k3) ∈ C, x ∈ (0, 1].

⇔
{

(1 + k1, k2, 1 + k3) ∈ C,

(−k1, 1− k2, 1− k3) ∈ C.
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⇔





(1 + k1 = k2 = 1 + k3 = 0) or





1 + k3 > 0,

−1 ≤ 1 + k1

1 + k3
≤ 1,

−1 ≤ k2

1 + k3
≤ 1,

(−k1 = 1− k2 = 1− k3 = 0) or





1− k3 > 0,

−1 ≤ −k1

1− k3
≤ 1,

−1 ≤ 1− k2

1− k3
≤ 1.

Solving this system, we can see that ∂g(0) is defined as a convex poly-

hedron whose vertices are B1(−1, 0,−1), B2

(
− 3

2
,−1

2
,−1

2

)
,

B3

(
− 1

2
,−1

2
,−1

2

)
, B4(−3

2
,
1
2
,−1

2

)
, B5(0, 1, 1), B6

(
− 1

2
,
3
2
,
1
2

)
,

B7

(1
2
,
3
2
,
1
2

)
, B8

(1
2
,
1
2
,
1
2

)
.

c) Let A = (k1, k2, k3) ∈ L(R, R3) be arbitrary. Then

A ∈ ∂(f + g)(0)

⇔ (f + g)(x)−A(x) ∈ C, (∀x ∈ [−1, 1]).

⇔
{

(0, 0,−2x)− (k1x, k2x, k3x) ∈ C, x ∈ [−1, 0),
(0, 0, 2x)− (k1x, k2x, k3x) ∈ C, x ∈ (0, 1].

⇔
{

x(−k1,−k2,−2− k3) ∈ C, x ∈ [−1, 0),
x(−k1,−k2, 2− k3) ∈ C, x ∈ (0, 1].

⇔
{

(k1, k2, 2 + k3) ∈ C,

(−k1,−k2, 2− k3) ∈ C.

⇔





(k1 = k2 = 2 + k3 = 0) or





2 + k3 > 0,

−1 ≤ k1

2 + k3
≤ 1,

−1 ≤ k2

2 + k3
≤ 1

(k1 = k2 = 2− k3 = 0) or





2− k3 > 0,

−1 ≤ −k1

2− k3
≤ 1,

−1 ≤ −k2

2− k3
≤ 1.

Solving this system we can see that ∂(f + g)(0) is defined as a con-
vex polyhedron whose vertices are E1(0, 0, 2), E2(−2,−2, 0), E3(−2, 2, 0),
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E4(0, 0,−2), E5(2,−2, 0), E6(2, 2, 0).
d) To define ∂f(0) + ∂g(0), we recall that if X is a real linear space

and A, B be convex polyhedrons in X whose vertices are {a1, a2, · · · , ak},
{b1, b2, · · · , b`}, respectively, then A + B is also a convex polyhedron gen-
erated by {ai + bj : i = 1, 2, · · · , k; j = 1, 2, · · · , `}. By this, ∂f(0) +
∂g(0) is defined as the convex polyhedron generated by {Ai + Bj : i, j =
1, 2, · · · , 8}.

We see that the vertices E3(−2, 2, 0), E5(2,−2, 0) of the convex poly-
hedron ∂(f + g)(0) are not in the set {Ai + Bj : i, j = 1, 2, · · · , 8}. Hence,

∂(f + g)(0) 6= ∂f(0) + ∂g(0).

The rest of this section is devoted to the study of the structure of
subdifferentials.

Theorem 4.12. Let f be a convex function from a convex subset D ⊆ Rn

to Rm. Then
i) For every x ∈ riD, ∂f(x) is a closed convex nonempty set.
ii) Furthermore, x ∈ intD if and only if ∂f(x) is nonempty and bounded.

Particularly, if x ∈ intD, then ∂f(x) is a nonempty convex compact
set.

Proof. i) Since the cone C is closed and pointed, then C ′\{0} is nonempty.
By the fact that the subdifferential of a scalar convex function at any
relative interior point of its domain is nonempty, then i) is implied from
Lemma 4.1 and Theorem 4.6.

ii) By a translation we may assume that x = 0, f(x) = 0.
For the “only if” part ,by Theorem 3.1, f is continuous at 0. Then we

can find a positive number δ < 1 such that ‖f(y)‖ < 1, for all y ∈
−
B(0, δ),

where
−
B(0, δ) denotes the closed ball {y ∈ Rn : ‖y‖ ≤ δ}. Suppose

in contrary that ∂f(0) is not bounded, then for every natural number k,
there is Ak ∈ ∂f(0) with ‖Ak‖ > k. We have

‖Ak‖ = sup
y∈B̄(0,1)

‖Ak(y)‖ =
1
δ

sup
y∈B̄(0,δ)

‖Ak(y)‖.

Hence, for every natural number k, there is xk ∈
−
B(0, δ) with ‖Ak(xk)‖ >

kδ. Put

zk =
f(xk)−Ak(xk)
‖f(xk)−Ak(xk)‖ , z′k =

f(−xk)−Ak(−xk)
‖f(−xk)−Ak(−xk)‖ ,
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with k >
1
δ
, then zk, z′k ∈ C and ‖zk‖ = ‖z′k‖ = 1. Without loss of

generality, we may assume that (zk), (z′k) converge to some unit vectors
z, z′, respectively. Then

(5) z, z′ ∈ C,

and

(6) zk + z′k → z + z.′

Set vk = zk + z′k. One has

‖vk‖ =
∥∥∥ f(xk)−Ak(xk)
‖f(xk)−Ak(xk)‖ +

f(−xk) + Ak(xk)
‖f(−xk) + Ak(xk)‖

∥∥∥

≤
∥∥∥ f(xk)
‖f(xk)−Ak(xk)‖ +

f(−xk)
‖f(−xk) + Ak(xk)‖

∥∥∥+

+ ‖Ak(xk)‖
∣∣∣ 1
‖f(−xk) + Ak(xk)‖ −

1
‖f(xk)−Ak(xk)‖

∣∣∣

≤ 2
kδ − 1

+ ‖Ak(xk)‖
∣∣∣‖f(xk)−Ak(xk)‖ − ‖f(−xk) + Ak(xk)‖
‖f(−xk) + Ak(xk)‖.‖f(xk)−Ak(xk)‖

∣∣∣

≤ 2
kδ − 1

+ ‖Ak(xk)‖ ‖f(xk) + f(−xk)‖
‖f(−xk) + Ak(xk)‖.‖f(xk)−Ak(xk)‖

≤ 2
kδ − 1

+
2(

1− 1
kδ

)
(kδ − 1)

.

It follows that limk→∞ vk = 0. By (6), we have z + z′ = 0. Together with
(5) it implies that the unitary vector z ∈ lC contradicting the pointedness
of C.

For the “if” part, we first show that intD 6= ∅. Indeed, if intD = ∅, we
denote by X the subspace generated by D then X 6= Rn. Assume that
{e1, e2, · · · , ek} is a base of X. We can find some vectors ek+1, · · · , en ∈ Rn

such that {e1, · · · , ek, ek+1, · · · , en} is a base of Rn. Let A ∈ ∂f(0). For
any vectors yk+1, · · · , yn ∈ Rm , define the linear map B : Rn → Rm by

B(ei) =
{

A(ei) i = 1, · · · , k.

yi i = k + 1, · · · , n.

Then B ∈ ∂f(0). Hence, ∂f(0) is not bounded contradicting the hypoth-
esis.
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Now, assume in contrary that 0 /∈ intD. By a separating theorem, there
exists a nonzero functional λ ∈ L(Rn, R) with λ(x) ≥ 0, for all x ∈ D. In
the hyperplane {x ∈ Rn : λ(x) = 1} one can find n linearly independent
vectors e1, e2, · · · , en. Then for every x ∈ Rn, we can represent x as

x =
n∑

i=1

αiei, for some α1, · · · , αn ∈ R. It is easily seen that x ∈ {x ∈

Rn : λ(x) ≥ 0} if and only if
n∑

i=1

αi ≥ 0. Let A ∈ ∂f(0). For every c ∈ C,

define the linear map Bc : Rn → Rm as follows

Bc(ei) = A(ei)− c, i = 1, 2, · · · , n.

Let x ∈ D be arbitrary. Represent x as x =
n∑

i=1

αiei, for some αi ∈ R. We

have

f(x)−Bc(x) = f(x)−A(x) +
( n∑

i=1

αi

)
c º f(x)−A(x) º 0.

Therefore, Bc ∈ ∂f(0). Since this is true for all c ∈ C, then ∂f(0) is not
bounded contradicting the hypothesis. Thus, 0 ∈ intD. This completes
the proof of the theorem.

Theorem 4.13. Let f be a convex function from a convex subset D ⊆ Rn

to Rm with int D 6= ∅ and let x0 ∈ intD. Then f is differentiable at x0 if
and only if ∂f(x0) reduces to a singleton. In this case ∂f(x0) = Jf(x0) =
{Df(x0)}.
Proof. For the “only if” part, let A ∈ ∂f(x0) be arbitary. Set B =
A − Df(x0). By Theorem 4.6, one has ξ ◦ A ∈ ∂(ξ ◦ f)(x0), for every
ξ ∈ C ′. Since the scalar convex function ξ ◦ f is differentiable at x0 then
by Theorem 25.1 in [3], we obtain

ξ ◦A = ξ ◦Df(x0).

Hence, ξ ◦B = 0, for all ξ ∈ C ′. Since C is closed, pointed then intC ′ 6= ∅.
Therefore, there are m linearly independent vectors ξ1, · · · , ξm ∈ C ′. For
every ξ ∈ L(Rm, R), we can represent ξ as

ξ =
m∑

i=1

αiξi,
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for some α1, α2, · · · , αm ∈ R. This follows ξ ◦B = 0 for all ξ ∈ L(Rm, R)
and then B = 0. Hence, ∂f(x0) = {Df(x0)}.

For the “if” part, let ξ ∈ C ′. By Theorem 4.6, ∂(ξ ◦ f)(x0) = ξ∂f(x0).
Therefore, ∂(ξ ◦ f)(x0) reduces to a singleton. By Theorem 25.1 in [3],
the scalar convex function ξ ◦ f is differentiable at x0. Since C is closed,
pointed then intC ′ 6= ∅. Therefore, there are m linearly independent
vectors ξ1, · · · , ξm ∈ C ′. Let A be the m × m matrix whose rows are
ξ1, · · · , ξm. Then A is nonsingular and A ◦ f is differentiable at x0. It
follows that f = A−1 ◦ (A ◦ f) is differentiable at x0.

The equalities ∂f(x0) = Jf(x0) = {Df(x0)} are obvious. This com-
pletes the proof of the theorem.

5. Monotonicity of the subdifferential

Let F be a set valued map from a subset D ⊆ Rn to L(Rn, Rm). The
space Rm is ordered by a convex cone C which throughout this section is
assumed to be closed and pointed. We say that F is monotone if for every
x, y ∈ D, A ∈ F (x), B ∈ F (y), one has

(7) (A−B)(x− y) º 0 (or equivalently, (A−B)(x− y) ∈ C).

For every ξ ∈ Rm, the set-valued map ξF is defined on D ⊆ Rn and takes
values in L(Rn, R). The classical monotonicity of this map means that for
every x, y ∈ D, A ∈ F (x), B ∈ F (y), inequality

(8) (ξ ◦A− ξ ◦B)(x− y) ≥ 0

holds with respect to the usual order of real numbers.
The following lemma will be needed in the sequel.

Lemma 5.1. F is monotone if and only if ξF is monotone in the classical
sence, for every ξ ∈ C ′.

Proof. This follows from the fact that (7) holds if and only if (8) holds,
for every ξ ∈ C ′.

Theorem 5.2. Let f be a convex function from an open convex subset
D ⊆ Rn to Rm. Then ∂f is a nonvoid-valued maximal monotone map
from D to L(Rn, Rm).

Proof. The monotonicity of ∂f follows immediately from the definition.
By Theorem 4.12, ∂f is nonvoid. To complete the proof it remains to
show that if A /∈ ∂f(x), then there are y ∈ D, B ∈ ∂f(y) such that

(B −A)(y − x) /∈ C.
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By Theorem 3.1, there is an open convex neighbourhood V of x such that
f is Lipschitz on V . Since A /∈ ∂f(x), then there is ȳ ∈ D such that

f(ȳ)− f(x) 6º A(ȳ − x),

or
(f −A)(ȳ)− (f −A)(x) /∈ C.

Without loss of the generality we may assume ȳ ∈ V . By a separating
theorem, one can find ξ ∈ C ′ \ {0} such that

(ξ ◦ (f −A))(ȳ)− (ξ ◦ (f −A))(x) < 0.

Hence, in view of the Mean Value Theorem, there exist y ∈ (x, ȳ), γ ∈
∂ (ξ ◦ (f −A)) (y) such that γ(y− x) < 0. By Theorem 4.6, we can repre-
sent γ as γ = ξ ◦ (B −A), for some B ∈ ∂f(y). Then (ξ ◦ (B −A)) (y −
x) < 0, or (B −A)(y − x) /∈ C. This completes the proof of the theorem.

Remark 5.3. Let f be a vector function not necessarily convex from a
subset D ⊆ Rn to Rm. We define the subdifferential of f at x ∈ D as the
set

∂f(x) := {A ∈ L(Rn, Rm) : A(y − x) ¹ f(y)− f(x), for all y ∈ D}.

It is easily seen that if D is convex and ∂f(x) 6= ∅, for all x ∈ D, then f
is convex.

Theorem 5.4. Let f be a locally Lipschitz function from an open convex
subset D ⊆ Rn to Rm. Then f is convex on D if and only if the generalized
Jacobian Jf of f is monotone.

Proof. It is clear that f is convex if and only if ξ ◦ f is convex, for every
ξ ∈ C ′. By Proposition 2.2.9 in [2], ξ ◦ f is convex if and only if J(ξ ◦ f)
is monotone. From Proposition 2.6.6 in [2] one has J(ξ ◦ f) = ξJf . To
complete the proof it remains to apply Lemma 5.1.

Now, let f be a vector function from a subset D ⊆ Rn to Rm. We
define the locally subdifferential of f at x ∈ D as the set

∂Lf(x) := {A ∈ L(Rn, Rm) : there exists a neighborhood VA of x such

that A(y − x) ¹ f(y)− f(x), for all y ∈ VA ∩D}.
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Lemma 5.5. If f is convex, then ∂f(x) = ∂Lf(x), for all x ∈ D.

Proof. The inclusion ∂f(x) ⊆ ∂Lf(x) is obvious.
Conversely, suppose in contrary that there is a point x ∈ D such that

∂Lf(x) 6⊆ ∂f(x). Then one can find a matrix A ∈ ∂Lf(x) with A /∈ ∂f(x).
This means that there is a point y ∈ D such that

f(y)− f(x) /∈ A(y − x) + C.

Therefore, for every λ ∈ [0, 1), one has

(1− λ)[f(y)− f(x)] 6∈ (1− λ)A(y − x) + C,

or
λf(x) + (1− λ)f(y) 6∈ (1− λ)A(y − x) + f(x) + C.

Hence,

(9) (λf(x) + (1− λ)f(y)− C) ∩ ((1− λ)A(y − x) + f(x) + C) = ∅.

Since f is convex, then f(λx + (1 − λ)y) ∈ λf(x) + (1 − λ)f(y) − C. It
implies from (9) that

f(λx + (1− λ)y) 6∈ (1− λ)A(y − x) + f(x) + C.

Set zλ = λx + (1− λ)y, we obtain

f(zλ)− f(x) 6º A(zλ − x),

for all λ ∈ [0, 1). This contradicts A ∈ ∂Lf(x) and the lemma is proved.

We note that in general the converse conclusion of Lemma 5.5 is not
true. For instance, consider the Dirichlet function defined by

f(x) =
{

0 x ∈ Q,

1 x ∈ R \Q,

where Q is the set of rational numbers. It is easily seen that

∂f(x) = ∂Lf(x) =
{ {0} x ∈ Q,

∅ x ∈ R \Q,
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and f is not convex.
Now, let f be a vector function from a subset D ⊆ Rn to Rm. We say

that f is upper semicontinuous (with respect to the cone C) at x ∈ D
if for every neighborhood W of f(x), there exists a neighborhood V of x
such that y ∈ V ∩D implies f(y) ∈ W − C.

It is clear that if f is continuous at x ∈ D then f is upper semicontin-
uous at x. The converse is not true generally.

We recall that a single valued map ρ : D → Rn is said to be a selection
of a set valued map F : D−→−→Rn if ρ(x) ∈ F (x), for all x ∈ D.

Theorem 5.6. Let f be a upper semicontinuous function from an open
convex subset D ⊆ Rn to Rm. Then f is convex if and only if ∂Lf admits
a monotone selection.

Proof. The “only if” part follows immediately from Theorem 5.2 and
Lemma 5.5 and from the fact that any selection of a monotone map is
monotone.

For the “if” part, let ρ be a monotone selection of ∂Lf . We show that
it is also a selection of ∂f . Then by Remark 5.3, f is convex.

Suppose to the contrary that there is a point x ∈ D such that ρ(x) 6∈
∂f(x). Then there exists a point y ∈ D such that f(y)−f(x) 6º ρ(x)(y−x).
Without loss of the generality, we may assume that x = 0, f(x) = 0. Set
t0 = inf{t > 0 : f(ty) 6º tρ(0)(y)}. Since ρ(0) ∈ ∂Lf(0), then t0 > 0.
We shall prove that f(t0y) º t0ρ(0)(y). Indeed, if f(t0y) 6º t0ρ(0)(y),
then f(t0y) 6∈ t0ρ(0)(y) + C. Since C is closed then there is a positive
number ε such that B̄(f(t0y), ε) ∩ (t0ρ(0)(y) + C) = ∅. This implies
t0ρ(0)(y) 6∈ B̄(f(t0y), ε) − C. Since B̄(f(t0y), ε) is compact and C is
closed, then B̄(f(t0y), ε) − C is closed. Hence there is a positive number
ε′ such that B(t0ρ(0)(y), ε′) ∩ (B̄(f(t0y), ε)− C) = ∅. Therefore,

(10) (B(t0ρ(0)(y), ε′) + C) ∩ (B̄(f(t0y), ε)− C) = ∅.

From the continuity of ρ(0) and the upper semicontinuity of f there ex-
ists a positive number δ such that f(z) ∈ B̄(f(t0y), ε)−C and ρ(0)(z) ∈
B(t0ρ(0)(y), ε′), for all z ∈ B(t0y, δ). Choose t ∈ (0, t0) with ty ∈ B(t0y, δ)
then f(ty) ∈ ρ(0)(ty) + C. Hence, f(ty) ∈ (B(t0ρ(0)(y), ε′) + C) ∩
(B̄(f(t0y), ε)− C). This contradicts to (10).

Since ρ is monotone, then (ρ(t0y)− ρ(0))(t0y) º 0. Hence, ρ(t0y)(y) º
ρ(0)(y). Since ρ(t0y) ∈ ∂Lf(t0y), then there exists a positive number γ
such that f(z)− f(t0y)− ρ(t0y)(z − t0y) º 0, for all z ∈ B(t0y, γ). From
the definition of t0 we can find t > t0 with

(11) ty ∈ B(t0y, γ), f(ty) 6º ρ(0)(ty).
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Since ty ∈ B(t0y, γ), we have f(ty)− f(t0y) º (t− t0)ρ(t0y)(y). Hence,

f(ty) º f(t0y) + (t− t0)ρ(t0y)(y) º ρ(0)(t0y) + (t− t0)ρ(0)(y) = tρ(0)(y).

This contradicts to (11). The proof is complete.
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