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CRITICAL SOBOLEV EXPONENT FOR
DEGENERATE ELLIPTIC OPERATORS

NGUYEN MINH TRI

Abstract. Semilinear equations for degenerate elliptic operators are
considered. A simple proof of imbedding theorems for appropriate Sobolev
spaces are given. Via generalized Pokhozaev identity we prove some non-
existence theorems for the equations.

The purpose of this paper is to point out some similar properties for

Laplace’s equation in Rn (n ≥ 3) and the hypoelliptic equation
∂2

∂x2
1

+

x2k
1

∂2

∂x2
2

in R2 (k ≥ 1). Similar properties between this degenerate elliptic

operators and Laplace’s operator were studied by many authors (see, for
example, [1-6] and therein references). Let Ω be a bounded domain with
a smooth boundary in R2 and 0 ∈ Ω. We consider the following boundary
value problem:

Lku =
∂2u

∂x2
1

+ x2k
1

∂2u

∂x2
2

+ g(u) = 0 in Ω,(1)

u = 0 on ∂Ω,(2)

where g(0) = 0 and g(u) ∈ C(R). Put G(u) =
u∫
0

g(s) ds and let ν =

(ν1, ν2) be the outward normal to ∂Ω. By C we will denote a general
constant that is independent of functions and may change its value.

Definition 1. A domain Ω is called Lk-starshape with respect to the
point 0 if the inequality (ν2

1 +x2k
1 ν2

2)(x1ν1 +(k+1)x2ν2) > 0 holds almost
everywhere on ∂Ω.
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Example. The unit ball B1 =
{
(x1, x2)|x2

1 + x2
2 < 1

}
is Lk-starshape for

every k.

Lemma. Let u(x) be a solution of the boundary value problem (1)-(2),
which belongs to the class H2(Ω). Then the function u(x) satisfies the
equation

∫

Ω

{
(k + 2)G(u)− k

2
g(u)u

}
dx1dx2

=
1
2

∫

∂Ω

(∂u

∂ν

)2

(ν2
1 + x2k

1 ν2
2){x1ν1 + (k + 1)x2ν2} ds.(3)

Proof. The Sobolev imbedding theorem for a smooth bounded domain
gives H2(Ω) ⊂ Co,α(Ω), where 0 < α < 1. Note that

∂

∂x1

(
x1G(u)

)
= G(u) + x1g(u)

∂u

∂x1
,

∂

∂x2

(
x2G(u)

)
= G(u) + x2g(u)

∂u

∂x2
·

From the Gauss-Ostrogradskii formula we have
∫

Ω

G(u) dx1dx2 = −
∫

Ω

x1g(u)
∂u

∂x1
dx1dx2

and
β

∫

Ω

G(u) dx1dx2 = −β

∫

Ω

x2g(u)
∂u

∂x2
dx1dx2.

Hence

(1 + β)
∫

Ω

G(u) dx1dx2 = −
∫

Ω

(
x1

∂u

∂x1
+ βx2

∂u

∂x2

)
g(u) dx1dx2

=
∫

Ω

(
x1

∂u

∂x1
+ βx2

∂u

∂x2

)(∂2u

∂x2
1

+ x2k
1

∂2u

∂x2
2

)
dx1dx2.

Again from the Gauss-Ostrogradskii formula we have (for details see [7])
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∫

Ω

(
x1

∂u

∂x1
+ βx2

∂u

∂x2

)(∂2u

∂x2
1

+ x2k
1

∂2u

∂x2
2

)
dx1dx2

=
β − 1

2

∫

Ω

( ∂u

∂x1

)2

dx1dx2 +
2k + 1− β

2

∫

Ω

x2k
1

( ∂u

∂x2

)2

dx1dx2

+
1
2

∫

∂Ω

(
x1ν1

)( ∂u

∂x1

)2

ds− 1
2

∫

∂Ω

(
x2k+1

1 ν1

)( ∂u

∂x2

)2

ds

+
∫

∂Ω

(
x2k+1

1 ν2

) ∂u

∂x1

∂u

∂x2
ds +

β

2

∫

∂Ω

(
x2x

2k
1 ν2

)( ∂u

∂x2

)2

ds

− β

2

∫

∂Ω

(
x2ν2

)( ∂u

∂x1

)2

ds + β

∫

∂Ω

(
x2ν1

) ∂u

∂x2

∂u

∂x1
ds.

Finally, choosing β = k + 1, we have
∫

Ω

{
(k + 2)G(u)− k

2
g(u)u

}
dx1dx2

=
1
2

∫

∂Ω

(
x1ν

3
1

)(∂u

∂ν

)2

ds− 1
2

∫

∂Ω

(
x2k+1

1 ν1ν
2
2

)(∂u

∂ν

)2

ds

+
∫

∂Ω

(
x2k+1

1 ν1ν
2
2

)(∂u

∂ν

)2

ds− k + 1
2

∫

∂Ω

(
x2ν

2
1ν2

)(∂u

∂ν

)2

ds

+
(
k + 1

) ∫

∂Ω

(
x2ν

2
1ν2

)(∂u

∂ν

)2

ds +
k + 1

2

∫

∂Ω

(
x2k

1 x2ν
3
2

)(∂u

∂ν

)2

ds

=
1
2

∫

∂Ω

(∂u

∂ν

)2

(ν2
1 + x2k

1 ν2
2)

{
x1ν1 + (k + 1)x2ν2} ds.

Note that (3) is similar to the so-called Pohozaev identity for Laplace’s
operator proven in [8]. The two following theorems are obviously obtained
by using the lemma.

Theorem 1. Let Ω be a Lk-starshape with respect to the point 0 and

(k + 2)G(u) − k

2
g(u) < 0 when u 6= 0. Then there exists no non-trivial

solution u ∈ H2(Ω) for the problem (1)-(2).
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Theorem 2. Let Ω be a Lk-starshape with respect to the point 0 and

(k + 2)G(u) − k

2
g(u) < 0 when u > 0. Then there exists no non-trivial

positive solution u ∈ H2(Ω) for the problem (1)-(2).

The following theorem provides another non-existence criterion.

Theorem 3. Let Ω be a Lk-starshape with respect to the point 0 and

g(u) = λu + |u|γu with λ ≤ 0, γ ≥ 4
k
· Then the problem (1)-(2) has no

non-trivial solution u ∈ H2(Ω).

Proof. Indeed, in this case G(u) =
λu2

2
+
|u|γ+2

γ + 2
· Putting G(u) and g(u)

into (3) yields
∫

Ω

{
(k + 2)

(λu2

2
+
|u|γ+2

γ + 2

)
− k

2
(λu2 + |u|γ+2)

}
dx1dx2

=
1
2

∫

∂Ω

(∂u

∂ν

)2

(ν2
1 + x2k

1 ν2
2)

{
x1ν1 + (k + 1)x2ν2

}
ds.

That is,

λ

∫

Ω

u2 dx1dx2 +
∫

Ω

|u|γ+2
(k + 2

γ + 2
− k

2

)
dx1dx2

=
1
2

∫

∂Ω

(∂u

∂ν

)2

(ν2
1 + x2k

1 ν2
2)

{
x1ν1 + (k + 1)x2ν2

}
ds.

If γ >
4
k

or λ < 0, we have

λ

∫

Ω

u2 dx1dx2 +
∫

Ω

|u|γ+2
(k + 2

γ + 2
− k

2

)
dx1dx2 < 0 (if u 6≡ 0),

which leads to a contradiction. If γ =
4
k

and λ = 0, we have

1
2

∫

∂Ω

(∂u

∂ν

)2

(ν2
1 + x2k

1 ν2
2)

{
x1ν1 + (k + 1)x2ν2} ds = 0.

Thus,
∂u

∂ν

∣∣∣
∂Ω
≡ 0. From the uniqueness theorem by Aronszain-Cordes it

then follows that u ≡ 0. The only trouble, when x1 = 0, can be eliminated
by using u ∈ C0,α(Ω).
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Remark 1. If 0 6∈ Ω Theorem 3 may be not true. In the case when
Ω ∩ {−ε < x1 < ε} = ∅ one can prove the existence theorem for any
polynomial growth of g(u) by using the usual Sobolev imbedding theorem.

Now we need to introduce some definitions.

Definition 2. By Sp
1 (Ω) (1 ≤ p < ∞) we denote the set of all functions

u ∈ Lp(Ω) such that
∂u

∂x1
∈ Lp(Ω) and xk

1

∂u

∂x2
∈ Lp(Ω). For the norm we

take

‖u‖Sp
1,0(Ω) =

{ ∫

Ω

(
|u|p +

∣∣∣ ∂u

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂u

∂x2

∣∣∣
p)

dx1dx2

} 1
p

.

If p = 2 we can also define scalar product in S2
1(Ω) as follows

(
u, v

)
S2

1(Ω)
=

(
u, v

)
L2(Ω)

+
( ∂u

∂x1
,

∂v

∂x1

)
L2(Ω)

+
(
xk

1

∂u

∂x2
, xk

1

∂v

∂x2

)
L2(Ω)

.

Theorem 4. Sp
1 (Ω) is a Banach space. S2

1(Ω) is a Hilbert space.

Proof. It is obvious. For details see [7].

Definition 3. The space Sp
1,0(Ω) is defined as a closure of C1

0 (Ω) in the
space Sp

1 (Ω).

The following theorem is due to Rothschild and Stein. For a definition
of Lp

s(Ω) see [3].

Theorem 5. Assume 1 ≤ p < ∞, then Sp
1,0(Ω) ⊂ Lp

1
k+1

(Ω).

From this theorem we conclude that the imbedding map Sp
1,0(Ω) ⊂

Lp(Ω) is compact, because we can always shrink our domain to Ω̃ ⊃⊃⊃ Ω.

Theorem 6. Assume 1 ≤ p < k + 2. Then Sp
1,0(Ω) ⊂ L

(k+2)p
k+2−p−τ (Ω) for

every positive small τ .

Proof. We will act in the spirit of Gagliardo and Nirenberg (see [9], [10]
and [11]). It suffices to prove the following inequality:

(4)
∥∥u

∥∥
L

(k+2)p
k+2−p

−τ
(Ω)

≤ C‖u‖Sp
1,0(Ω) for every u ∈ C1

0 (Ω),
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where C1
0 (Ω) denotes the set of functions in C1(Ω) with a compact support

in Ω. First we prove the estimate (4) for p = 1. Choose M sufficiently
large such that the square [−M, +M ]× [−M, +M ] contains Ω. We have

u(x1, x2) =

x1∫

−M

∂u

∂t
(t, x2) dt, for every (x1, x2) ∈ Ω.

Therefore

(5) |u(x1, x2)| ≤
+M∫

−M

∣∣∣∂u

∂t
(t, x2)

∣∣∣ dt, for every (x1, x2) ∈ Ω.

Analogously

|u(x1, x2)| ≤
+M∫

−M

∣∣∣∂u

∂t
(x1, t)

∣∣∣ dt, for every (x1, x2) ∈ Ω.

Hence

(6) |u(x1, x2)|δ ≤
( +M∫

−M

∣∣∣∂u

∂t
(x1, t)

∣∣∣ dt
)δ

,

for every (x1, x2) ∈ Ω and a positive δ. Multiplying (5) by (6) and inte-
grating over the square [−M, +M ]× [−M, +M ] gives

∫

Ω

|u|1+δ dx1dx2 ≤

≤
+M∫

−M

+M∫

−M

{( +M∫

−M

∣∣∣∂u

∂t
(x1, t)

∣∣∣ dt
)δ( +M∫

−M

∣∣∣∂u

∂t
(t, x2)

∣∣∣ dt
)}

dx1dx2

=

+M∫

−M

( +M∫

−M

∣∣∣∂u

∂t
(x1, t)

∣∣∣ dt
)δ{ +M∫

−M

( +M∫

−M

∣∣∣∂u

∂t
(t, x2)

∣∣∣ dt
)

dx2

}
dx1

=

+M∫

−M

+M∫

−M

∣∣∣ ∂u

∂x1

∣∣∣ dx1dx2

+M∫

−M

( +M∫

−M

∣∣∣ ∂u

∂x2
(x1, x2)

∣∣∣ dx2

)δ

dx1
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≤
+M∫

−M

+M∫

−M

∣∣∣ ∂u

∂x1

∣∣∣ dx1dx2

( +M∫

−M

|x1|
kδ

1−δ dx1

)1−δ

.

.
{ +M∫

−M

|x1|k
( +M∫

−M

∣∣∣ ∂u

∂x2
(x1, x2)

∣∣∣ dx2

)
dx1

}δ

.

We choose 0 < δ <
1

k + 1
, then the last term is finite and hence

∫

Ω

|u|1+δ dx1dx2 ≤ C
∥∥∥xk

1

∂u

∂x2

∥∥∥
δ

L1(Ω)

∥∥∥ ∂u

∂x1

∥∥∥
1

L1(Ω)
.

Thus

(7) ‖u‖L1+δ(Ω) ≤ C
∥∥∥xk

1

∂u

∂x2

∥∥∥
δ

1+δ

L1(Ω)

∥∥∥ ∂u

∂x1

∥∥∥
1

1+δ

L1(Ω)

≤ C
(∥∥∥xk

1

∂u

∂x2

∥∥∥
L1(Ω)

+
∥∥∥ ∂u

∂x1

∥∥∥
L1(Ω)

)
.

For an arbitrary p, we put |u|γ(γ > 1) into (7) and obtain

‖|u|γ‖L1+δ(Ω) ≤ C
(∥∥∥xk

1 |u|γ−1 ∂u

∂x2

∥∥∥
L1(Ω)

+
∥∥∥|u|γ−1 ∂u

∂x1

∥∥∥
L1(Ω)

)
≤

≤ C
( ∥∥|u|γ−1

∥∥
Lp′ (Ω)

)(∥∥∥xk
1

∂u

∂x2

∥∥∥
Lp(Ω)

+
∥∥∥ ∂u

∂x1

∥∥∥
Lp(Ω)

)
.

Choosing γ =
p

1− δp + δ
gives

‖u‖
L

(1+δ)p
1−pδ+δ (Ω)

≤ C
(∥∥∥xk

1

∂u

∂x2

∥∥∥
Lp(Ω)

+
∥∥∥ ∂u

∂x1

∥∥∥
Lp(Ω)

)
.

This completes the proof of the theorem, since we can choose δ sufficiently

near
1

1 + k
·

Remark 2. The above proof is applied to imbedding theorems for wider
classes of energy spaces associated with hypoelliptic operators. For exam-
ple, we can prove imbedding theorems for energy spaces associated with
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the operator ∆x + λ(x)∆y where x ∈ Rn, y ∈ Rm or with the operator
∂2

∂x2
+

∂2

∂y2
+ x2 ∂2

∂z2
in R3.

Remark 3. It is obvious from the proof of Theorem 6 that the two norms

‖u‖Sp
1,0(Ω) and ‖u‖S̃p

1,0(Ω) =
{ ∫

Ω

(∣∣∣ ∂u

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂u

∂x2

∣∣∣
p)

dx1dx2

} 1
p

are equivalent in Sp
1,0(Ω).

Counterexample. In the case when p < k + 2, the imbedding Sp
1,0(Ω) ⊂

L
(k+2)p
k+2−p +τ (Ω) is no longer true for any positive τ . Indeed, denote

(k + 2)p
k + 2− p

+τ by p(τ). Take 0 6≡ φ(x1, x2) ∈ C∞0 (Ω). Choose Θ sufficiently large such
that φθ(x1, x2)φ(θx1, θ

k+1x2) ∈ C∞0 (Ω) for all θ ≥ Θ. We shall compare
the ratio

Aθ =
‖φθ‖Lp(τ)(Ω){ ∫

Ω

(∣∣∣∂φθ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φθ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

with

A =
‖φ‖Lp(τ)(Ω){ ∫

Ω

(∣∣∣ ∂φ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

·

We have

(8) ‖φθ‖Lp(τ)(Ω) =
{ ∫

Ω

|φθ(x1, x2)|p(τ)
dx1dx2

} 1
p(τ)

=
{ ∫

Ω

1
θk+2

|φ(x1, x2)|p(τ)
dx1dx2

} 1
p(τ)

=
1

θ
k+2
p(τ)

‖φ‖Lp(τ)(Ω).

On the other hand

(9)
{ ∫

Ω

(∣∣∣∂φθ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φθ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

=
{ ∫

Ω

(∣∣∣θ∂φ(θx1, θ
k+1x2)

∂x1

∣∣∣
p

+
∣∣∣(θx1)k · 1

θk
· θk+1 ∂φ(θx1, θ

k+1x2)
∂x2

∣∣∣
p)

dx1dx2

} 1
p

=



CRITICAL SOBOLEV EXPONENT 91

=
{ ∫

Ω

θp−(k+2)
(∣∣∣ ∂φ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

= θ1− k+2
p

{ ∫

Ω

(∣∣∣ ∂φ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

.

Combining (8) and (9) yields

Aθ =
θ−

k+2
p(τ) ‖φ‖Lp(τ)(Ω)

θ1− k+2
p

{ ∫
Ω

(∣∣∣ ∂φ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

= θ
k+2

p −1− k+2
p(τ) A.

Since
k + 2

p
− 1− k + 2

p(τ)
> 0, we obtain Aθ −→∞ as θ −→∞. This leads

to a contradiction, as the expression
{ ∫

Ω

(∣∣∣ ∂φ

∂x1

∣∣∣
p

+
∣∣∣xk

1

∂φ

∂x2

∣∣∣
p)

dx1dx2

} 1
p

is equivalent to ‖φ‖
Sp

1,0(Ω)
.

Theorem 7. Assume 1 ≤ p < k + 2. Then the imbedding map Sp
1,0(Ω)

into L
(k+2)p
k+2−p−τ (Ω) is compact for every positive small τ .

Proof. Combining Theorem 6, Theorem 5 and the interpolation inequality
for Lp(Ω) gives the statement. For details see [7].

Theorem 8. Assume p > k + 2. Then Sp
1,0(Ω) ⊂ C0(Ω).

Proof. It suffices to prove the following estimate

sup
x∈Ω

|u| ≤ C‖u‖p
Sp

1,0(Ω)
, for every u ∈ C1

0 (Ω).

First, we assume Vol(Ω) = 1. By the inequality (7) we have

‖|u|γ‖
L

k+2
k+1−τ

(Ω)
≤ C ‖|u|γ‖S1

1(Ω)

= Cγ

∫

Ω

|u|γ−1.
(∣∣∣ ∂u

∂x1

∣∣∣ +
∣∣∣xk

1

∂u

∂x2

∣∣∣
)

dx1dx2

≤ Cγ‖u‖Sp
1,0(Ω).

∥∥|u|γ−1
∥∥

L
p

p−1 (Ω)
,

for γ ≥ 1 and a small positive τ .
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That is

‖u‖
L

γ

(
k+2
k+1−τ

)
(Ω)

≤ (
Cγ

) 1
γ ‖u‖

1
γ

Sp
1,0(Ω)

. ‖ u‖1−
1
γ

L
p(γ−1)

p−1 (Ω)

≤

≤ (
Cγ

) 1
γ ‖u‖

1
γ

Sp
1,0(Ω)

. ‖ u‖
L

pγ
p−1 (Ω)

, since Vol(Ω) = 1.

Therefore we get

∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
L

γ

(
k+2
k+1−τ

)
(Ω)

≤ (
Cγ

) 1
γ

∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
1− 1

γ

L
pγ

p−1 (Ω)
.

Choose τ such that
k + 2
k + 1

− τ >
p

p− 1
· Let us substitude the value ξρ

(ρ = 1, 2, . . . ) to γ, where ξ =
(k + 2

k + 1
− τ

)p− 1
p

> 1 by the hypotheses

of the theorem. Then we have

∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
L

(
k+2
k+1−τ

)
.ξρ

(Ω)

≤ (
Cξρ

) 1
ξρ

∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
1−ξ−ρ

L

(
k+2
k+1−τ

)
.ξρ−1

(Ω)
,

for ρ = 1, 2, . . . . Iteracting from ρ = 1 and using the fact that
∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
L

(
k+2
k+1−τ

)
.ξ

(Ω)

≤ 1,

we obtain
∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
Lξρ

(Ω)
≤

∥∥∥ u

‖u‖
Sp

1,0(Ω)

∥∥∥
L

(
k+2
k+1−τ

)
.ξρ

(Ω)

≤ (
Cξ

)Σρ.ξ−ρ

= C.

Consequently, as ρ −→∞ we have

sup
x∈Ω

∣∣∣ u

‖u‖
Sp

1,0(Ω)

∣∣∣ ≤ C,

and hence sup
x∈Ω

u ≤ C‖u‖
Sp

1,0(Ω)
. To eliminate the restriction Vol (Ω) = 1,

we consider the transformation

y1 =
{

Vol(Ω)
}− 1

k+2
x1 and y2 =

{
Vol(Ω)

}− k+1
k+2

x2.
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This leads to

sup
x∈Ω

|u(x)| = sup
y∈Ω̃

|u(y)| ≤ C ‖u(y)‖
Sp

1,0

(
Ω̃
) ≤ C‖u(x)‖Sp

1,0(Ω).

From now on we suppose g(u) has only polynomial growth.

Definition 5. A function u ∈ S2
1,0(Ω) is called a weak solution of the

problem (1)-(2), if the identity

∫

Ω

∂u

∂x1
· ∂ϕ

∂x1
dx1dx2 +

∫

Ω

x2k
1

∂u

∂x2
· ∂ϕ

∂x2
dx1dx2 −

∫

Ω

g(u)ϕdx1dx2 = 0

holds for every ϕ ∈ C∞0 (Ω).

Now we can state our existence theorem.

Theorem 9. Assume that g(u) satisfies the following conditions

(1) g ∈ C0,α
loc (R),

(2) |g(u)| ≤ C(1 + |u|m) with 1 < m <
k + 4

k
,

(3) g(u) = ¯̄o(u) as u −→ 0,
(4) There exists an A such that for |u| ≥ A,G(u) ≤ µg(u)u, where

µ ∈ [0, 1
2 ).

Then the problem (1)-(2) always has a weak non-trivial solution.

Proof. Consider the following functional in S2
1,0(Ω)

Φ(u) =
1
2

∫

Ω

(∣∣∣ ∂u

∂x1

∣∣∣
2

+
∣∣∣xk

1

∂u

∂x2

∣∣∣
2)

dx1dx2 −
∫

Ω

G(u) dx1dx2.

From the conditions on g(u) one concludes that Φ satisfies the hypotheses
(I1), (I2), (I3) in the paper [12]. So, Φ has a non-trivial critical point,
which will be a weak solution for our problem.
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