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CRITICAL SOBOLEV EXPONENT FOR
DEGENERATE ELLIPTIC OPERATORS

NGUYEN MINH TRI

ABSTRACT. Semilinear equations for degenerate elliptic operators are
considered. A simple proof of imbedding theorems for appropriate Sobolev
spaces are given. Via generalized Pokhozaev identity we prove some non-
existence theorems for the equations.

The purpose of this paper is to point out some similar properties for
82

Laplace’s equation in R™ (n > 3) and the hypoelliptic equation 922 +

1

82
x%kﬁ in R? (k > 1). Similar properties between this degenerate elliptic
x

2
operators and Laplace’s operator were studied by many authors (see, for

example, [1-6] and therein references). Let © be a bounded domain with
a smooth boundary in R? and 0 € Q. We consider the following boundary
value problem:

Pu o Pu .
(1) Liu = o 2 + a7 o 2 +g(u)=0 in Q,
(2) u=20 on 0,
where ¢(0) = 0 and g(u) € C(R). Put G(u fg )ds and let v =

(v1,v2) be the outward normal to 0Q2. By C we Wlll denote a general
constant that is independent of functions and may change its value.

Definition 1. A domain 2 is called Lj-starshape with respect to the
point 0 if the inequality (v? +22513)(z1v1 + (k+1)2215) > 0 holds almost
everywhere on 0f).

Received Aprill 25, 1996

1991 Mathematics Subject Classification. Primary: 35H; Secondary: 35T.

Key words and phrases. Semilinear degenerate elliptic equations, existence uniqueness
theorems, Pokhozaev identity, Sobolev spaces.



84 NGUYEN MINH TRI
Example. The unit ball By = {(z1, z2)|2} 4+ 23 < 1} is Ly-starshape for
every k.

Lemma. Let u(x) be a solution of the boundary value problem (1)-(2),
which belongs to the class H*(2). Then the function u(x) satisfies the
equation

/ {(k +2)G(u) — gg(u)u} dz1dxs

Q

1 0
(3) =5 / (8_1:) (V2 + 22k vz + (k + Dagn} ds.
o)

Proof. The Sobolev imbedding theorem for a smooth bounded domain
gives H?(Q) C C>%(), where 0 < a < 1. Note that

0 ou
Fr — (1G(u)) = G(u) + xlg(u)a—gc1 ,
0 ou
92 (22G(u)) = G(u) + x2g(u)8_x2 .

From the Gauss-Ostrogradskii formula we have

/G(u) dridry = —/xlg( )8—d:1:1d932

dzy
QO QO

and

B/ u) dridre = —6/xgg a—d:vldacg
T2

ou ou
(14 0) | G(u)dzidry = — r1=—— + fra=— )g(u) dr1dx
Q/ 1G22 /( 1 2 >9 14X2

8%1 8x2
Q
ou ou \ [ 0%u Qkéﬂ
—/<xla—ﬁ+ﬁ“a—x2> (%* 1 B 2)“1“2-
Q

Again from the Gauss-Ostrogradskii formula we have (for details see [7])
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2
[ (o o (g

5;1/(83;1) dx1dx2—|—2k+1 5/ 2k 5_ dzydzs
Q
v5 [ (o) (5) a5 =3 / (w%“’ﬂ)(;f—) ds
oN
+/<x?k+1ug>§—;§—xu2 ds—l—ﬂ/ a:Qxl VQ (98;2) ds
oN
—§/<xgy2><aa—xul>2ds+ﬂ/ a:2V1 %%d
oQ oQ

Finally, choosing 3 = k 4 1, we have

/ [(k+2)0(u) - g g(uju} doydey

Q
o) G e () (1)
o0 o0
s [ (eg) (5) as =t [ (marten) () as
o0 o0
i) [ (ot () 55 [ (st ()
o0 o0
=3 / (%) (V1 + x%kyg {xlyl + (k+ 1)aavs } ds.
o0

Note that (3) is similar to the so-called Pohozaev identity for Laplace’s
operator proven in [8]. The two following theorems are obviously obtained

by using the lemma.

Theorem 1. Let Q be a Li-starshape with respect to the point 0 and
k
(k+2)G(u) — §g(u) < 0 when u # 0. Then there ezists no non-trivial

solution u € H?(Q) for the problem (1)-(2).

85
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Theorem 2. Let 2 be a Ly-starshape with respect to the point 0 and
(k+2)G(u) — gg(u) < 0 when uw > 0. Then there exists no non-trivial
positive solution u € H?(Q) for the problem (1)-(2).

The following theorem provides another non-existence criterion.
Theorem 3. Let €2 be a Li-starshape with respect to the point 0 and
g(u) = A+ |u[Yu with A <0, v > % Then the problem (1)-(2) has no
non-trivial solution u € H2().

Au? o |ur 2

Proof. Indeed, in this case G(u) = = + o

- Putting G(u) and g(u)
into (3) yields

Au? o fu koy o 42
/{<’f+2>(7+m> — O 1) fdedry
Q

1 Ou\ 2
= — / (_U) (1/12 + :lrfku%){:clyl + (k + 1)1[}21/2} ds.

2 ov
oQ
That is,
kE+2 k
2 2t r
)\/u dxldx2+/|u| (7” 2>da:1dx2
Q Q
1 ou\ 2
=3 / <$) (v + x%kug){xlyl + (k+ 1)3:21/2} ds.
oQ
4
If’y>Eor)\<O, we have
k+2 k .
)\/UQ dridre + / |u|’7+2(m _ 5) dridzre <0 (lf U §é 0),
Q Q

4
which leads to a contradiction. If v = z and A = 0, we have

1 ou\ 2
2 / <$> (v + m%kyg){xll/l + (k+ 1)xovr}ds = 0.
oN
ou . . .
Thus, oo = 0. From the uniqueness theorem by Aronszain-Cordes it
v

then follows that u = 0. The only trouble, when z; = 0, can be eliminated
by using u € C%(Q). O
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Remark 1. If 0 ¢ Q Theorem 3 may be not true. In the case when
QN{—e < x1 < e} = 0 one can prove the existence theorem for any
polynomial growth of g(u) by using the usual Sobolev imbedding theorem.

Now we need to introduce some definitions.
Definition 2. By S7(Q) (1 <p < 00) we denote the set of all functions
0 0
u € LP(Q) such that U ¢ LP(§2) and x’f—u € LP(Q2). For the norm we
01 0z
take

B p | Ou P k@ul’dd v
waﬂm—{ (W'Waa *P@g )xlm}-
Q

If p = 2 we can also define scalar product in S%(Q) as follows

B ou Ov g Ou 4 Ov
(wwﬁmr4%@wmﬁ(aaﬁzkmm (1&;%agkmn

Theorem 4. S7(Q) is a Banach space. S3(2) is a Hilbert space.
Proof. 1t is obvious. For details see [7].

Definition 3. The space S} ((€2) is defined as a closure of Cj(Q) in the
space ST ().

The following theorem is due to Rothschild and Stein. For a definition
of LP(Q) see [3].

Theorem 5. Assume 1 < p < oo, then S7,(Q2) C L”, (Q).

PES
From this theorem we conclude that the imbedding map S ,(Q2) C

LP(Q) is compact, because we can always shrink our domain to Q> 0O

(k+2)p

Theorem 6. Assume 1 < p < k+2. Then S7,(Q) C L*+2=r"7(Q) for
every positive small T.

Proof. We will act in the spirit of Gagliardo and Nirenberg (see [9], [10]
and [11]). It suffices to prove the following inequality:

@l g ) = Cllullsg o for every we Go(9),
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where CZ () denotes the set of functions in C'*(£2) with a compact support
in Q. First we prove the estimate (4) for p = 1. Choose M sufficiently
large such that the square [—M, +M] x [-M,+M] contains Q2. We have

o
u(zy,x2) = (91; (t,z9)dt, for every (zy1,z2) € Q.

M

Therefore

(5) u(ry, z2)| < / ‘ (t,22) for every (z1,x2) € Q.

Analogously
+M

ou
lu(zy, z2)] < ‘E(azl,t)‘ dt, for every (z1,z2) € Q

M

(6) lu(z1,22) /‘8 T1,t dt),

for every (z1,22) € Q and a positive 6. Multiplying (5) by (6) and inte-
grating over the square [—M, +M]| x [-M,+M] gives

/ lu| 10 dayday <

+M +M
/ / / ‘ (El, dt / ‘ t IL‘Q )}d(L‘leL‘Q
—M —M —-M
+M  +M +M  +M
/ / ‘ 212'1, / / ‘ t :cg dt) dxg} d.’.l?l
-M —-M -M -M
+M +M +M  +M

//‘8m1’dxldx2/ /‘85172 131,332 dx2>6da:1

-M —-M
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+M

L

a 1-96
8_ d.fEldiCQ / ’1'1‘1 5 dili‘l) .

/|a:1| /‘ (1, T2 ‘dﬂ?g) dxl}é.

1
We choose 0 < § < ——, then the last term is finite and hence

+

E+1
andes < et Lo,
/|u| T1aez 1 o1y 8x2 L1(Q) 61'1 L1Q)
Q
Thus
ou 1
7 e o I T
(7) ||u||Ll+5(Q) e [ Ry 925 1L 19z 121
< (I gl * s )
Loy LY(Q) Ozxy llLv(Q)
For an arbitrary p, we put |u|”(y > 1) into (7) and obtain
ou ou
v ko yv—122 y-127
Il e = C(H%M Oxa llL1 (@) H|u| Oxq ‘ Ll(Q)> -
ou

< Mooy ) (4 e L * [ )

< C([[ll"] @ ) \[I" 5z, Le() 10z llLe()
Choosing v = P gives

1—0p+9
st < Ot s+ [ i)
Hu”Ll(—Zgzré Q) 6:1:2 Lr () Ox1 llLr ()

This completes the proof of the theorem, since we can choose ¢ sufficiently
1
. O
1+k
Remark 2. The above proof is applied to imbedding theorems for wider
classes of energy spaces associated with hypoelliptic operators. For exam-
ple, we can prove imbedding theorems for energy spaces associated with

near
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the operator A, + A(z)A, where z € R",y € R™ or with the operator

PP L
Ox2 8y2 +a’ 022 in R

Remark 3. 1t is obvious from the proof of Theorem 6 that the two norms

ou |P P L
bllsg o 00 oo = { (| ) dordes}
Q

)kau

x —
1 8:172

are equivalent in S (92).

Counterexample. In the case when p < k + 2, the imbedding Sfﬁo(Q) C

(k+2) k+2
L e 5*7(9) is no longer true for any positive 7. Indeed, denote kf—:_T)p

+7 by p(7). Take 0 # ¢(x1,22) € C5°(€2). Choose O sufficiently large such
that ¢g(x1,22)d(0z1, 0% try) € C5°(Q) for all § > ©. We shall compare
the ratio

96100
LT 2 )
with
T |
{2 [t 2 )
We have

1
(8) ||¢0||Lp<r)(g) = {/|¢9($1,$2)|p(ﬂ dﬂU1d$2}p(7)
Q

1 . w1
—{ [ e lota 22 dndea} ™7 = e 6l ey

p(7)
A o

On the other hand

<9) {/Qg;jj p ! 0xo p) dandxg}; = {/ (‘98¢ 0x5j1k+1$2)

) )
1 Oxy,OF 1 B
+ ‘(Hxl)k AR ¢ (61, 72) ) dxldxg} —

9 8%2

‘ i 000
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:{/ep—(k+2)(’§_zp+‘ kaa(b )dxldxz};

Q

S [ (B 22 Yanin)
8:171 o
Q
Combining (8) and (9) yields
_ k2
4, 06;7; ||¢||Lp<g¢m gty
1—k£2 o9 P
o {S{anl +‘ "1 Day >dm1dw2}
k+2 k+2
Since —; —1- 2_) > (0, we obtain Ay — oo as § — oo. This leads
p(T

: + ‘xk% p) dxldxg};

! 8302

to a contradiction, as the expression { i (‘ —

8301
is equivalent to ||@|| Q)
1,0

Theorem 7. Assume 1 < p < k+2. Then the imbedding map S7 (Q)

(k+2)
into L¥ 2+ “7(Q) is compact for every positive small T.

Proof. Combining Theorem 6, Theorem 5 and the interpolation inequality
for LP(Q)) gives the statement. For details see [7].

Theorem 8. Assume p >k +2. Then ST () C C°(9).

Proof. 1t suffices to prove the following estimate

81618 lul < CHqufo(Q)’ for every u € C3(Q).

First, we assume Vol(£2) = 1. By the inequality (7) we have

'l sz oy < ClluP sy
0 0
= C”y/|u|’y ! _u ‘x’fau D dzidzs
< Crlllg - "l

for v > 1 and a small positive 7.
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That is
1 1
[ PP 1 (2 R ey S
L\RFTT7)(Q) Pl (Q)
1 .
< (C) lullgy oy Il g g SinCE VOL(R) = 1.
Therefore we get
T <@ e
Tullgy o e (85 ) @)~ lullgp (@ 1277 @)
k+2
Choose 7 such that 2 i 17 > Ll Let us substitude the value &°
p_
k+2 —1
=1,2,...) to v, where £ = — > y the hypotheses
p=1,2 h kil P 1 by the hypoth
of the theorem. Then we have
[ (ce)? G
S e e
||u||sp () e g Hi-) o )
for p=1,2,.... Iteracting from p = 1 and using the fact that
v H <1
Hnuusio(m L) e =
we obtain
s R [ co™e T =c
H HUHSIIDO(Q) LEP (@) ”uHSfO(Q) (Zif T)'gp(Q) B ( )

Consequently, as p — oo we have

’ u
sup |[——| <
e ||u||sf0(g)

and hence sup u < C||ul| SP (@) To eliminate the restriction Vol (Q) = 1,
zeQ
we consider the transformation

_kt1
E+2

Y1 = {VOl(Q)} e r1 and yg = {VOI(Q)} To.



CRITICAL SOBOLEV EXPONENT 93

This leads to

sup |u(z)| = sup |u <C|u v (&) L Cllu(@)]lgr (o O
sup @) = sup u(v)| < C )y (g < @l o

From now on we suppose g(u) has only polynomial growth.

Definition 5. A function u € S7 () is called a weak solution of the
problem (1)-(2), if the identity

ou 690 o OU Ogo /

dxqd. dx1d dxidrs =0
8$1 8ZE1 1 1.2—’_/ 1 61’2 61’2 T1dtz = g(u)so T1ar2

Q Q

Q

holds for every ¢ € C3°(92).
Now we can state our existence theorem.

Theorem 9. Assume that g(u) satisfies the following conditions
(1) g€ Cpue' (R),

loc
k+4
9 +

) lg(u)] < CA+ |u™) with 1 <m < 5

) g(u) =o(u) as u — 0,

) There exists an A such that for |u| > A,G(u) < pg(u)u, where
pelo,3).

Then the problem (1)-(2) always has a weak non-trivial solution.

(
(3
(4

Proof. Consider the following functional in S7 (€2)

O(u) = %Q/ <‘§—;1 ’ + ‘x%ﬁ—éf) dxidry — Q/G(u) dzridzs.

From the conditions on g(u) one concludes that ® satisfies the hypotheses
(I1), (I2), (I3) in the paper [12]. So, ® has a non-trivial critical point,
which will be a weak solution for our problem. Ol
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