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FINITE PROPER HOLOMORPHIC SURJECTIONS AND
LINEAR TOPOLOGICAL INVARIANTS (Ω) AND (Ω̃)

DINH HUY HOANG

Abstract. It is shown that linear topological properties (Ω), (Ω̃) and
isomorphisms of spaces of holomorphic functions are invariant under finite
proper holomorphic surjections between Stein spaces.

Introduction

Let E be a Frechet space with a fundamental system of semi-norms
{‖ · ‖k}. For each subset B of E we define a semi-norm ‖ · ‖∗B on E∗, the
strongly dual space of E, with values in [0,+∞] by

∥∥u
∥∥∗

B
= sup{|u(x)| : x ∈ B}.

We write

∥∥ ·
∥∥∗

p
=

∥∥ ·
∥∥∗

Up
, with Up = {x ∈ E : ‖x‖p ≤ 1}.

We say that E has the property (P ) and write E ∈ (P ) if (P ) holds, where
(P ) is one of the following conditions:

(Ω) ∀p ∃q ∀k ∃d > 0, c > 0 s.t.
∥∥ ·

∥∥∗d+1

q
≤ c

∥∥ ·
∥∥∗

k

∥∥ ·
∥∥∗d

p
,

(Ω̃) ∀p ∃q, d > 0 ∀k ∃c > 0 s.t.
∥∥ · ∥∥∗d+1

q
≤ c

∥∥ · ∥∥∗
k

∥∥ · ∥∥∗d
p

,

(Ω) ∃d > 0 ∀p ∃q ∀k ∃c > 0 s.t.
∥∥ ·

∥∥∗d+1

q
≤ c

∥∥ ·
∥∥∗

k

∥∥ ·
∥∥∗d

p
,

(Ω) ∀p ∃q ∀k, d > 0 ∃c > 0 s.t.
∥∥ ·

∥∥∗d+1

q
≤ c

∥∥ ·
∥∥∗

k

∥∥ ·
∥∥∗d

p
,

(DN) ∃p ∀q ∃k, d > 0, c > 0 s.t.
∥∥ · ∥∥1+d

q
≤ c

∥∥ · ∥∥
k

∥∥ · ∥∥d

p
.
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The above properties were introduced and investigated by D. Vogt (see
[8, 9, 10, 11]). For a complex space X, we denote by H(X) the space of
holomorphic functions on X equipped with the compact-open topology.
The main results of the present paper are the following theorems.

Theorem 1. Let θ : X → Y be a finite proper holomorphic surjection
between Stein spaces. Then H(X) ∈ (Ω) (resp. (Ω̃)) if and only if H(Y ) ∈
(Ω) (resp. (Ω̃)).

Theorem 2. Let θ : X → Y be a finite proper holomorphic surjection
between Stein spaces. Then H(X) ∼= H(Ddim X) if and only if so is H(Y )
where D denotes the open unit disc in C.

The proofs of theorems 1 and 2 are given Section 1 and Section 2,
respectively.

1. Proof of theorem 1

Lemma 1.1. Let X be a Stein space with H(X) ∈ (Ω) (resp. (Ω̃)). Then
H0(X, S) ∈ (Ω) (resp. (Ω̃)) for an arbitrary coherent sheaf S on X.

Proof. Give a coherent sheaf S on X. Let {Kp} be an increasing ex-
haustion sequence of compact subsets of X. By Cartan Theorem A in [2],
for each x ∈ X there exists a neighbourhood Ux of x and σ1x, . . . , σmx ∈
H0(X, S) which generate Sy for every y ∈ Ux. Thus, by compactness
of Kp, there exists a sequence {σn} ⊂ H0(X,S) such that {σnx} gener-
ates Sx for every x ∈ X. Since H0(X, S) is Frechet, we can assume that
{σn} is bounded in H0(X, S). Consider the Banach coherent sheaf H`1

X of
germs of holomorphic functions on X with values in `1 and the morphism
η : H`1

X → S given by

η(f)(x) =
∑

n≥1

σn(x)fn(x),

for f = (fn) ∈ H`1
X .

By choice of σn, we infer that η is surjection. By [6], kerη is a Banach
coherent sheaf. Hence

H1(X, kerη) = 0.

It follows that the map η̂ : H0(X,H`1
X ) = H(X, `1) → H0(X, S) is surjec-

tive. From the hypothesis, H(X) ∈ (Ω) (resp. (Ω̃)), it is easy to see that
H(X, `1) ∈ (Ω) (resp. (Ω̃)) which implies H0(X, S) ∈ (Ω) (resp, (Ω̃)).

Corollary 1.2. Let X be a Stein space. Then H(X) ∈ (Ω).
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Proof. By Remmert Theorem, there exists a proper injective holomorphic
map γ from X into Cn for some n. By HX we denote the structure sheaf
of X, and by γ ∗HX the direct image of HX under γ. Since H(Cn) ∈ (Ω)
and since γ ∗ HX is coherent (see [2]), as in the proof of Lemma 1.1, we
can show

H(X) = H0(Cn, γ ∗ HX) ∈ (Ω).

Lemma 1.3. Let E = lim proj(En, wnm) be a projective limit of Frechet
spaces En such that the canonical maps wnm : En → Em are surjective.
Assume that En ∈ (Ω) (resp. (Ω̃) or (Ω)) for some n ≥ 1. Then E ∈ (Ω)
(resp. (Ω̃) or (Ω)).

Proof. Consider only the case En ∈ (Ω) for some n ≥ 1, because the other
cases are proved similarly. Given a neighbourhood U of 0 ∈ E. Take n
such that U is a neighbourhood of 0 ∈ En. Since En ∈ (Ω), there exists
a neighbourhood V of 0 ∈ En such that for every neighbourhood W of
0 ∈ En one can find a number c > 0 satisfying

∥∥ ·
∥∥∗2

V
≤ c

∥∥ ·
∥∥∗

W

∥∥ ·
∥∥∗

U
on E∗

n.

Since W is also a neighbourhood of 0 ∈ E and since the above inequality
obviously holds on E∗ \ E∗

n, we infer that E ∈ (Ω).

Now we can prove Theorem 1 as follows.

Proof of Theorem 1. For each n ≥ 1 suppose that Xn (resp. Yn) is the
union of irreducible branches of X (resp. Y ) of dimension ≤ n. Then

H(X) = lim proj (H(Xn), Rnm),

and
H(Y ) = lim proj (H(Yn), Rnm),

where Rnm are the restriction maps. By [2], Rnm are surjective. Hence,
by Lemma 1.3, it suffices to prove the theorem for θ : Xn → Yn which
is also surjective. Thus, without loss of generality we may assume that
dim X < ∞ and dim Y < ∞. We will only prove the theorem for (Ω),
because the proof is the same for (Ω̃).

a) Let H(X) ∈ (Ω).
(i) First assume that Y is normal. By the integrality lemma in [2], θ is

a branched covering map. Let p be the branched order of θ and f ∈ H(X).
Then the form

(Pf)(y) =
1
p

∑

θ(x)=y

mxf(x)
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defines a continuous linear map from H(X) onto H(Y ), where for every
x ∈ X mx denotes the branched order of θ at x. Hence H(Y ) ∈ (Ω).

(ii) Let γ : Ỹ → Y be the normalization of Y . Put

J̃ = {h ∈ H(Ỹ ) : h
∣∣
γ−1(SY )

= 0},

where SY denotes the singular locus of Y .
By Cartan Theorem, the sequence

0 → J̃ → H(Ỹ ) → H(γ−1(SY )) → 0

is exact.
Assume that H(Ỹ ) ∈ (Ω). By Lemma 1.1, J̃ ∈ (Ω) and by the inductive

hypothesis on dimension, we have

H(SY ) ∈ (Ω).

Consider the coherent sheaf R on Y given by

Ry =
{

ϕ ∈ HY,y : ϕ
(
γ ∗ HỸ

)
y
⊆ HY,y

}
.

Then Ry 6= 0 for y ∈ Y . By Cartan Theorem A (see [2]), H0(Y,R) 6= 0.
Moreover, there exists a ϕ ∈ R such that ϕ 6= 0 on every irreducible
branch of Y . Indeed, let Y =

⋃
i≥1

Yi be the irreducible decomposition of

Y . For each i ≥ 1, put

Gi =
{

ϕ ∈ H0(Y,R) : ϕ
∣∣
Yi
6= 0

}

= H0(Y,R) \
{

ϕ ∈ H0(Y,R) : ϕ
∣∣
Yi

= 0
}

.

Thus Gi is open. We prove that Gi is dense in H0(Y,R) for i ≥ 1. For each
i ≥ 1, take yi ∈ R(Yi), the regular locus of Yi. Since 1yi ∈ Ryi , by Cartan
Theorem A, there exist g1, . . . , gm ∈ H0(Y,R) and σ1, . . . , σm ∈ HY,yi

such that ∑

1≤j≤m

gj,yiσj,yi = 1yi .

Hence, there exists j0 such that gj0 ∈ Gi. Thus, Gi 6= ∅ for i ≥ 1,
which implies that Gi is dense in H0(Y,R) for i ≥ 1. By Baire Theorem,
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there exists ϕ ∈ ⋂
i≥1

Gi. Thus we can choose ϕ ∈ H(Y ), ϕ 6= 0 on every

irreducible branch of Y such that

ϕH(Ỹ ) ⊆ H(Y ).

Then
ϕH(Ỹ ) ∼= H(Ỹ ) ∈ (Ω).

Now consider the exact sequence

0 → ϕH(Ỹ ) → H(Y ) → H(Y )/ϕH(Ỹ ) → 0.

Observe that

H(Y )/ϕH(Ỹ ) ∼= H0(Y,HY /ϕγ ∗ HỸ ),

and
supp

(
HY /ϕγ ∗ HỸ

)
⊆ Z(ϕ) :=

{
y ∈ Y : ϕ(y) = 0

}
.

Hence HY /ϕγ ∗ HỸ can be considered as a coherent HZ(ϕ) sheaf, By
Lemma 1.1 we have

H(Y )/ϕH(Ỹ ) ∈ (Ω).

Then by D. Vogt [9], we get H(Y ) ∈ (Ω).
(iii) Finally consider the following commutative diagram of finite proper

holomorphic surjection of Stein spaces

Z
θ̃−−−−−−→ Ỹ

γ̃
y

yγ

X
θ−−−−−−→ Y

where Z = X × Y Ỹ is the fiber product of X and Ỹ , and θ̃, γ̃ are the
canonical projections. Since H(X) ∈ (Ω) by Lemma 1.1,

H(Z) = H0(X, γ ∗ HZ) ∈ (Ω̃).

By (i) H(Ỹ ) ∈ (Ω). Hence, by (ii) we have

H(Y ) ∈ (Ω).

b) Now we assume that H(Y ) ∈ (Ω). By Lemma 1.1,

H(X) = H0(Y, θ ∗ HX) ∈ (Ω).
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Corollary 1.4. Let X be a Stein space. Then H(X) ∈ (Ω) (resp. (Ω̃)) if
and only if H(Z) ∈ (Ω) (resp. (Ω̃)) for every irreducible branch Z of X.

Proof. By Cartan Theorem B it suffices to prove the sufficiency of the
corollary. Consider the normalization γ : X̃ → X of X. By Theorem 1,
H(Z̃) ∈ (Ω) (resp. (Ω̃)) for every irreducible branch Z̃ of X̃. Since

H(X̃) =
∏∏∏{

H(Z̃) : Z̃ is irreducible in X̃
}

,

we have H(X̃) and hence, H(X) ∈ (Ω) (resp. (Ω̃).

2. Proof of Theorem 2

Lemma 2.1. Let X be a complex space. Then H(X) ∈ (DN) if X has a
finite number of irreducible branches.

Proof. Consider the Hironaka singular resolution γ : X̂ → X of X. By
the hypothesis, X̂ has a finite number of connected components. By [11],
H(X̂) and hence H(X), have the property (DN).

Corollary 2.2. Let X be an irreducible complex space. Then H(X) ∈ (Ω)
if and only if dim H(X) = 1.

Proof. Sufficiency is trivial. Assume now that H(X) ∈ (Ω). By Lemma
2.1, H(X) ∈ (DN). Hence, it is isomorphic to a subspace of the space
Λ1(α) for some exponent sequence α (see [9]). Then, by applying Vogt’s
result in [10] to the embedding H(X) → Λ1(α), we get dim H(X) < ∞.
Since X is irreducible, dim H(X) = 1.

Now we can prove Theorem 2 as follows.

Proof of Theorem 2. Assume that H(X) is isomorphic to H(Dd), where
d = dim X. Since H(Dd) ∈ (Ω), by Theorem 1, H(Y ) ∈ (Ω). Since H(Y )
is contained in H(X) as a subspace of H(X), as in [9], we have

H(Y ) ∼= H(Dd).

Conversely, assume that H(Y ) ∼= H(Dd) ∈ (Ω), d = dim Y . By The-
orem 1, H(X) ∈ (Ω). On the other hand, by Lemma 2.1, H(X) ∈ (DN)
and hence, it is isomorphic to a subspace of Λ1(n1/d) ∼= H(Dd). Hence,
by [9], we get H(X) ∼= H(Dd).

Remark. It is shown in [1] and [4] that the space H(X) of holomorphic
functions on a Stein manifold X is isomorphic to the space H(Ddim X)



FINITE PROPER HOLOMORPHIC SURJECTIONS 81

if and only if H(X) ∈ (Ω) or equivalently, X is hyperconvex, where D
denotes the open unit disc in C. Thus, in the non-singular case Theorem
2 and the invariance of (Ω) is an immediate consequence of the invariance
of hyperconvexity under finite proper holomorphic surjection.

Moreover, by the same argument as in [13], we can prove that if given
X a Stein space such that H(X) is isomorphic to H(Dd), then X is hy-
perconvex. We do not know whether the conserve statement is true.

By considering the normalization of a complex space and by Theorem
1 and 2, we get a partial answer to the above mentioned question.

Corollary 2.3. Let X be a Stein space of dimension 1. Then the following
are equivalent.

(i) H(X) ∼= H(D),
(ii) H(X) ∈ (Ω),
(iii) X is hyperconvex.
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