FINITE PROPER HOLOMORPHIC SURJECTIONS AND LINEAR TOPOLOGICAL INVARIANTS $(\overline{\Omega})$ AND $(\widetilde{\Omega})$

DINH HUY HOANG

ABSTRACT. It is shown that linear topological properties $(\overline{\Omega})$, $(\overline{\Omega})$ and isomorphisms of spaces of holomorphic functions are invariant under finite proper holomorphic surjections between Stein spaces.

INTRODUCTION

Let *E* be a Frechet space with a fundamental system of semi-norms $\{ \| \cdot \|_k \}$. For each subset *B* of *E* we define a semi-norm $\| \cdot \|_B^*$ on E^* , the strongly dual space of *E*, with values in $[0, +\infty]$ by

$$\left\|u\right\|_{B}^{*} = \sup\{\left|u(x)\right| : x \in B\}.$$

We write

$$\|\cdot\|_{p}^{*} = \|\cdot\|_{U_{p}}^{*}, \text{ with } U_{p} = \{x \in E : \|x\|_{p} \le 1\}.$$

We say that E has the property (P) and write $E \in (P)$ if (P) holds, where (P) is one of the following conditions:

$$\begin{split} &(\Omega) \ \forall p \ \exists q \ \forall k \ \exists d > 0, c > 0 \ s.t. \ \| \cdot \|_q^{*d+1} \le c \| \cdot \|_k^* \ \| \cdot \|_p^{*d}, \\ &(\widetilde{\Omega}) \ \forall p \ \exists q, d > 0 \ \forall k \ \exists c > 0 \ s.t. \ \| \cdot \|_q^{*d+1} \le c \| \cdot \|_k^* \ \| \cdot \|_p^{*d}, \\ &(\overline{\Omega}) \ \exists d > 0 \ \forall p \ \exists q \ \forall k \ \exists c > 0 \ s.t. \ \| \cdot \|_q^{*d+1} \le c \| \cdot \|_k^* \ \| \cdot \|_p^{*d}, \\ &(\overline{\Omega}) \ \forall p \ \exists q \ \forall k, d > 0 \ \exists c > 0 \ s.t. \ \| \cdot \|_q^{*d+1} \le c \| \cdot \|_k^* \ \| \cdot \|_p^{*d}, \\ &(\overline{\Omega}) \ \forall p \ \exists q \ \forall k, d > 0 \ \exists c > 0 \ s.t. \ \| \cdot \|_q^{*d+1} \le c \| \cdot \|_k^* \ \| \cdot \|_p^{*d}, \\ &(\underline{DN}) \ \exists p \ \forall q \ \exists k, d > 0, c > 0 \ s.t. \ \| \cdot \|_q^{1+d} \le c \| \cdot \|_k \ \| \cdot \|_p^d. \end{split}$$

Received June 29, 1996; in revised form June 23, 1997.

1991 Mathematics Subject Classification. 32H25 - 32H20

Key words and phrases. Holomorphic map - Stein space - Branched covering map - properties $(\overline{\Omega}), (\widetilde{\Omega})$

DINH HUY HOANG

The above properties were introduced and investigated by D. Vogt (see [8, 9, 10, 11]). For a complex space X, we denote by H(X) the space of holomorphic functions on X equipped with the compact-open topology. The main results of the present paper are the following theorems.

Theorem 1. Let $\theta : X \to Y$ be a finite proper holomorphic surjection between Stein spaces. Then $H(X) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$) if and only if $H(Y) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$).

Theorem 2. Let $\theta : X \to Y$ be a finite proper holomorphic surjection between Stein spaces. Then $H(X) \cong H(D^{\dim X})$ if and only if so is H(Y)where D denotes the open unit disc in C.

The proofs of theorems 1 and 2 are given Section 1 and Section 2, respectively.

1. Proof of theorem 1

Lemma 1.1. Let X be a Stein space with $H(X) \in (\overline{\Omega})$ (resp. $(\overline{\Omega})$). Then $H^0(X, S) \in (\overline{\Omega})$ (resp. $(\overline{\Omega})$) for an arbitrary coherent sheaf S on X.

Proof. Give a coherent sheaf S on X. Let $\{K_p\}$ be an increasing exhaustion sequence of compact subsets of X. By Cartan Theorem A in [2], for each $x \in X$ there exists a neighbourhood U_x of x and $\sigma_{1x}, \ldots, \sigma_{mx} \in H^0(X, S)$ which generate S_y for every $y \in U_x$. Thus, by compactness of K_p , there exists a sequence $\{\sigma_n\} \subset H^0(X, S)$ such that $\{\sigma_{nx}\}$ generates S_x for every $x \in X$. Since $H^0(X, S)$ is Frechet, we can assume that $\{\sigma_n\}$ is bounded in $H^0(X, S)$. Consider the Banach coherent sheaf $\mathcal{H}_X^{\ell_1}$ of germs of holomorphic functions on X with values in ℓ_1 and the morphism $\eta : \mathcal{H}_X^{\ell_1} \to S$ given by

$$\eta(f)(x) = \sum_{n \ge 1} \sigma_n(x) f_n(x),$$

for $f = (f_n) \in \mathcal{H}_X^{\ell_1}$.

By choice of σ_n , we infer that η is surjection. By [6], ker η is a Banach coherent sheaf. Hence

$$H^1(X, \ker \eta) = 0.$$

It follows that the map $\hat{\eta} : H^0(X, \mathcal{H}_X^{\ell_1}) = H(X, \ell_1) \to H^0(X, S)$ is surjective. From the hypothesis, $H(X) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$), it is easy to see that $H(X, \ell_1) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$) which implies $H^0(X, S) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$).

Corollary 1.2. Let X be a Stein space. Then $H(X) \in (\Omega)$.

76

Proof. By Remmert Theorem, there exists a proper injective holomorphic map γ from X into C^n for some n. By \mathcal{H}_X we denote the structure sheaf of X, and by $\gamma * \mathcal{H}_X$ the direct image of \mathcal{H}_X under γ . Since $H(C^n) \in (\Omega)$ and since $\gamma * \mathcal{H}_X$ is coherent (see [2]), as in the proof of Lemma 1.1, we can show

$$H(X) = H^0(C^n, \gamma * \mathcal{H}_X) \in (\Omega).$$

Lemma 1.3. Let $E = \lim \operatorname{proj}(E_n, w_{nm})$ be a projective limit of Frechet spaces E_n such that the canonical maps $w_{nm} : E_n \to E_m$ are surjective. Assume that $E_n \in (\overline{\Omega})$ (resp. $(\overline{\Omega})$ or (Ω)) for some $n \ge 1$. Then $E \in (\overline{\Omega})$ (resp. $(\overline{\Omega})$ or (Ω)).

Proof. Consider only the case $E_n \in (\overline{\Omega})$ for some $n \geq 1$, because the other cases are proved similarly. Given a neighbourhood U of $0 \in E$. Take n such that U is a neighbourhood of $0 \in E_n$. Since $E_n \in (\overline{\Omega})$, there exists a neighbourhood V of $0 \in E_n$ such that for every neighbourhood W of $0 \in E_n$ one can find a number c > 0 satisfying

$$\left\|\cdot\right\|_{V}^{*2} \le c \left\|\cdot\right\|_{W}^{*} \left\|\cdot\right\|_{U}^{*} \quad \text{on} \quad E_{n}^{*}.$$

Since W is also a neighbourhood of $0 \in E$ and since the above inequality obviously holds on $E^* \setminus E_n^*$, we infer that $E \in (\overline{\Omega})$.

Now we can prove Theorem 1 as follows.

Proof of Theorem 1. For each $n \ge 1$ suppose that X_n (resp. Y_n) is the union of irreducible branches of X (resp. Y) of dimension $\le n$. Then

$$H(X) = \lim \operatorname{proj} (H(X_n), R_{nm}),$$

and

$$H(Y) = \lim \operatorname{proj} (H(Y_n), R_{nm}),$$

where R_{nm} are the restriction maps. By [2], R_{nm} are surjective. Hence, by Lemma 1.3, it suffices to prove the theorem for $\theta : X_n \to Y_n$ which is also surjective. Thus, without loss of generality we may assume that dim $X < \infty$ and dim $Y < \infty$. We will only prove the theorem for $(\overline{\Omega})$, because the proof is the same for $(\overline{\Omega})$.

a) Let $H(X) \in (\overline{\Omega})$.

(i) First assume that Y is normal. By the integrality lemma in [2], θ is a branched covering map. Let p be the branched order of θ and $f \in H(X)$. Then the form

$$(Pf)(y) = \frac{1}{p} \sum_{\theta(x)=y} m_x f(x)$$

defines a continuous linear map from H(X) onto H(Y), where for every $x \in X$ m_x denotes the branched order of θ at x. Hence $H(Y) \in (\overline{\Omega})$.

(ii) Let $\gamma: \tilde{Y} \to Y$ be the normalization of Y. Put

$$\tilde{J} = \{h \in H(\tilde{Y}) : h\big|_{\gamma^{-1}(SY)} = 0\},\$$

where SY denotes the singular locus of Y.

By Cartan Theorem, the sequence

$$0 \to \tilde{J} \to H(\tilde{Y}) \to H(\gamma^{-1}(SY)) \to 0$$

is exact.

Assume that $H(\tilde{Y}) \in (\overline{\Omega})$. By Lemma 1.1, $\tilde{J} \in (\overline{\Omega})$ and by the inductive hypothesis on dimension, we have

$$H(SY) \in (\overline{\Omega}).$$

Consider the coherent sheaf \mathcal{R} on Y given by

$$\mathcal{R}_{y} = \Big\{ \varphi \in \mathcal{H}_{Y,y} : \varphi \big(\gamma * \mathcal{H}_{\tilde{Y}} \big)_{y} \subseteq \mathcal{H}_{Y,y} \Big\}.$$

Then $\mathcal{R}_y \neq 0$ for $y \in Y$. By Cartan Theorem A (see [2]), $H^0(Y, \mathcal{R}) \neq 0$. Moreover, there exists a $\varphi \in \mathcal{R}$ such that $\varphi \neq 0$ on every irreducible branch of Y. Indeed, let $Y = \bigcup_{i \geq 1} Y_i$ be the irreducible decomposition of Y. For each $i \geq 1$, put

$$G_{i} = \left\{ \varphi \in H^{0}(Y, \mathcal{R}) : \varphi \big|_{Y_{i}} \neq 0 \right\}$$
$$= H^{0}(Y, \mathcal{R}) \setminus \left\{ \varphi \in H^{0}(Y, \mathcal{R}) : \varphi \big|_{Y_{i}} = 0 \right\}.$$

Thus G_i is open. We prove that G_i is dense in $H^0(Y, \mathcal{R})$ for $i \ge 1$. For each $i \ge 1$, take $y_i \in \mathcal{R}(Y_i)$, the regular locus of Y_i . Since $1_{y_i} \in \mathcal{R}_{y_i}$, by Cartan Theorem A, there exist $g_1, \ldots, g_m \in H^0(Y, \mathcal{R})$ and $\sigma_1, \ldots, \sigma_m \in \mathcal{H}_{Y,y_i}$ such that

$$\sum_{1 \le j \le m} g_{j,y_i} \sigma_{j,y_i} = 1_{y_i}$$

Hence, there exists j_0 such that $g_{j_0} \in G_i$. Thus, $G_i \neq \emptyset$ for $i \geq 1$, which implies that G_i is dense in $H^0(Y, \mathcal{R})$ for $i \geq 1$. By Baire Theorem,

there exists $\varphi \in \bigcap_{i \ge 1} G_i$. Thus we can choose $\varphi \in H(Y)$, $\varphi \neq 0$ on every irreducible branch of Y such that

$$\varphi H(\tilde{Y}) \subseteq H(Y).$$

Then

$$\varphi H(\tilde{Y}) \cong H(\tilde{Y}) \in (\overline{\Omega}).$$

Now consider the exact sequence

$$0 \to \varphi H(\tilde{Y}) \to H(Y) \to H(Y)/\varphi H(\tilde{Y}) \to 0.$$

Observe that

$$H(Y)/\varphi H(\tilde{Y}) \cong H^0(Y, \mathcal{H}_Y/\varphi\gamma * \mathcal{H}_{\tilde{Y}}),$$

and

$$\operatorname{supp}\Big(\mathcal{H}_Y/\varphi\gamma*\mathcal{H}_{\tilde{Y}}\Big)\subseteq Z(\varphi):=\Big\{y\in Y:\varphi(y)=0\Big\}.$$

Hence $\mathcal{H}_Y/\varphi\gamma * \mathcal{H}_{\tilde{Y}}$ can be considered as a coherent $\mathcal{H}_{Z(\varphi)}$ sheaf, By Lemma 1.1 we have

$$H(Y)/\varphi H(\tilde{Y}) \in (\overline{\Omega}).$$

Then by D. Vogt [9], we get $H(Y) \in (\overline{\Omega})$.

(iii) Finally consider the following commutative diagram of finite proper holomorphic surjection of Stein spaces

$$\begin{array}{ccc} Z & & & \widetilde{\theta} & & \\ \widetilde{\gamma} \downarrow & & & & \downarrow \gamma \\ X & & & \theta & & Y \end{array}$$

where $Z = X \times_Y \tilde{Y}$ is the fiber product of X and \tilde{Y} , and $\tilde{\theta}$, $\tilde{\gamma}$ are the canonical projections. Since $H(X) \in (\overline{\Omega})$ by Lemma 1.1,

$$H(Z) = H^0(X, \gamma * \mathcal{H}_Z) \in (\widetilde{\Omega}).$$

By (i) $H(\tilde{Y}) \in (\overline{\Omega})$. Hence, by (ii) we have

$$H(Y) \in (\overline{\Omega}).$$

b) Now we assume that $H(Y) \in (\overline{\Omega})$. By Lemma 1.1,

$$H(X) = H^0(Y, \theta * \mathcal{H}_X) \in (\overline{\Omega}).$$

DINH HUY HOANG

Corollary 1.4. Let X be a Stein space. Then $H(X) \in (\overline{\Omega})$ (resp. (Ω)) if and only if $H(Z) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$) for every irreducible branch Z of X.

Proof. By Cartan Theorem *B* it suffices to prove the sufficiency of the corollary. Consider the normalization $\gamma : \tilde{X} \to X$ of *X*. By Theorem 1, $H(\tilde{Z}) \in (\overline{\Omega})$ (resp. $(\widetilde{\Omega})$) for every irreducible branch \tilde{Z} of \tilde{X} . Since

$$H(\tilde{X}) = \prod \Big\{ H(\tilde{Z}) : \tilde{Z} \text{ is irreducible in } \tilde{X} \Big\},\$$

we have $H(\tilde{X})$ and hence, $H(X) \in (\overline{\Omega})$ (resp. $(\overline{\Omega})$).

2. Proof of Theorem 2

Lemma 2.1. Let X be a complex space. Then $H(X) \in (\underline{DN})$ if X has a finite number of irreducible branches.

Proof. Consider the Hironaka singular resolution $\gamma : \hat{X} \to X$ of X. By the hypothesis, \hat{X} has a finite number of connected components. By [11], $H(\hat{X})$ and hence H(X), have the property (<u>DN</u>).

Corollary 2.2. Let X be an irreducible complex space. Then $H(X) \in (\overline{\Omega})$ if and only if dim H(X) = 1.

Proof. Sufficiency is trivial. Assume now that $H(X) \in (\overline{\overline{\Omega}})$. By Lemma 2.1, $H(X) \in (\underline{DN})$. Hence, it is isomorphic to a subspace of the space $\Lambda_1(\alpha)$ for some exponent sequence α (see [9]). Then, by applying Vogt's result in [10] to the embedding $H(X) \to \Lambda_1(\alpha)$, we get dim $H(X) < \infty$. Since X is irreducible, dim H(X) = 1.

Now we can prove Theorem 2 as follows.

Proof of Theorem 2. Assume that H(X) is isomorphic to $H(D^d)$, where $d = \dim X$. Since $H(D^d) \in (\overline{\Omega})$, by Theorem 1, $H(Y) \in (\overline{\Omega})$. Since H(Y) is contained in H(X) as a subspace of H(X), as in [9], we have

$$H(Y) \cong H(D^d).$$

Conversely, assume that $H(Y) \cong H(D^d) \in (\overline{\Omega}), d = \dim Y$. By Theorem 1, $H(X) \in (\overline{\Omega})$. On the other hand, by Lemma 2.1, $H(X) \in (\underline{DN})$ and hence, it is isomorphic to a subspace of $\Lambda_1(n^{1/d}) \cong H(D^d)$. Hence, by [9], we get $H(X) \cong H(D^d)$.

Remark. It is shown in [1] and [4] that the space H(X) of holomorphic functions on a Stein manifold X is isomorphic to the space $H(D^{\dim X})$

if and only if $H(X) \in (\Omega)$ or equivalently, X is hyperconvex, where D denotes the open unit disc in C. Thus, in the non-singular case Theorem 2 and the invariance of $(\overline{\Omega})$ is an immediate consequence of the invariance of hyperconvexity under finite proper holomorphic surjection.

Moreover, by the same argument as in [13], we can prove that if given X a Stein space such that H(X) is isomorphic to $H(D^d)$, then X is hyperconvex. We do not know whether the conserve statement is true.

By considering the normalization of a complex space and by Theorem 1 and 2, we get a partial answer to the above mentioned question.

Corollary 2.3. Let X be a Stein space of dimension 1. Then the following are equivalent.

(i) $H(X) \cong H(D)$, (ii) $H(X) \in (\overline{\Omega})$, (...) $X \to I$

(iii) X is hyperconvex.

References

- 1. A. Aytuna, On Stein manifolds M for which O(M) is isomorphic to $O(\Delta^n)$ as Frechet space, Manuscripta Math. **62** (1988), 297-315.
- G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer-Verlag, 1976.
- E. Fornaess and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47-72.
- N. V. Khue and L. V. Thanh, On invariance of q-convexity, Trans. Amer. Math. Soc. 302 (1987), 45-54.
- 5. M. Klimek, Pluripotential Theory, Oxford, 1991.
- 6. J. Leiterer, Banach coherent Frechet sheaves, Math. Narchr. 85 (1978), 91-108.
- N. Sibony, Prolongement des fonctions holomorphes bornées et metrique de Caratheodory, Invent. Math. 29 (1975), 205-230.
- 8. D. Vogt, On two classes of (F)-spaces, Arch. Math. 45 (1985), 255-266.
- 9. D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. **37** (1982), 269-301.
- D. Vogt, Frécheträume zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
- 11. D. Vogt, Charakterisierung der Unteräume eines nuklearen stabilen Potenzreihenräumes won endlichem Typ, Studia Math. **71** (1982), 251-270.
- 12. D. Vogt, On the functor $Ext^{1}(E, F)$, Studia Math. 85 (1987), 163-197.
- V. D. Zaharjuta, *Isomorphism of spaces of analytic functions*, Dokl. Akad. Nauk SSSR 155 (1980), 11-14 (in Russian).

DINH HUY HOANG

14. A. Zeriahi, Fonctions de Green pluricomplex a pole a l'infinite sur un espace de Stein parabolique et applications, Scand. Math. **69** (1990), 98-126.

Department of Mathematics, Pedagogical Institute of Vinh Vinh, Nghe An, Vietnam

82