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REGULARIZED SOLUTIONS OF A CAUCHY PROBLEM
FOR THE LAPLACE EQUATION IN AN

IRREGULAR LAYER: A THREE DIMENSIONAL MODEL

DANG DINH ANG, NGUYEN HOI NGHIA AND NGUYEN CONG TAM

1. Introduction

Consider the problem of finding a function u, harmonic in the domain
D defined by

D = {(x, y, z) : −∞ < x, y < ∞ , 0 < z < φ(x, y)}

and continuous on D, given u, ux, uy and uz on the portion of the boundary
represented by the surface z = φ(x, y). Here φ is of class C1.

This is a Cauchy problem for the Laplace equation and is well known
as an ill-posed problem, i.e., solutions of the problem do not always exist
and, whenever they do exist, there is no continuous dependence on the
given data. The reader is referred to [1, 2, 3, 4, 6, 7, 9, 10] on the earlier
literature on the Cauchy problem for the Laplace equation.

For numerical computations, ill-posed problems need to be regularized.
A regularized solution is a stable approximate solution. An important
question arises as to how close a regularized solution is to an exact solution,
especially when the measured data is affected with noise. The problem of
regularisation of the Cauchy problem for the Laplace equation in a rather
general context was considered, e.g., in [5]; using the method of quasi-
reversibility, the authors (loc. cit.) stabilized the problem, but no error
estimates are given. We shall take the approach followed in [1] by taking
the boundary value v(x, y) = u(x, y, 0) as our unknown and we shall show
that if the discrepancy between the given values of u, ux, uy, uz on the
surface z = φ(x, y) and their exact values is of the order ε, then, assuming
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the exact solution v0(x, y) to be smooth (in H1(R2)), the discrepancy
between the regularized solution and the exact solution v0(x, y) is of the
order (ln 1

ε )−1 as ε → 0.

2. Integral equation formulation and regularization

First, we set some notations:

ux(x, y, φ(x, y)) = f(x, y)

uy(x, y, φ(x, y)) = g(x, y)
(1)

uz(x, y, φ(x, y)) = h(x, y)

u(x, y, φ(x, y)) = u1(x, y)

These functions, we recall, are given. Let us put

Γ(x, y, z; ξ, η, ζ) =
1
4π

· 1√
(x− ξ)2 + (y − η)2 + (z − ζ)2

,

G(x, y, z; ξ, η, ζ) = Γ(x, y, z; ξ, η, ζ)− Γ(x, y, z; ξ, η,−ζ) ,(2)

where Γ is a fundamental solution of the Laplace equation and G is the
Green’s function for the Laplacian corresponding to a Dirichlet condition
at the boundary z = 0.

It is sufficient to determine u(x, y, 0) = v(x, y). Once this is done,
u(x, y, z) is known. We shall derive an integral equation in v. In order to
do this, suppose that

(i)
∂φ

∂x
(x, y) =

∂φ

∂y
(x, y) = 0 for large r =

√
x2 + y2.

(ii) f(x, y), g(x, y), h(x, y), u1(x, y) tend to 0 sufficiently fast, say as
1√

x2 + y2
for

√
x2 + y2 →∞.

(iii)
√

1 + x2 + y2 . v(x, y) is in L2(R2).

Integrating Green’s identity on Dε, ε > 0, where Dε = D \D′
ε and D′

ε is
the closed ball in D of radius ε centered at (x, y, z), and let ε → 0, we
then have, after some rearrangements

1
2π

∞∫

−∞

∞∫

−∞

zv(ξ, η)

((x− ξ)2 + (y − η)2 + z2)3/2
dξdη =
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= u(x, y, z)−
∞∫

−∞

∞∫

−∞
G(x, y, z; ξ, η, φ(ξ, η))f1(ξ, η)dξdη

+

∞∫

−∞

∞∫

−∞
G1(x, y, z; ξ, η, φ(ξ, η))u1(ξ, η)dξdη ,(3)

where −∞ < x, y < ∞, 0 < z < φ(x, y) ,

f1(ξ, η) = h(ξ, η)− f(ξ, η)
∂

∂ξ
φ(ξ, η)− g(ξ, η)

∂

∂η
φ(ξ, η)

and

G1(x, y, z; ξ, η, φ(ξ, η)) = Gζ(x, y, z; ξ, η, φ(ξ, η))

−Gξ(x, y, z; ξ, η, φ(ξ, η))
∂

∂ξ
φ(ξ, η)−Gη(x, y, z; ξ, η, φ(ξ, η))

∂

∂η
φ(ξ, η).

(4)

Letting z → φ(x, y) in (3), we have (see [8])

1
2π

∞∫

−∞

∞∫

−∞

φ(x, y)v(ξ, η)

((x− ξ)2 + (y − η)2 + φ2(x, y))3/2
dξdη =

=
1
2
u1(x, y)−

∞∫

−∞

∞∫

−∞
G(x, y, φ(x, y); ξ, η, φ(ξ, η))f1(ξ, η)dξdη

+

∞∫

−∞

∞∫

−∞
G1(x, y, φ(x, y); ξ, η, φ(ξ, η))u1(ξ, η)dξdη ,(5)

which is an integral equation in v(x, y). We shall convert (5) into a con-
volution equation.

We note that the function

H(x, y, z) =
1
2π

∞∫

−∞

∞∫

−∞

zv(ξ, η)

((x− ξ)2 + (y − η)2 + z2)3/2
dξdη
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is harmonic in the upper half space z > 0. The value H(x, y, φ(x, y)) is

then the right hand side of (5). Furthermore, we can calculate
∂H

∂n
(x, y,

φ(x, y)) as the limit from below of the directional derivative of the right
hand side of (3) when (x, y, z) → (x, y, φ(x, y)), ~n being the inner unit
normal to the surface z = φ(x, y).

Let λ(x, y) = H(x, y, φ(x, y)) , µ(x, y) =
∂H

∂n
(x, y, φ(x, y))

Then λ(x, y) and µ(x, y) are defined on R2, and depend continuously on

φ(x, y) ,
∂φ

∂x
(x, y) ,

∂φ

∂y
(x, y) , u1(x, y) ,

∂u1

∂x
(x, y) ,

∂u1

∂y
(x, y) , f(x, y),

g(x, y) and h(x, y) in the L2-sense. Furthermore, H(x, y, z) can be rep-
resented as a potential with densities λ, µ on the domain z > φ(x, y). In
fact, integrating Green’s identity in the domain

DR = {(x, y, z) : x2 + y2 < R2 , φ(x, y) < z < R}

and letting R →∞, we get

H(x, y, z) =

∞∫

−∞

∞∫

−∞
Γ(x, y, z; ξ, η, φ(ξ, η))µ(ξ, η)dξdη

−
∞∫

−∞

∞∫

−∞
Γ1(x, y, z; ξ, η, φ(ξ, η))λ(ξ, η)dξdη(6)

for −∞ < x, y < ∞ , z > φ(x, y), where

Γ1(x, y, z; ξ, η, φ(ξ, η)) = Γξ(x, y, z; ξ, η, φ(ξ, η))
∂φ

∂ξ
(ξ, η)

+ Γη(x, y, z; ξ, η, φ(ξ, η))
∂φ

∂η
(ξ, η)− Γζ(x, y, z; ξ, η, φ(ξ, η)).

Note that as R →∞, the integral on

CR = {(x, y, z) : x2 + y2 = R2, φ(x, y) < z < R}
∪ {(x, y,R) : x2 + y2 < R2}

tends to 0 as a consequence of our assumption on v (i.e.,
√

1 + x2 + y2 .
v(x, y) is in L2(R2)).
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Evaluating H(x, y, z) at (x, y, k) where k is a fixed number greater than
φ(x, y) for all (x, y) in R2, we have by (6)

1
2π

∞∫

−∞

∞∫

−∞

kv(ξ, η)

((x− ξ)2 + (y − η)2 + k2)3/2
dξdη =

∞∫

−∞

∞∫

−∞
Γ(x, y, k; ξ, η, φ(ξ, η))µ(ξ, η)dξdη

−
∞∫

−∞

∞∫

−∞
Γ1(x, y, k; ξ, η, φ(ξ, η))λ(ξ, η)dξdη ,

Let

F (x, y) =

∞∫

−∞

∞∫

−∞
Γ(x, y, k; ξ, η, φ(ξ, η))v(ξ, η)dξdη

−
∞∫

−∞

∞∫

−∞
Γ1(x, y, k; ξ, η, φ(ξ, η))λ(ξ, η)dξdη .

Then we have a convolution integral equation in v(ξ, η)

(7)
1
2π

∞∫

−∞

∞∫

−∞

kv(ξ, η)

((x− ξ)2 + (y − η)2 + k2)3/2
= F (x, y), ∀(x, y) ∈ R2,

which is an integral equation of first kind, and we know that this problem is
ill-posed. We shall construct a family (vβ), β > 0, of regularized solutions
(see [11]), and we pick a regularized solution that is “close” to the exact
solution. We recall that, by regularized solution we mean a function that
is stable with respect to variations in the right hand side of (7).

We now state and prove our main result.

Theorem. Suppose the exact solution v0 of (7) in the right hand side is
in H1(R2) and let

|F0 − F |2 < ε , | . |2 = L2(R2)− norm.
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Then there exists a regularized solution vε of (7) such that

|vε − v0|2 ≤ K

(
ln

(
1
ε

))−1

for ε → 0,

where K is a constant depending only on the H1−norm of v0.

Proof. Letting

G(x, y) =
k

(x2 + y2 + k2)3/2
,

we have
Ĝ(s, t) = exp

(
−k

√
s2 + t2

)
,

where

Ĝ(s, t) =
1
2π

∞∫

−∞

∞∫

−∞
G(x, y)e−i(xs+yt)dxdy.

For v in L2(R2), we then have by (7)

Ĝ(s, t)v̂(s, t) = F̂ (s, t).

Now let v0 ∈ H1(R2) be the exact solution of the equation

(8) Ĝ(s, t)v̂0(s, t) = F̂0(s, t) , ∀(s, t) ∈ R2,

with F and F0 in L2(R2) such that

(9) |F − F0|2 < ε.

For every β > 0, the function

(10) ψ(s, t) =
Ĝ(s, t)F̂ (s, t)
β + Ĝ2(s, t)

is in L2(R2). Let

vβ(x, y) =
1
2π

∞∫

−∞

∞∫

−∞
ψ(s, t)ei(xs+yt)dsdt.
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Then vβ ∈ L2(R2) and, by (10), vβ satisfies the equation

(11) βv̂β(s, t) + Ĝ2(s, t)v̂β(s, t) = Ĝ(s, t)F̂ (s, t), ∀ (s, t) ∈ R2,

and depends continuously on F (s, t).
We now derive error estimates. From (8) and (11), we have

β(v̂β(s, t)− v̂0(s, t)) + Ĝ2(s, t)(v̂β(s, t)− v̂0(s, t)) =

− βv̂0(s, t) + Ĝ(s, t)(F̂ (s, t)− F̂0(s, t)), ∀(s, t) ∈ R2.(12)

We multiply both sides of (12) by v̂β(s, t)− v̂0(s, t) and then integrate on
R2. Then we have

β|v̂β − v̂0|22 + |Ĝ (v̂β − v̂0) |22

= −
∞∫

−∞

∞∫

−∞
βv̂0(s, t)

(
v̂β(s, t)− v̂0(s, t)

)
dsdt

+

∞∫

−∞

∞∫

−∞
Ĝ(s, t)(F̂ (s, t)− F̂0(s, t))

(
v̂β(s, t)− v̂0(s, t)

)
dsdt

≤ β|v̂0|2|v̂β − v̂0|2 + |F̂ − F̂0|2|v̂β − v̂0|2.
(13)

Let β = ε and note that |F̂ − F̂0|2 = |F − F0|2 < ε, we have

(14) ε|v̂ε − v̂0|22 + |Ĝ (v̂ε − v̂0) |22 ≤ ε (|v̂0|2 + 1) |v̂ε − v̂0|2.

In particular

(15) |v̂ε − v̂0|2 ≤ (|v̂0|2 + 1) .

Similarly, letting β = ε in (12) and multiplying both sides by (s2 +
t2)

(
v̂ε(s, t)− v̂0(s, t)

)
and then integrating over R2, we have
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ε|
√

s2 + t2 (v̂ε − v̂0) |22 + |Ĝ
√

s2 + t2 (v̂ε − v̂0) |22

= −
∞∫

−∞

∞∫

−∞
εv̂0(s, t)

(
s2 + t2

) (
v̂ε(s, t)− v̂0(s, t)

)
dsdt

+

∞∫

−∞

∞∫

−∞

√
s2 + t2 . Ĝ(s, t)(F̂ (s, t)

− F̂0(s, t))
√

s2 + t2
(
v̂ε(s, t)− v̂0(s, t)

)
dsdt

≤ ε|Dv0|2|
√

s2 + t2 (v̂ε − v̂0) |2
+

1
ke
|F̂ − F̂0|2|

√
s2 + t2 (v̂ε − v̂0) |2

≤ ε

(
|Dv0|2 +

1
ke

)
|
√

s2 + t2 (v̂ε − v̂0) |2,(16)

where
|Dv0|22 ≡

∫ ∞

−∞

∫ ∞

−∞
(s2 + t2)v̂0

2(s, t)dsdt.

In particular,

(17) |
√

s2 + t2 (v̂ε − v̂0) |2 ≤
(
|Dv0|2 +

1
ke

)
.

Since

(18) |vε − v0|2 = |v̂ε − v̂0|2
and

|Dvε −Dv0|2 = |
√

s2 + t2 (v̂ε − v̂0) |2,
from (15) and (17) we get

(19) ‖vε − v0‖H1(R2) = |vε − v0|2 + |Dvε −Dv0|2 ≤ K1,

where

K1 = |v0|2 + |Dv0|2 + 1 +
1
ke

= ‖v0‖H1(R2) + 1 +
1
ke

·
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Now, for any tε > 0,
∫∫

s2+t2≤t2ε

|v̂ε(s, t)− v̂0(s, t)|2dsdt

≤
∫∫

s2+t2≤t2ε

e2ktεĜ2(s, t)|v̂ε(s, t)− v̂0(s, t)|2dsdt

≤ e2ktε

∞∫

−∞

∞∫

−∞
Ĝ2(s, t)|v̂ε(s, t)− v̂0(s, t)|2dsdt

= e2ktε |Ĝ (v̂ε − v̂0) |22
≤ e2ktεK1ε (|v̂0|2 + 1)

≡ K2εe
2ktε ,(20)

∫∫

s2+t2>t2ε

|v̂ε(s, t)− v̂0(s, t)|2dsdt

≤
∞∫

−∞

∞∫

−∞

(
s2 + t2

)
t−2
ε |v̂ε(s, t)− v̂0(s, t)|2dsdt

= t−2
ε

∞∫

−∞

∞∫

−∞
|
√

s2 + t2 (v̂ε(s, t)− v̂0(s, t)) |2dsdt

≤ K1t
−2
ε

≤ K2t
−2
ε ,(21)

where
K2 = K1 (|v̂0|2 + 1) .

Next consider the equation

(22) y2e2ky =
1
ε
·

The function h(y) = y2e2ky is strictly increasing for y > 0 and h(R+) =
R+. Then the equation (22) has a unique solution tε and tε → ∞ as
ε → 0. Hence, we have

2(1 + k)tε ≥ 2 ln tε + 2ktε = ln
1
ε
·
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Letting ε < 1, we have

(23) t−1
ε ≤ 2(1 + k)

(
ln

1
ε

)−1

·

By (20), (21) and (23) we have

|vε − v0|22 ≤ 2K2t
−2
ε ≤ K2

(
ln

(
1
ε

))−2

,

where
K2 = 8(1 + k)2K2,

as desired. This completes the proof of the theorem.
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