ON THE ALMOST PERIODIC n-COMPETING SPECIES PROBLEM

TRINH TUAN ANH

ABSTRACT. We consider the *n*-dimensional Lotka-Volterra competition equations with almost periodic coefficients. Conditions for the existence of a globally asymptotically stable almost periodic solution with positive components are given. This is a generalization of a result in [5].

INTRODUCTION

Consider the Lotka-Volterra equations for n-competing species

(0.1)
$$
u'_{i} = u_{i} \left[b_{i}(t) - \sum_{j=1}^{n} a_{ij}(t) u_{j} \right], \quad 1 \leq i \leq n,
$$

where $n \geq 2$ and $a_{ij}, b_i : \mathbf{R} \to \mathbf{R}$ are continuous and bounded above and below by positive constants. Given a bounded function $g(t)$ on $(-\infty, +\infty)$, let g_L and g_M denote $\inf_{t \in R} \{g(t)\}\$ and $\sup_{t \in R} \{g(t)\}\$, respectively. $t\in\mathbb{R}$

In [5] K. Gopalsamy considered the system (0.1) in which a_{ij} , b_i (1 \leq $i, j \leq n$) are assumed to be almost periodic. He showed that under the conditions

(0.2)
$$
b_{i_L} > \sum_{j \in J_i} a_{ij_M} (b_{j_M}/a_{jj_L}), \quad i = 1, ..., n,
$$

and

(0.3)
$$
a_{ii_L} > \sum_{j \in J_i} a_{ij_M}, \quad i = 1, ..., n,
$$

Received February 3, 1996; in revised form June 11, 1996.

1991 Mathematics Subject Classification. 34D05, 34C27, 92D40

Key words. Almost periodic solution, the Lotka-Volttera equation, the logistic equation egress point, retraction.

This work is financially supported in part by the National Basic Research Program in Natural Sciences KT04 1.3.7.

where $J_i = \{1, \ldots, i-1, i+1, \ldots, n\}$, the system (0.1) has a unique solution $u^0(t)$ such that each its component is almost periodic and bounded above and below by positive constants. Moreover, if $u(t)$ is a solution of (0.1) such that $u_i(t_0) > 0$ $(1 \leq i \leq n)$ for some $t_0 \in \mathbf{R}$, then $\lim_{t \to +\infty} (u_i(t)$ $u_i^0(t)$ = 0. ¢

In this paper we will show that alone conditions (0.2) imply the assertion of the above mentioned theorem of K. Gopalsamy.

The case of $n = 2$ was treated by S. Ahmad [1]. It is well-known, for example in [2], that for $i = 1, \ldots, n$ the logistic equation

(0.4i)
$$
U' = U\big[b_i(t) - a_{ii}(t)U\big],
$$

has a unique solution, say $U_i^0(t)$, defined on $(-\infty, +\infty)$ which is bounded above and below by positive constants.

Our main result is the following: If

(i) There exists a positive number ε_1 such that

(0.5)
$$
b_i(t) \geq \sum_{j \in J_i} a_{ij}(t)U_j^0(t) + \varepsilon_1, \quad 1 \leq i \leq n, \quad t \in \mathbf{R},
$$

and

(ii) There are positive constants $\varepsilon_2, \alpha_1, \ldots, \alpha_n$ such that

(0.6)
$$
\alpha_i a_{ii}(t) \geq \sum_{j \in J_i} a_{ji}(t) \alpha_j + \varepsilon_2, \quad 1 \leq i \leq n, \quad t \in \mathbf{R},
$$

then the system (0.1) has a unique solution $u^0(t) = (u_1^0(t), \ldots, u_n^0(t))$ ¢ defined on $(-\infty, +\infty)$, whose components are bounded above and below by positive constants. However, $u_i(t) - u_i^0(t) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$ for positive constants. However, $u_i(t) - u_i^*(t) \to 0$ as $t \to +\infty$ $(1 \leq i \leq n)$ for
any solution $u(t) = (u_1(t), \ldots, u_n(t))$ of (0.1) with $u_i(t_0) > 0$ for some $t_0 \in \mathbf{R}$. If, in addition, a_{ij} , b_i $(1 \leq i, j \leq n)$ are almost periodic then the above solution $u^0(t)$ is almost periodic.

The case of $n = 2$ under conditions (0.5) and (0.6) was treated in [8]. The periodic case under conditions (0.5) and (0.6) was considered by A. Tineo and C. Alvarez [7]. The ecological significance of such a system is discussed in [4, 5].

1. Existence

In this section we do not assume the almost periodicity conditions on the coefficients a_{ij} and b_i $(1 \leq i, j \leq n)$. We shall prove the existence

of the solution $u^0(t)$ as mentioned above. The following proposition was given by A. Tineo and C. Alvarez [7].

Proposition 1.1. Let $u = (u_1, \ldots, u_n)$ be a solution of (0.1) with $u_i(t_0) > 0, i = 1, 2, ..., n$, for some $t_0 \in \mathbb{R}$. For each $i = 1, ..., n$, let U_i be a solution of (0.4i) such that $U_i(t_0) \geq u_i(t_0)$ (or $U_i(t_0) \leq u_i(t_0)$). Then $U_i(t) > u_i(t)$ for $t > t_0$ ($U_i(t) < u_i(t)$ for $t < t_0$, respectively).

We now recall the topological principle of Wazewski (see, for example [6]). Let $f(t, y)$ be a continuous function defined on an open (t, y) -set $\Omega \subset \mathbf{R} \times \mathbf{R}^n$. Let Ω^0 be an open subset of Ω with the boundary $\partial \Omega^0$ and the closure $\overline{\Omega^0}$. Recall that a point $(t_0, y_0) \in \Omega \cap \partial \Omega^0$ is called an egress *point* of Ω^0 with respect to the system

$$
(1.1) \t\t y' = f(t, y),
$$

if for every solution $y = y(t)$ of (1.1) satisfying the initial condition

$$
(1.2) \t\t y(t_0) = y_0,
$$

there is an $\varepsilon > 0$ such that $(t, y(t)) \in \Omega^0$ for $t_0 - \varepsilon \le t < t_0$. An egress point (t_0, y_0) of Ω^0 is called a *strict egress point* if $(t, y(t)) \notin \overline{\Omega^0}$ for $t_0 < t \leq t_0 + \varepsilon$ for a small $\varepsilon > 0$. The set of egress points of Ω^0 will be denoted by Ω_e^0 and the set of strict egress points by Ω_{se}^0 .

If X is a topological space, V a subset of X, a continuous mapping $\pi: X \to V$ defined on all of X is called a *retraction* of X onto V if the restriction $\pi|_{V}$ of π to V is the identity. When there exists a retraction of X onto V, V is called a retract of X.

Remark 1.2. For $a_i < b_i$ ($1 \leq i \leq n$), let X be the *n*-parallepiped $\{(x_1,\ldots,x_n): a_i \leq x_i \leq b_i, \quad 1 \leq i \leq n\}$ in the Euclidean space \mathbb{R}^n , and V its boundary. Then V is not a retract of X . For if there exists a retraction $\pi: X \to V$, then there exists a continuous map of X into itself

$$
(x_1,\ldots,x_n)\mapsto \left(\frac{a_1+b_1}{2},\ldots,\frac{a_n+b_n}{2}\right)-\pi(x_1,\ldots,x_n),
$$

without fixed points, which is impossible by the fixed point theorem of Schauder.

Theorem 1.3 (Topological principle, see [6]). Let $f(t, y)$ be continuous on an open (t, y) -set Ω with the property that initial values determine unique solution of (1.1). Let Ω^0 be an open subset of Ω satisfying $\Omega_e^0 = \Omega_{se}^0$. Let

S be a nonempty subset of $\Omega^0 \cup \Omega^0_e$ such that $S \cap \Omega^0_e$ is not a retract of S but is a retract of Ω_e^0 . Then there exists at least one point (t_0, y_0) in $S \cap \Omega^0$ such that the solution $(t, y(t))$ of (1.1), (1.2) is contained in Ω^0 on its right maximal interval of existence.

Theorem 1.4. If conditions (0.5) hold, then the system (0.1) has at least a solution $u^0(t)$ defined on $(-\infty, +\infty)$ satisfying

$$
\eta_i \le u_i^0(t) \le U_i^0(t), \quad 1 \le i \le n,
$$

where η_i is a positive number such that

$$
\eta_i < \min\left\{\varepsilon_1/a_{iiM}, \inf_{t \in R} U_i^0(t)\right\}.
$$

Proof. Consider the system

(1.3)
$$
v'_{i} = v_{i} \Big[-b_{i}(-t) + \sum_{j=1}^{n} a_{ij}(-t)v_{j} \Big], \quad 1 \leq i \leq n.
$$

Set $\Omega^0 =$ n $(t, v_1, \ldots, v_n) : -\infty < t < +\infty, \ \eta_i < v_i < U_i^0(-t), \ 1 \le i \le n$ o , $\Omega = \left\{ (t, v_1, \ldots, v_n) : -\infty < t < +\infty, v_i > 0, 1 \le i \le n \right\}.$ By Proposition \mathbf{C} 1.1, any point (t, v_1, \ldots, v_n) in

$$
A = \bigcup_{i=1}^{n} \left\{ t, v_1, \dots, v_n \right\} \in \overline{\Omega^0} : v_i = U_i^0(-t), \ -\infty < t < +\infty \right\}
$$

is a strict egress point of Ω^0 . By (0.5) and the definition of η_i (1 $\leq i \leq n$), it follows that any point (t, v_1, \ldots, v_n) in

$$
B = \bigcup_{i=1}^{n} \left\{ (t, v_1, \dots, v_n) \in \overline{\Omega^0} : v_i = \eta_i \right\}
$$

is a strict egress point of Ω^0 . Therefore $\Omega_e^0 = \Omega_{se}^0 = A \cup B$. Let us take $S = \{(0, v_1, \ldots, v_n) : \eta_i \leq v_i \leq U_i^0(0), 1 \leq i \leq n\}$. Then S is a parallepiped. By Remark 1.2, $S \cap \Omega_e^0$ is not a retract of S .

Define

$$
\pi: \Omega_e^0 \to S \cap \Omega_e^0,
$$

$$
(t, v_1, \dots, v_n) \mapsto \left(0, \eta_1 + \frac{v_1 - \eta_1}{U_1^0(t) - \eta_1}(U_1^0(0) - \eta_1), \dots, \right)
$$

$$
\eta_n + \frac{v_n - \eta_n}{U_n^0(t) - \eta_n}(U_n^0(0) - \eta_n)\right).
$$

The map π is clearly continuous with respect to the subtopologies on Ω_e^0 and $S \cap \Omega_e^0$ of the Euclidean space \mathbf{R}^{n+1} , and its restriction to $S \cap \Omega_e^0$ is the identity. Therefore $S \cap \Omega_e^0$ is a retract of Ω_e^0 . By Theorem 1.3, the system (1.3) has at least a solution $v^0(t)$ satisfying $\eta_i < v_i^0(t) < U_i^0(-t)$ for $t \geq 0$. In fact, $u^*(t) = v^0(-t)$ is a solution of (0.1) for $t \leq 0$. By Proposition 1.1, conditions (0.5) and the definition of η_i (1 \leq i \leq n), it follows that the solution $\bar{u}(t)$ of (0.1) with $\bar{u}(0) = v^{0}(0)$ satisfies

$$
\eta_i \le \overline{u}_i(t) \le U_i^0(t)
$$
, for $t \ge 0$ and $1 \le i \le n$.

Let

$$
u^{0}(t) = \begin{cases} u^{*}(t), & t \leq 0, \\ \overline{u}(t), & t > 0. \end{cases}
$$

Then $u^0(t)$ is a solution of (0.1) satisfying $\eta_i \leq u_i^0(t) \leq U_i^0(t)$ $(t \in \mathbf{R}, 1 \leq$ $i \leq n$). The theorem is proved.

2. UNIQUENESS AND ASYMPTOTICITY

In this section we also do not assume the almost periodicity conditions on a_{ij} and b_i $(1 \le i, j \le n)$. From now on, \mathbb{R}^n_+ denotes the set of points $x = (x_1, \ldots, x_n)$ in \mathbb{R}^n such that $x_i > 0, 1 \leq i \leq n$. Moreover $u(t, t_0, x) :=$ $(u_1(t, t_0, x), \ldots, u_n(t, t_0, x))$ denotes the solution of (0.1) defined by the initial condition $u(t_0, t_0, x) = x$. Remember that $u(t, t_0, x)$ is defined on $[t_0, +\infty)$ and $u(t, t_0, x) \in \mathbb{R}^n_+$ for $t \in [t_0, +\infty)$ if $x \in \mathbb{R}^n_+$. We shall prove in this section that with (0.6) the conditions in Theorem 1.4 give a unique solution $u^0(t)$ and $u_i^0(t) - u_i(t, t_0, x) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$ for any solution $u(t, t_0, x)$ with $u(t_0, t_0, x) = x \in \mathbb{R}^n_+$. To do this we need the following theorem by A. Tineo and C. Alvarez [7].

Theorem 2.1. Suppose that there are positive constants $\alpha_1, \ldots, \alpha_n, \delta_1$ such that

(2.1)
$$
\alpha_i a_{ii}(t) > \delta_1 + \sum_{j \in J_i} \alpha_j a_{ji}(t), \ t > 0, \ 1 \le i \le n.
$$

If $K \subset \mathbb{R}^n_+$ is a convex set and there are positive constants ε_K , M_K such that $\varepsilon_K \le u_i(t,0,x) \le M_K$ for $t \ge 0$ and $x \in K$, $1 \le i \le n$, then there are positive constants δ , k depending on $\delta_1, \alpha_1, \ldots, \alpha_n$, ε_K , M_K such that

$$
||u(t,0,x) - u(t,0,y)|| \leq ke^{-\delta t} ||x - y||, \text{ for } t \geq 0 \text{ and } x, y \in K,
$$

where $\|\cdot\|$ is the usual Euclidean norm of \mathbb{R}^n .

Theorem 2.2. Suppose that the system (0.1) satisfies conditions (0.5) -(0.6). Then the system (0.1) has a unique solution defined on $(-\infty, +\infty)$ whose components are bounded above and below by positive constants.

Proof. The existence follows from Theorem 1.4. We now prove the uniqueness. Suppose by contradiction that the system (0.1) has two different solutions defined on $(-\infty, +\infty)$, say $u^1(t)$ and $u^2(t)$, such that $0 < u_{iL}^{\ell} \le u_{iM}^{\ell} < +\infty$ $(1 \le i \le n, \ell = 1, 2)$. We claim that

(2.2)
$$
\eta_i \le u_i^{\ell}(t) \le U_i^0(t) \quad (t \in \mathbf{R}, \ 1 \le i \le n, \ \ell = 1, 2)
$$

where η_i is as in Theorem 1.4. If it is false for some $\ell \in \{1, 2\}$, then one of the following alternatives occurs:

(i) There exist $t_1 \in \mathbf{R}$ and $i_0 \in \{1, ..., n\}$ such that $u_{i_0}^{\ell}(t_1) > U_{i_0}^0(t_1)$, or

(ii) $u_i^{\ell}(t) \leq U_i^0(t)$ (1 $\leq i \leq n$, $t \in \mathbb{R}$) and there exist $t_1 \in \mathbb{R}$ and $i_0 \in \{1, ..., n\}$ such that $u_{i_0}^{\ell}(t_1) < \eta_{i_0}$.

If (i) holds, then by Proposition 1.1 we have $u_{i_0}^{\ell}(t) \ge U_{i_0}(t, t_1, Z)$, for $t < t_1$, where $Z = u^{\ell}(t_1)$ and $U_{i_0}(t, t_1, Z)$ is the solution of $(0.4i_0)$ with $U_{i_0}(t_1,t_1,Z) = Z_{i_0}$. By the uniqueness of the solution $U_{i_0}^0$ of $(0.4i_0)$, it is not hard to prove that $U_{i_0}^0(t, t_1, Z) \rightarrow +\infty$ as $t \rightarrow t_2$ for some $t_2 \in [-\infty, t_1)$. Hence $u_{i_0}^{\ell}(t) \to +\infty$ as $t \to t_2$, which contradicts the boundedness of u^{ℓ} .

Suppose that (ii) holds. It is easy to see that if $u_{i_0}^{\ell}(t) < \eta_{i_0}$ then

$$
b_{i_0}(t) - \sum_{j=1}^n a_{i_0j}(t)u_j^{\ell}(t) \ge b_{i_0}(t) - \sum_{j \in J_{i_0}} a_{ij}(t)U_j^0(t) - a_{i_0i_0}(t)\eta_{i_0}.
$$

It follows by (0.5) that

$$
b_{i_0}(t) - \sum_{j=1}^n a_{i_0j}(t)u_j^{\ell}(t) \geq \varepsilon_1 - a_{i_0i_0}(t)\eta_{i_0} \geq \varepsilon_1 - a_{i_0i_0M}\eta_{i_0} > 0.
$$

It implies from classical arguments that $u_{i_0}^{\ell}(t) \to 0$ as $t \to -\infty$, which contradicts $u_{i_0L}^{\ell} > 0$. Since (i) and (ii) are exhaustive, the claim is proved.

For $t \in \mathbf{R}$, set $K_t = \{x \in \mathbf{R}^n : \eta_i \le x_i \le U_i^0(t), 1 \le i \le n\}$. It is easy to see that K_t is a compact convex subset of \mathbf{R}^n_+ . If we set $\varepsilon_0 = \min_{1 \le i \le n} \eta_i$

and $M_0 = \sup_{\substack{1 \le i \le n \\ -\infty \le t \le +\infty}}$ $U_i^0(t)$, then $0 < \varepsilon_0 \leq M_0 < +\infty$. We know that $\overline{u}(t, 0, x) = u(t + t_0, t_0, x)$ is the solution of

(2.3)
$$
\overline{u}'_i = \overline{u}_i \big[b_i(t+t_0) - \sum_{j=1}^n a_{ij}(t+t_0) \overline{u}_j \big], \quad 1 \le i \le n,
$$

with $\overline{u}(0, 0, x) = u(t_0, t_0, x) = x$, $t_0 \in \mathbb{R}$. Furthermore,

$$
\varepsilon_0 \le \overline{u}_i(t,0,x) \le M_0
$$
 for $t \ge 0$, $1 \le i \le n$ and $x \in K_{t_0}$.

From conditions (0.6) and Theorem 2.1, it follows that there exist positive constants δ_0 , k_0 depending on ε_0 , M_0 , ε_2 , $\alpha_1, \ldots, \alpha_n$ such that

$$
(2.4) \qquad \|\overline{u}(t,0,x) - \overline{u}(t,0,y)\| \le k_0 e^{-\delta_0 t} \|x - y\|, \ t \ge 0, \ x, y \in K_{t_0}.
$$

Hence

$$
(2.5) \quad ||u(t, t_0, x) - u(t, t_0, y)|| \le k_0 e^{-\delta_0 (t - t_0)} ||x - y||, \ t \ge t_0, \ x, y \in K_{t_0}.
$$

It follows from (2.2) and (2.5) that (2.6) $||u^1(t_1) - u^2(t_1)|| \le k_0 \cdot e^{-\delta_0(t_1 - t_0)} ||u^1(t_0) - u^2(t_0)||, t_1, t_0 \in \mathbf{R}, t_1 \ge t_0.$

Hence

(2.7)

$$
||u^{1}(t_{0})-u^{2}(t_{0})|| \geq k_{0}^{-1}e^{\delta_{0}(t_{1}-t_{0})}||u^{1}(t_{1})-u^{2}(t_{1})||, t_{1}, t_{0} \in \mathbf{R}, t_{1} \geq t_{0}.
$$

If $t_1 = 0$ and $t_0 = -$ 1 δ_0 $\ln \frac{(d+1)p}{(d+1)p}$ $\frac{(u+1)p}{\|u^1(0)-u^2(0)\|}$, where $d = \sup_{t \in \mathbf{R}}$ t∈R n sup $x,y \in K_t$ $||x-y||$ o and $p \geq \max\{1, k_0\}$, then by (2.7) we have

(2.8)
$$
||u^1(t_0) - u^2(t_0)|| \ge k_0^{-1}p(d+1) \ge d+1.
$$

On the other hand, we have $u^1(t_0)$, $u^2(t_0) \in K_{t_0}$. The definition of d then implies $||u^1(t_0) - u^2(t_0)|| \le d$, which contradicts (2.8). This proves the theorem.

Theorem 2.3. Suppose that the system (0.1) satisfies conditions (0.5) . (0.6). Then $u_i(t, t_0, x) - u_i^0(t) \to 0$ as $t \to +\infty$ $(1 \le i \le n)$ for any solution $u(t, t_0, x)$ with $x \in \mathbb{R}^n_+$, where $u^0(t)$ is the solution given by Theorem 2.2.

Proof. Let K be a convex compact subset of \mathbb{R}^n_+ . It is enough to show that $u_i(t, 0, x) - u_i^0(t) \to 0$ as $t \to +\infty$, for $1 \leq i \leq n$ and $x \in K$. For each $i = 1, \ldots, n$, denote by $U_i(t, t_0, x)$ the solution of (0.4i) with $U_i(t,t_0,x) = x_i$. From (0.5) it follows that there exists a $\gamma > 0$ such that

(2.9)
$$
b_i(t) - \gamma a_{ii}(t) - \sum_{j \in J_i} a_{ij}(t) (U_j^0(t) + \gamma) > 0, \ 1 \le i \le n, \ t \in \mathbf{R}.
$$

It is not hard to prove that $U_i(t, 0, x) - U_i^0(t) \to 0$ as $t \to +\infty$ uniformly for $x \in K$, $1 \leq i \leq n$. Consequently, there is a $t_0 \geq 0$ such that

$$
(2.10) \t\t\t U_i(t,0,x) \le U_i^0(t) + \gamma, \quad t \ge t_0, \ x \in K, \ 1 \le i \le n.
$$

We claim that

(2.11)
$$
u_i(t, 0, x) \ge \gamma_i = \min \left\{ u_i(t_0, 0, x), \gamma \right\}, \ t \ge t_0, \ 1 \le i \le n.
$$

Suppose that it is false. For each $i = 1, \ldots, n$ let us define $g_i(t) =$ $\gamma_i - u_i(t, 0, x)$. Then there exists $i \in \{1, \ldots, n\}$ and $t_1 > t_0$ such that $g_i(t_1) > 0$. Since $g_i(t_0) \leq 0$, there exists $t_2 > t_0$ such that $g_i(t_2) > 0$ and $g_i'(t_2) > 0$. It implies

$$
0 < -b_i(t_2) + a_{ii}(t_2)u_i(t_2, 0, x) + \sum_{j \in J_i} a_{ij}(t_2)u_j(t_2, 0, x).
$$

Hence

(2.12)
$$
0 < -b_i(t_2) + a_{ii}(t_2)\gamma + \sum_{j \in J_i} a_{ij}(t_2)u_j(t_2, 0, x).
$$

By Proposition 1.1, it follows that

$$
(2.13) \t\t ui(t, 0, x) < Ui(t, 0, x), \t t > 0.
$$

From (2.10), (2.12) and (2.13) we have

$$
0 < -b_i(t_2) + a_{ii}(t_2)\gamma + \sum_{j \in J_i} a_{ij}(t_2) (U_j^0(t_2) + \gamma).
$$

which contradicts (2.9). Hence our claim is proved.

It follows from (2.10), (2.11), Proposition 1.1 and the definition of $U_i^0(t)$ that there exist positive constants $\overline{\varepsilon}_K$ and \overline{M}_K such that $\overline{\varepsilon}_K \leq u_i(t,0,x) \leq$ \overline{M}_K for $x \in K$, $t \ge t_0$, $1 \le i \le n$. Consequently, since K is compact, there exist positive numbers ε_K , M_K such that $\varepsilon_K \leq u_i(t, 0, x) \leq M_K$ for $t > 0, 1 \leq i \leq n, x \in K$. The proof follows now from Theorem 2.1.

3. Almost periodicity

In this section we assume in addition that a_{ij} , b_i ($1 \le i, j \le n$) are almost periodic. Suppose that $f = (f^1, \ldots, f^n) : \mathbf{R} \to \mathbf{R}^n$ $(n \geq 1)$ is continuous. Recall that f is almost periodic if for each $\varepsilon > 0$ there exists a positive number $\ell = \ell(\varepsilon)$ such that each interval $(\alpha, \alpha + \ell), \alpha \in \mathbf{R}$, contains at least a number $\tau = \tau(\varepsilon)$ satisfying sup $t \in \mathbf{R}$ $|| f(t + \tau) - f(t) ||_{\infty} \leq \varepsilon,$ where $||f(t)||_{\infty} = \max_{1 \leq i \leq n} \{|f^{i}(t)|\}.$ We recall Bochner's criterion for the © ª almost periodicity: $f(t)$ is almost periodic if and only if for every sequence
of numbers $\{\tau_m\}_{1}^{\infty}$, there exists a subsequence $\{\tau_{m_k}\}_{k=1}^{\infty}$ such that the ע∕.
∩⊘ \int_{1}^{∞} , there exists a subsequence $\{\tau_{m_k}\}$ *ין ו*
∞`ר a subsequence $\{\tau_{m_k}\}_{k=1}^{\infty}$ such that the by namelies $\{f(t+\tau_{m_k})\}_{k=1}^{\infty}$ converges uniformly on $(-\infty, +\infty)$ (see, for example [3]).

Proposition 3.1. For each $i = 1, ..., n$, the solution $U_i^0(t)$ of (0.4i) is almost periodic.

Proof. Let us fix $i = 1, ..., n$. Take $\varepsilon > 0$. By Bochner's criterion, it follows that $(b_i(t), a_{ii}(t))$ is almost periodic. Therefore there exists a positive number $\ell = \ell(\varepsilon)$ such that each interval $(\alpha, \alpha+\ell); \alpha \in \mathbf{R}$, contains at least a number $\tau = \tau(\varepsilon)$ such that

(3.1)
$$
\sup_{t \in \mathbf{R}} |b_i(t + \tau) - b_i(t)| \leq \varepsilon \text{ and } \sup_{t \in \mathbf{R}} |a_{ii}(t + \tau) - a_{ii}(t)| \leq \varepsilon.
$$

Take an arbitrary τ as above. Define $W_i(t) = \frac{1}{U_i^0(t)}$. From (0.4i) it follows that

$$
\frac{d}{dt}[W_i(t) - W_i(t+\tau)] = -b_i(t)[W_i(t) - W_i(t+\tau)] + [b_i(t+\tau)]
$$
\n(3.2)
\n
$$
- b_i(t)]W_i(t+\tau) + a_{ii}(t) - a_{ii}(t+\tau).
$$

Consider the following equation

(3.3)
$$
Z' = a_{ii}(t) - a_{ii}(t + \tau) + [b_i(t + \tau) - b_i(t)]W_i(t + \tau) - b_i(t)Z.
$$

Since $b_{iL} > 0$, it is not hard to see that if $Z(t)$ is a bounded solution of (3.3) defined on $(-\infty, +\infty)$, then

$$
\inf_{t\in\mathbf{R}}\left\{\frac{a_{ii}(t)-a_{ii}(t+\tau)+(b_i(t+\tau)-b_i(t))W_i(t+\tau)}{b_i(t)}\right\} \leq Z(t)
$$
\n
$$
\leq \sup_{t\in\mathbf{R}}\left\{\frac{a_{ii}(t)-a_{ii}(t+\tau)+(b_i(t+\tau)-b_i(t))W_i(t+\tau)}{b_i(t)}\right\}, \quad t\in\mathbf{R}.
$$

Therefore, from (3.1) it follows

$$
|Z(t)| \le \frac{\varepsilon \left(1 + \frac{1}{U_{iL}^0}\right)}{b_{iL}}, \quad \text{for any} \quad t \in \mathbf{R}.
$$

Since $\frac{1}{\tau^{10}}$ $\overline{U_i^0(t)}$ − 1 $\overline{U_i^0(t+\tau)}$ is a bounded solution of (3.3), we have

$$
\left|\frac{1}{U_i^0(t)} - \frac{1}{U_i^0(t+\tau)}\right| \leq \varepsilon \ \frac{1+\frac{1}{U_{iL}^0}}{b_{iL}} \ .
$$

Consequently,

$$
|U_i^0(t) - U_i^0(t + \tau)| \le \varepsilon \frac{\left(1 + \frac{1}{U_{iL}^0}\right) (U_{iM}^0)^2}{b_{iL}}
$$

·

Thus, if $\overline{\varepsilon} = \varepsilon$ \overline{a} $1 +$ 1 $\overline{U^0_{iL}}$ $\sqrt{2}$ $U_{iM}^0\big)^2$ b_{iL} , then we can choose $\ell(\overline{\varepsilon}) = \ell(\varepsilon)$. Therefore, by the definition, $\overline{U}_i^0(t)$ is almost periodic. The proposition is proved. In the proof of the following theorem we use the idea in [1].

Theorem 3.2. Suppose that all conditions in Theorem 2.3 hold. If, in addition, a_{ij} , b_i $(1 \le i, j \le n)$ are almost periodic, then the solution $u^0(t)$ in Theorem 2.3 is almost periodic.

Proof. Let $\{\tau_m\}$ າ∞
 $\sum_{m=1}^{\infty}$ be an arbitrary sequence of numbers. Since $b_i(t)$, $a_{ij}(t)$ and $U_i^0(t)$ $(1 \le i, j \le n)$ are almost periodic, there exists a subsequence $\left\{\tau_{m_k}\right\}_{k=1}^{\infty}$ of $\left\{\tau_{m_k}\right\}_{m=1}^{\infty}$ such that $b_i(t + \tau_{m_k})$, $a_{ij}(t + \tau_{m_k})$, $\big\}_{k=1}^{\infty}$ of $\{\tau_{m_k}\}\)$ $\frac{n}{\infty}$ $\sum_{m=1}^{\infty}$ such that $b_i(t + \tau_{m_k}), a_{ij}(t + \tau_{m_k}),$ $U_i^0(t + \tau_{m_k})$ converge uniformly on $(-\infty, +\infty)$ to functions $b_i^*(t)$, $a_{ij}^*(t)$,

 $U_i^0(t)$, respectively. It is not hard to see that $b_{iL}^* = b_{iL}$, $b_{iM}^* = b_{iM}$, $a_{ijL}^* = a_{ijL}, a_{ijM}^* = a_{ijM}, U_{iL}^{0*} = U_{iL}^0$ and $U_{iM}^{0*} = U_{iM}^0$ $(1 \le i, j \le n)$. Furthermore, by Proposition 3.1 it follows that for each $i = 1, \ldots, n$ the logistic equation

(3.4i)
$$
U' = U \big[b_i^*(t) - a_{ii}^*(t)U \big],
$$

has a unique solution defined on $(-\infty, +\infty)$ which is bounded above and below by positive constants. It is easy to see that $U_i^{0*}(t)$ is that unique solution. $\overline{}$

Since $b_i(t + \tau_{m_k})$ – $j \in J_i$ $a_{ij}(t + \tau_{m_k})U_j^0(t + \tau_{m_k})$ $(1 \leq i \leq n)$ converges uniformly on $(-\infty, +\infty)$ to $b_i^*(t)$ – $\overline{ }$ $j \in J_i$ $a_{ij}^*(t)U_j^{0*}(t)$ as $k \to \infty$, it follows

that

(3.5)
$$
b_i^*(t) \ge \sum_{j \in J_i} a_{ij}^*(t) U_j^{0*}(t) + \varepsilon_1, \quad 1 \le i \le n, \ t \in \mathbf{R}.
$$

Similarly, we have

(3.6)
$$
\alpha_i a_{ii}^*(t) \ge \sum_{j \in J_i} a_{ji}^*(t) \alpha_j + \varepsilon_2, \quad 1 \le i \le n, \ t \in \mathbf{R}.
$$

By Theorem 1.4 and 2.3, it follows that the system

(3.7)
$$
u'_{i} = u_{i} \Big[b_{i}^{*}(t) - \sum_{j=1}^{n} a_{ij}^{*}(t) u_{j} \Big]; \quad 1 \leq i \leq n,
$$

has a unique solution u^{0*} defined on $(-\infty, +\infty)$ such that

$$
\eta_i\leq u_i^{0*}(t)\leq \Delta_i,\quad 1\leq i\leq n,
$$

where η_i , Δ_i are positive numbers satisfying

$$
\eta_i < \min\left\{\varepsilon_1/a_{iiM}^*, \inf_{t \in \mathbf{R}} U_i^{0*}(t)\right\} = \min\left\{\varepsilon_1/a_{iiM}, \inf_{t \in \mathbf{R}} U_i^{0}(t)\right\},\
$$

$$
\Delta_i = U_{iM}^{0*} = U_{iM}^{0}.
$$

Let us denote $S =$ \overline{a} $(u_1,\ldots,u_n)\in \mathbf{R}^n : \eta_i \leq u_i \leq \Delta_i, \ 1 \leq i \leq n$ ª . We claim that $u^0(t+\tau_{m_k})$ converges to $u^{0*}(t)$ uniformly on $(-\infty, +\infty)$ as $t \to$ ∞ , which will show that $u^0(t)$ is almost periodic. Suppose by contradiction ∞ , which will show that $u^*(t)$ is almost perfodic. Suppose by contracted that the claim is false. Then there exist a subsequence $\{\tau_{m_{k_\ell}}\}$ aut
ס ר that the claim is false. Then there exist a subsequence $\{\tau_{m_{k_\ell}}\}_{\ell=1}^\infty$ of τ_{m_k} $\frac{0}{1}$ ∞ $\sum_{k=1}^{\infty}$, a sequence of numbers $\{S_{\ell}\}\$, and a fixed number $\alpha > 0$ such that $\|\tilde{u}^0(S_{\ell} + \tau_{m_{k_{\ell}}}) - u^{0*}(S_{\ell})\| \geq \alpha$ for all ℓ .

Since b_i , a_{ij} and U_i^0 $(1 \le i, j \le n)$ are almost periodic, we may assume, without loss of generality, that $b_i(t + \tau_{m_{k_\ell}} + S_\ell)$, $a_{ij}(t + \tau_{m_{k_\ell}} + S_\ell)$, $U_i^0(t+\tau_{m_{k_\ell}}+S_\ell)$ converge uniformly on $(-\infty, +\infty)$ to $\hat{b}_i(t)$, $\hat{a}_{ij}(t)$, $\hat{U}_i^0(t)$, respectively, as $\ell \to \infty$. Hence $b_i^*(t + S_\ell) \to \hat{b}_i(t)$, $a_{ij}^*(t + S_\ell) \to \hat{a}_{ij}(t)$, $U_i^0(t + S_\ell) \rightarrow \hat{U}_i^0(t)$ (1 $\leq i, j \leq n$) uniformly with respect to t on $(-\infty, +\infty)$ as $\ell \to +\infty$ and $\hat{b}_{iL} = b_{iL}, \hat{b}_{iM} = b_{iM}, \hat{a}_{ijL} = a_{ijL}, \hat{a}_{ijM} =$ $a_{ijM}, \hat{U}_{iL}^0 = U_{iL}^0$ and $\hat{U}_{iM}^0 = U_{iM}^0$. Since $u^0(t) \in S$ for all t in $(-\infty, +\infty)$, we can assume without loss of generality that $u^0(S_\ell + \tau_{m_{k_\ell}}) \to \xi$ as $\ell \to \infty$, where $\xi \in S$. Similarly we may assume that $u^{0*}(S_{\ell}) \to \xi^* \in S$ as $\ell \to \infty$. Therefore $\|\xi - \xi^*\| \ge \alpha$. For each $\ell = 1, 2, ..., u^0(t + \tau_{m_{k_\ell}} + S_\ell)$ is a solution of the system

$$
(3.81) \quad u_i' = u_i \Big[b_i(t + \tau_{m_{k_\ell}} + S_\ell) - \sum_{j=1}^n a_{ij}(t + \tau_{m_{k_\ell}} + S_\ell)u_j \Big], \ 1 \le i \le n.
$$

Consider the solution $\hat{u}^0(t)$ of

(3.9)
$$
u'_{i} = u_{i} \left[\hat{b}_{i}(t) - \sum_{j=1}^{n} \hat{a}_{ij}(t) u_{j} \right], \quad 1 \leq i \leq n,
$$

having the initial value $\hat{u}^0(0) = \xi$. We have two systems (3.81) and (3.9), where the right-hand side of (3.8l) converges uniformly to the right-hand side of (3.9) on any compact subset of $\mathbf{R}^{n+1} = \{(t, u_1, \ldots, u_n): t \in$ **R**, $u_i \in \mathbf{R}, 1 \leq i \leq n$ as $\ell \to \infty$. Also the initial values satisfy the property that $u^0(\tau_{m_{k_\ell}} + S_\ell) \to \xi$ as $\ell \to \infty$. Hence it follows that $u^0(t +$ $\tau_{m_{k_\ell}} + S_\ell$ converges to $\hat{u}^0(t)$ uniformly on compact subintervals of the domain of $\hat{u}^0(t)$. This implies that $\hat{u}^0(t) \in S$ for all $t \in \mathbb{R}$.

Now recall that $u^{0*}(t)$ is the unique solution of (3.7) with $u^{0*}(t) \in S$ for all $t \in \mathbf{R}$. For each integer ℓ , $u^{0*}(t + S_{\ell})$ is a solution of

(3.101)
$$
u'_{i} = u_{i} \Big[b_{i}^{*}(t + S_{\ell}) - \sum_{j=1}^{n} a_{ij}^{*}(t + S_{\ell})u_{j} \Big], \quad 1 \leq i \leq n,
$$

with $u^{0*}(S_{\ell}) \to \xi^*$ as $\ell \to \infty$.

Since $b_i^*(t + S_\ell) \to \hat{b}_i(t)$, $a_{ij}^*(t + S_\ell) \to \hat{a}_{ij}(t)$ $(1 \le i, j \le n)$ as $\ell \to \infty$ uniformly with respect to t on $(-\infty, +\infty)$, it follows that if $\hat{u}^{0*}(t)$ is the solution of (3.9) with $\hat{u}^{0*}(0) = \xi^*$, then $u^{0*}(t + S_\ell) \to \hat{u}^{0*}(t)$ as $t \to \infty$ uniformly on any compact subintervals of the domain of \hat{u}^{0*} . By the same argument given before, we have $\hat{u}^{0*}(t) \in S$ for any $t \in \mathbf{R}$. We also have $\hat{u}^0(t) \in S$ for any $t \in \mathbf{R}$. Using the same argument as in the proof of the fact that (3.7) has a unique solution $u^{0*}(t) \in S$ for $t \in \mathbb{R}$, we get that (3.9) has a unique solution defined on $(-\infty, +\infty)$ which is in S for any $t \in (-\infty, +\infty)$. Hence $\hat{u}^0 \equiv \hat{u}^{0*}$. But $\hat{u}^0(0) = \xi$, $\hat{u}^{0*}(0) = \xi^*$ and $\|\xi - \xi^*\| \ge \alpha > 0$, which is a contradiction. The theorem is proved.

One can show that conditions (0.3) imply conditions (0.5) and (0.6) by using completely the same argument in [7]. Thus, from Theorems 1.4, 2.2, 2.3 and 3.2 we get the following corollary.

Corollary 2.3. Suppose that b_i , a_{ij} $(1 \leq i, j \leq n)$ are continuous and bounded above and below by positive constants. If conditions (0.2) hold, then the system (0.1) has a unique solution u^0 defined on $(-\infty, +\infty)$, whose components are bounded above and below by positive constants and $u_i(t) - u_i^0(t) \to 0$ as $t \to +\infty$, $1 \leq i \leq n$, for any solution $u(t)$ of (0.1) with $u(t_0) > 0$ for some $t_0 \in \mathbf{R}$.

If, in addition, a_{ij} , b_i $(1 \le i, j \le n)$ are almost periodic then $u^0(t)$ is also almost periodic.

ACKNOWLEDGMENT

I am grateful to Professor Tran Van Nhung for his valuable comments.

REFERENCES

- 1. S. Ahmad, On almost periodic solutions of the competing species problems, Proc. Amer. Math. Soc. **102** (1988), 855-861.
- 2. $\frac{1}{2}$, On the nonautonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc. 117 (1993), 199-204.
- 3. A. S. Besicovitch, "Almost Periodic Functions", Cambridge Univ. Press, 1932.
- 4. K. Gopalsamy, Global asymptotic stability in a periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B27 (1985), 66-72.
- 5. , Global asymptotic stability in an almost periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B27 (1986), 346-360.
- 6. P. Hartman, "Ordinary Differential Equations", Birkhauser Boston-Basel-Stuttgart, 1982.
- 7. A. Tineo and C. Alvarez, A different consideration about the globally asymptotically stable solution of the periodic n-competing species problem, J. Math. Anal. Appl. 159 (1991), 45-50.

48 TRINH TUAN ANH

8. Trinh T. Anh and Tran V. Nhung, Two species competition in almost periodic environment, Vietnam J. Math 25 (1997), 229-240.

Faculty of Mathematics, Mechanics and Informatics College of Natural Sciences, Hanoi National University 90 Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam