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ON THE ALMOST PERIODIC
n-COMPETING SPECIES PROBLEM

TRINH TUAN ANH

Abstract. We consider the n-dimensional Lotka-Volterra competition
equations with almost periodic coefficients. Conditions for the existence
of a globally asymptotically stable almost periodic solution with positive
components are given. This is a generalization of a result in [5].

Introduction

Consider the Lotka-Volterra equations for n-competing species

(0.1) u′i = ui

[
bi(t)−

n∑

j=1

aij(t)uj

]
, 1 ≤ i ≤ n,

where n ≥ 2 and aij , bi : R → R are continuous and bounded above and
below by positive constants. Given a bounded function g(t) on (−∞,+∞),
let gL and gM denote inf

t∈R
{g(t)} and sup

t∈R
{g(t)}, respectively.

In [5] K. Gopalsamy considered the system (0.1) in which aij , bi (1 ≤
i, j ≤ n) are assumed to be almost periodic. He showed that under the
conditions

(0.2) biL >
∑

j∈Ji

aijM

(
bjM /ajjL

)
, i = 1, . . . , n,

and

(0.3) aiiL >
∑

j∈Ji

aijM , i = 1, . . . , n,
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where Ji = {1, . . . , i−1, i+1, . . . , n}, the system (0.1) has a unique solution
u0(t) such that each its component is almost periodic and bounded above
and below by positive constants. Moreover, if u(t) is a solution of (0.1)
such that ui(t0) > 0 (1 ≤ i ≤ n) for some t0 ∈ R, then lim

t→+∞
(
ui(t) −

u0
i (t)

)
= 0.

In this paper we will show that alone conditions (0.2) imply the asser-
tion of the above mentioned theorem of K. Gopalsamy.

The case of n = 2 was treated by S. Ahmad [1]. It is well-known, for
example in [2], that for i = 1, . . . , n the logistic equation

(0.4i) U ′ = U
[
bi(t)− aii(t)U

]
,

has a unique solution, say U0
i (t), defined on (−∞, +∞) which is bounded

above and below by positive constants.
Our main result is the following: If
(i) There exists a positive number ε1 such that

(0.5) bi(t) ≥
∑

j∈Ji

aij(t)U0
j (t) + ε1, 1 ≤ i ≤ n, t ∈ R,

and
(ii) There are positive constants ε2, α1, . . . , αn such that

(0.6) αiaii(t) ≥
∑

j∈Ji

aji(t)αj + ε2, 1 ≤ i ≤ n, t ∈ R,

then the system (0.1) has a unique solution u0(t) =
(
u0

1(t), . . . , u
0
n(t)

)
defined on (−∞, +∞), whose components are bounded above and below by
positive constants. However, ui(t)−u0

i (t) → 0 as t → +∞ (1 ≤ i ≤ n) for
any solution u(t) =

(
u1(t), . . . , un(t)

)
of (0.1) with ui(t0) > 0 for some

t0 ∈ R. If, in addition, aij, bi (1 ≤ i, j ≤ n) are almost periodic then the
above solution u0(t) is almost periodic.

The case of n = 2 under conditions (0.5) and (0.6) was treated in [8].
The periodic case under conditions (0.5) and (0.6) was considered by A.
Tineo and C. Alvarez [7]. The ecological significance of such a system is
discussed in [4, 5].

1. Existence

In this section we do not assume the almost periodicity conditions on
the coefficients aij and bi (1 ≤ i, j ≤ n). We shall prove the existence
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of the solution u0(t) as mentioned above. The following proposition was
given by A. Tineo and C. Alvarez [7].

Proposition 1.1. Let u = (u1, . . . , un) be a solution of (0.1) with
ui(t0) > 0, i = 1, 2, . . . , n, for some t0 ∈ R. For each i = 1, . . . , n,
let Ui be a solution of (0.4i) such that Ui(t0) ≥ ui(t0) (or Ui(t0) ≤ ui(t0)).
Then Ui(t) > ui(t) for t > t0 (Ui(t) < ui(t) for t < t0, respectively).

We now recall the topological principle of Wazewski (see, for example
[6]). Let f(t, y) be a continuous function defined on an open (t, y)-set
Ω ⊂ R×Rn. Let Ω0 be an open subset of Ω with the boundary ∂Ω0 and
the closure Ω0. Recall that a point (t0, y0) ∈ Ω ∩ ∂Ω0 is called an egress
point of Ω0 with respect to the system

(1.1) y′ = f(t, y),

if for every solution y = y(t) of (1.1) satisfying the initial condition

(1.2) y(t0) = y0,

there is an ε > 0 such that (t, y(t)) ∈ Ω0 for t0−ε ≤ t < t0. An egress point
(t0, y0) of Ω0 is called a strict egress point if (t, y(t)) 6∈ Ω0 for t0 < t ≤ t0+ε
for a small ε > 0. The set of egress points of Ω0 will be denoted by Ω0

e

and the set of strict egress points by Ω0
se.

If X is a topological space, V a subset of X, a continuous mapping
π : X → V defined on all of X is called a retraction of X onto V if the
restriction π

∣∣
V

of π to V is the identity. When there exists a retraction of
X onto V , V is called a retract of X.

Remark 1.2. For ai < bi (1 ≤ i ≤ n), let X be the n-parallepiped
{(x1, . . . , xn) : ai ≤ xi ≤ bi, 1 ≤ i ≤ n} in the Euclidean space Rn,
and V its boundary. Then V is not a retract of X. For if there exists a
retraction π : X → V , then there exists a continuous map of X into itself

(x1, . . . , xn) 7→
(a1 + b1

2
, . . . ,

an + bn

2

)
− π(x1, . . . , xn),

without fixed points, which is impossible by the fixed point theorem of
Schauder.

Theorem 1.3 (Topological principle, see [6]). Let f(t, y) be continuous on
an open (t, y)-set Ω with the property that initial values determine unique
solution of (1.1). Let Ω0 be an open subset of Ω satisfying Ω0

e = Ω0
se. Let
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S be a nonempty subset of Ω0 ∪ Ω0
e such that S ∩ Ω0

e is not a retract of
S but is a retract of Ω0

e. Then there exists at least one point (t0, y0) in
S ∩Ω0 such that the solution (t, y(t)) of (1.1), (1.2) is contained in Ω0 on
its right maximal interval of existence.

Theorem 1.4. If conditions (0.5) hold, then the system (0.1) has at least
a solution u0(t) defined on (−∞, +∞) satisfying

ηi ≤ u0
i (t) ≤ U0

i (t), 1 ≤ i ≤ n,

where ηi is a positive number such that

ηi < min
{

ε1/aiiM , inf
t∈R

U0
i (t)

}
.

Proof. Consider the system

(1.3) v′i = vi

[
− bi(−t) +

n∑

j=1

aij(−t)vj

]
, 1 ≤ i ≤ n.

Set Ω0 =
{

(t, v1, . . . , vn) : −∞ < t < +∞, ηi < vi < U0
i (−t), 1 ≤ i ≤ n

}
,

Ω =
{

(t, v1, . . . , vn) : −∞ < t < +∞, vi > 0, 1 ≤ i ≤ n
}

. By Proposition
1.1, any point (t, v1, . . . , vn) in

A =
n⋃

i=1

{
t, v1, . . . , vn) ∈ Ω0 : vi = U0

i (−t), −∞ < t < +∞
}

is a strict egress point of Ω0. By (0.5) and the definition of ηi (1 ≤ i ≤ n),
it follows that any point (t, v1, . . . , vn) in

B =
n⋃

i=1

{
(t, v1, . . . , vn) ∈ Ω0 : vi = ηi

}

is a strict egress point of Ω0. Therefore Ω0
e = Ω0

se = A ∪ B. Let us
take S =

{
(0, v1, . . . , vn) : ηi ≤ vi ≤ U0

i (0), 1 ≤ i ≤ n
}

. Then S is a

parallepiped. By Remark 1.2, S ∩ Ω0
e is not a retract of S.

Define
π : Ω0

e → S ∩ Ω0
e,
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(t, v1, . . . , vn) 7→
(
0, η1 +

v1 − η1

U0
1 (t)− η1

(
U0

1 (0)− η1

)
, . . . ,

ηn +
vn − ηn

U0
n(t)− ηn

(
U0

n(0)− ηn

))
.

The map π is clearly continuous with respect to the subtopologies on Ω0
e

and S ∩ Ω0
e of the Euclidean space Rn+1, and its restriction to S ∩ Ω0

e is
the identity. Therefore S ∩ Ω0

e is a retract of Ω0
e. By Theorem 1.3, the

system (1.3) has at least a solution v0(t) satisfying ηi < v0
i (t) < U0

i (−t)
for t ≥ 0. In fact, u∗(t) = v0(−t) is a solution of (0.1) for t ≤ 0. By
Proposition 1.1, conditions (0.5) and the definition of ηi (1 ≤ i ≤ n), it
follows that the solution u(t) of (0.1) with u(0) = v0(0) satisfies

ηi ≤ ui(t) ≤ U0
i (t), for t ≥ 0 and 1 ≤ i ≤ n.

Let

u0(t) =
{

u∗(t), t ≤ 0,

u(t), t > 0.

Then u0(t) is a solution of (0.1) satisfying ηi ≤ u0
i (t) ≤ U0

i (t) (t ∈ R, 1 ≤
i ≤ n). The theorem is proved.

2. Uniqueness and asymptoticity

In this section we also do not assume the almost periodicity conditions
on aij and bi (1 ≤ i, j ≤ n). From now on, Rn

+ denotes the set of points
x = (x1, . . . , xn) in Rn such that xi > 0, 1 ≤ i ≤ n. Moreover u(t, t0, x) :=
(u1(t, t0, x), . . . , un(t, t0, x)) denotes the solution of (0.1) defined by the
initial condition u(t0, t0, x) = x. Remember that u(t, t0, x) is defined on
[t0, +∞) and u(t, t0, x) ∈ Rn

+ for t ∈ [t0, +∞) if x ∈ Rn
+. We shall prove

in this section that with (0.6) the conditions in Theorem 1.4 give a unique
solution u0(t) and u0

i (t) − ui(t, t0, x) → 0 as t → +∞ (1 ≤ i ≤ n) for
any solution u(t, t0, x) with u(t0, t0, x) = x ∈ Rn

+. To do this we need the
following theorem by A. Tineo and C. Alvarez [7].

Theorem 2.1. Suppose that there are positive constants α1, . . . , αn, δ1

such that

(2.1) αiaii(t) > δ1 +
∑

j∈Ji

αjaji(t), t > 0, 1 ≤ i ≤ n.

If K ⊂ Rn
+ is a convex set and there are positive constants εK , MK such

that εK ≤ ui(t, 0, x) ≤ MK for t ≥ 0 and x ∈ K, 1 ≤ i ≤ n, then there are
positive constants δ, k depending on δ1, α1, . . . , αn, εK , MK such that

‖u(t, 0, x)− u(t, 0, y)‖ ≤ ke−δt‖x− y‖, for t ≥ 0 and x, y ∈ K,
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where ‖ · ‖ is the usual Euclidean norm of Rn.

Theorem 2.2. Suppose that the system (0.1) satisfies conditions (0.5)-
(0.6). Then the system (0.1) has a unique solution defined on (−∞, +∞)
whose components are bounded above and below by positive constants.

Proof. The existence follows from Theorem 1.4. We now prove the
uniqueness. Suppose by contradiction that the system (0.1) has two dif-
ferent solutions defined on (−∞,+∞), say u1(t) and u2(t), such that
0 < u`

iL ≤ u`
iM < +∞ (1 ≤ i ≤ n, ` = 1, 2). We claim that

(2.2) ηi ≤ u`
i(t) ≤ U0

i (t) (t ∈ R, 1 ≤ i ≤ n, ` = 1, 2)

where ηi is as in Theorem 1.4. If it is false for some ` ∈ {1, 2}, then one
of the following alternatives occurs:

(i) There exist t1 ∈ R and i0 ∈ {1, . . . , n} such that u`
i0

(t1) > U0
i0

(t1),
or

(ii) u`
i(t) ≤ U0

i (t) (1 ≤ i ≤ n, t ∈ R) and there exist t1 ∈ R and
i0 ∈ {1, . . . , n} such that u`

i0
(t1) < ηi0 .

If (i) holds, then by Proposition 1.1 we have u`
i0

(t) ≥ Ui0(t, t1, Z), for
t < t1, where Z = u`(t1) and Ui0(t, t1, Z) is the solution of (0.4i0) with
Ui0(t1, t1, Z) = Zi0 . By the uniqueness of the solution U0

i0
of (0.4i0),

it is not hard to prove that U0
i0

(t, t1, Z) → +∞ as t → t2 for some
t2 ∈ [−∞, t1). Hence u`

i0
(t) → +∞ as t → t2, which contradicts the

boundedness of u`.
Suppose that (ii) holds. It is easy to see that if u`

i0
(t) < ηi0 then

bi0(t)−
n∑

j=1

ai0j(t)u`
j(t) ≥ bi0(t)−

∑

j∈Ji0

aij(t)U0
j (t)− ai0i0(t)ηi0 .

It follows by (0.5) that

bi0(t)−
n∑

j=1

ai0j(t)u`
j(t) ≥ ε1 − ai0i0(t)ηi0 ≥ ε1 − ai0i0Mηi0 > 0.

It implies from classical arguments that u`
i0

(t) → 0 as t → −∞, which
contradicts u`

i0L > 0. Since (i) and (ii) are exhaustive, the claim is proved.
For t ∈ R, set Kt = {x ∈ Rn : ηi ≤ xi ≤ U0

i (t), 1 ≤ i ≤ n}. It is easy
to see that Kt is a compact convex subset of Rn

+. If we set ε0 = min
1≤i≤n

ηi
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and M0 = sup
1≤i≤n

−∞<t<+∞

U0
i (t), then 0 < ε0 ≤ M0 < +∞. We know that

u(t, 0, x) = u(t + t0, t0, x) is the solution of

(2.3) u′i = ui

[
bi(t + t0)−

n∑

j=1

aij(t + t0)uj

]
, 1 ≤ i ≤ n,

with u(0, 0, x) = u(t0, t0, x) = x, t0 ∈ R. Furthermore,

ε0 ≤ ui(t, 0, x) ≤ M0 for t ≥ 0, 1 ≤ i ≤ n and x ∈ Kt0 .

From conditions (0.6) and Theorem 2.1, it follows that there exist positive
constants δ0, k0 depending on ε0, M0, ε2, α1, . . . , αn such that

(2.4) ‖u(t, 0, x)− u(t, 0, y)‖ ≤ k0e
−δ0t‖x− y‖, t ≥ 0, x, y ∈ Kt0 .

Hence

(2.5) ‖u(t, t0, x)− u(t, t0, y)‖ ≤ k0e
−δ0(t−t0)‖x− y‖, t ≥ t0, x, y ∈ Kt0 .

It follows from (2.2) and (2.5) that
(2.6)
‖u1(t1)− u2(t1)‖ ≤ k0.e

−δ0(t1−t0)‖u1(t0)− u2(t0)‖, t1, t0 ∈ R, t1 ≥ t0.

Hence
(2.7)
‖u1(t0)− u2(t0)‖ ≥ k−1

0 eδ0(t1−t0)‖u1(t1)− u2(t1)‖, t1, t0 ∈ R, t1 ≥ t0.

If t1 = 0 and t0 = − 1
δ0

ln
(d + 1)p

‖u1(0)− u2(0)‖ , where d = sup
t∈R

{
sup

x,y∈Kt

‖x−y‖
}

and p ≥ max{1, k0}, then by (2.7) we have

(2.8) ‖u1(t0)− u2(t0)‖ ≥ k−1
0 p(d + 1) ≥ d + 1.

On the other hand, we have u1(t0), u2(t0) ∈ Kt0 . The definition of d then
implies ‖u1(t0) − u2(t0)‖ ≤ d, which contradicts (2.8). This proves the
theorem.

Theorem 2.3. Suppose that the system (0.1) satisfies conditions (0.5) -
(0.6). Then ui(t, t0, x) −u0

i (t) → 0 as t → +∞ (1 ≤ i ≤ n) for any solu-
tion u(t, t0, x) with x ∈ Rn

+, where u0(t) is the solution given by Theorem
2.2.
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Proof. Let K be a convex compact subset of Rn
+. It is enough to show

that ui(t, 0, x) − u0
i (t) → 0 as t → +∞, for 1 ≤ i ≤ n and x ∈ K.

For each i = 1, . . . , n, denote by Ui(t, t0, x) the solution of (0.4i) with
Ui(t, t0, x) = xi. From (0.5) it follows that there exists a γ > 0 such that

(2.9) bi(t)− γaii(t)−
∑

j∈Ji

aij(t)
(
U0

j (t) + γ) > 0, 1 ≤ i ≤ n, t ∈ R.

It is not hard to prove that Ui(t, 0, x)− U0
i (t) → 0 as t → +∞ uniformly

for x ∈ K, 1 ≤ i ≤ n. Consequently, there is a t0 ≥ 0 such that

(2.10) Ui(t, 0, x) ≤ U0
i (t) + γ, t ≥ t0, x ∈ K, 1 ≤ i ≤ n.

We claim that

(2.11) ui(t, 0, x) ≥ γi = min
{

ui(t0, 0, x), γ
}

, t ≥ t0, 1 ≤ i ≤ n.

Suppose that it is false. For each i = 1, . . . , n let us define gi(t) =
γi − ui(t, 0, x). Then there exists i ∈ {1, . . . , n} and t1 > t0 such that
gi(t1) > 0. Since gi(t0) ≤ 0, there exists t2 > t0 such that gi(t2) > 0 and
g′i(t2) > 0. It implies

0 < −bi(t2) + aii(t2)ui(t2, 0, x) +
∑

j∈Ji

aij(t2)uj(t2, 0, x).

Hence

(2.12) 0 < −bi(t2) + aii(t2)γ +
∑

j∈Ji

aij(t2)uj(t2, 0, x).

By Proposition 1.1, it follows that

(2.13) ui(t, 0, x) < Ui(t, 0, x), t > 0.

From (2.10), (2.12) and (2.13) we have

0 < −bi(t2) + aii(t2)γ +
∑

j∈Ji

aij(t2)
(
U0

j (t2) + γ
)
.

which contradicts (2.9). Hence our claim is proved.
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It follows from (2.10), (2.11), Proposition 1.1 and the definition of U0
i (t)

that there exist positive constants εK and MK such that εK ≤ ui(t, 0, x) ≤
MK for x ∈ K, t ≥ t0, 1 ≤ i ≤ n. Consequently, since K is compact,
there exist positive numbers εK , MK such that εK ≤ ui(t, 0, x) ≤ MK for
t ≥ 0, 1 ≤ i ≤ n, x ∈ K. The proof follows now from Theorem 2.1.

3. Almost periodicity

In this section we assume in addition that aij , bi (1 ≤ i, j ≤ n) are
almost periodic. Suppose that f = (f1, . . . , fn) : R → Rn (n ≥ 1) is
continuous. Recall that f is almost periodic if for each ε > 0 there exists
a positive number ` = `(ε) such that each interval (α, α + `), α ∈ R,
contains at least a number τ = τ(ε) satisfying sup

t∈R
‖f(t+ τ)− f(t)‖∞ ≤ ε,

where ‖f(t)‖∞ = max
1≤i≤n

{|f i(t)|}. We recall Bochner’s criterion for the

almost periodicity: f(t) is almost periodic if and only if for every sequence
of numbers

{
τm

}∞
1

, there exists a subsequence
{
τmk

}∞
k=1

such that the
sequence of translates

{
f(t+τmk

)
}∞

k=1
converges uniformly on (−∞, +∞)

(see, for example [3]).

Proposition 3.1. For each i = 1, . . . , n, the solution U0
i (t) of (0.4i) is

almost periodic.

Proof. Let us fix i = 1, . . . , n. Take ε > 0. By Bochner’s criterion,
it follows that (bi(t), aii(t)) is almost periodic. Therefore there exists a
positive number ` = `(ε) such that each interval (α, α+`); α ∈ R, contains
at least a number τ = τ(ε) such that

(3.1) sup
t∈R

|bi(t + τ)− bi(t)| ≤ ε and sup
t∈R

|aii(t + τ)− aii(t)| ≤ ε.

Take an arbitrary τ as above. Define Wi(t) =
1

U0
i (t)

. From (0.4i) it follows

that

d

dt

[
Wi(t)−Wi(t + τ)

]
= −bi(t)

[
Wi(t)−Wi(t + τ)

]
+

[
bi(t + τ)

− bi(t)
]
Wi(t + τ) + aii(t)− aii(t + τ).(3.2)

Consider the following equation

(3.3) Z ′ = aii(t)− aii(t + τ) +
[
bi(t + τ)− bi(t)

]
Wi(t + τ)− bi(t)Z.
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Since biL > 0, it is not hard to see that if Z(t) is a bounded solution of
(3.3) defined on (−∞, +∞), then

inf
t∈R

{aii(t)− aii(t + τ) +
(
bi(t + τ)− bi(t)

)
Wi(t + τ)

bi(t)

}
≤ Z(t)

≤ sup
t∈R

{aii(t)− aii(t + τ) +
(
bi(t + τ)− bi(t)

)
Wi(t + τ)

bi(t)

}
, t ∈ R.

Therefore, from (3.1) it follows

|Z(t)| ≤
ε
(
1 +

1
U0

iL

)

biL
, for any t ∈ R.

Since
1

U0
i (t)

− 1
U0

i (t + τ)
is a bounded solution of (3.3), we have

∣∣∣ 1
U0

i (t)
− 1

U0
i (t + τ)

∣∣∣ ≤ ε

1 +
1

U0
iL

biL
·

Consequently,

|U0
i (t)− U0

i (t + τ)| ≤ ε

(
1 +

1
U0

iL

)(
U0

iM

)2

biL
·

Thus, if ε = ε

(
1 +

1
U0

iL

)(
U0

iM

)2

biL
, then we can choose `(ε) = `(ε). There-

fore, by the definition, U0
i (t) is almost periodic. The proposition is proved.

In the proof of the following theorem we use the idea in [1].

Theorem 3.2. Suppose that all conditions in Theorem 2.3 hold. If, in
addition, aij, bi (1 ≤ i, j ≤ n) are almost periodic, then the solution u0(t)
in Theorem 2.3 is almost periodic.

Proof. Let
{
τm

}∞
m=1

be an arbitrary sequence of numbers. Since bi(t),
aij(t) and U0

i (t) (1 ≤ i, j ≤ n) are almost periodic, there exists a sub-
sequence

{
τmk

}∞
k=1

of
{
τmk

}∞
m=1

such that bi(t + τmk
), aij(t + τmk

),
U0

i (t + τmk
) converge uniformly on (−∞,+∞) to functions b∗i (t), a∗ij(t),
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U0
i (t), respectively. It is not hard to see that b∗iL = biL, b∗iM = biM ,

a∗ijL = aijL, a∗ijM = aijM , U0∗
iL = U0

iL and U0∗
iM = U0

iM (1 ≤ i, j ≤ n).
Furthermore, by Proposition 3.1 it follows that for each i = 1, . . . , n the
logistic equation

(3.4i) U ′ = U
[
b∗i (t)− a∗ii(t)U

]
,

has a unique solution defined on (−∞, +∞) which is bounded above and
below by positive constants. It is easy to see that U0∗

i (t) is that unique
solution.

Since bi(t + τmk
) −

∑

j∈Ji

aij(t + τmk
)U0

j (t + τmk
) (1 ≤ i ≤ n) converges

uniformly on (−∞, +∞) to b∗i (t) −
∑

j∈Ji

a∗ij(t)U
0∗
j (t) as k → ∞, it follows

that

(3.5) b∗i (t) ≥
∑

j∈Ji

a∗ij(t)U
0∗
j (t) + ε1, 1 ≤ i ≤ n, t ∈ R.

Similarly, we have

(3.6) αia
∗
ii(t) ≥

∑

j∈Ji

a∗ji(t)αj + ε2, 1 ≤ i ≤ n, t ∈ R.

By Theorem 1.4 and 2.3, it follows that the system

(3.7) u′i = ui

[
b∗i (t)−

n∑

j=1

a∗ij(t)uj

]
; 1 ≤ i ≤ n,

has a unique solution u0∗ defined on (−∞, +∞) such that

ηi ≤ u0∗
i (t) ≤ ∆i, 1 ≤ i ≤ n,

where ηi, ∆i are positive numbers satisfying

ηi < min
{

ε1/a∗iiM , inf
t∈R

U0∗
i (t)

}
= min

{
ε1/aiiM , inf

t∈R
U0

i (t)
}

,

∆i = U0∗
iM = U0

iM .

Let us denote S =
{
(u1, . . . , un) ∈ Rn : ηi ≤ ui ≤ ∆i, 1 ≤ i ≤ n

}
. We

claim that u0(t+τmk
) converges to u0∗(t) uniformly on (−∞, +∞) as t →
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∞, which will show that u0(t) is almost periodic. Suppose by contradiction
that the claim is false. Then there exist a subsequence

{
τmk`

}∞
`=1

of{
τmk

}∞
k=1

, a sequence of numbers {S`}, and a fixed number α > 0 such
that ‖u0(S` + τmk`

)− u0∗(S`)‖ ≥ α for all `.
Since bi, aij and U0

i (1 ≤ i, j ≤ n) are almost periodic, we may as-
sume, without loss of generality, that bi(t + τmk`

+ S`), aij(t + τmk`
+ S`),

U0
i (t+ τmk`

+S`) converge uniformly on (−∞, +∞) to b̂i(t), âij(t), Û0
i (t),

respectively, as ` → ∞. Hence b∗i (t + S`) → b̂i(t), a∗ij(t + S`) → âij(t),
U0

i (t + S`) → Û0
i (t) (1 ≤ i, j ≤ n) uniformly with respect to t on

(−∞, +∞) as ` → +∞ and b̂iL = biL, b̂iM = biM , âijL = aijL, âijM =
aijM , Û0

iL = U0
iL and Û0

iM = U0
iM . Since u0(t) ∈ S for all t in (−∞,+∞),

we can assume without loss of generality that u0(S`+τmk`
) → ξ as ` →∞,

where ξ ∈ S. Similarly we may assume that u0∗(S`) → ξ∗ ∈ S as ` →∞.
Therefore ‖ξ − ξ∗‖ ≥ α. For each ` = 1, 2, . . . , u0(t + τmk`

+ S`) is a
solution of the system

(3.8l) u′i = ui

[
bi(t + τmk`

+ S`)−
n∑

j=1

aij(t + τmk`
+ S`)uj

]
, 1 ≤ i ≤ n.

Consider the solution û0(t) of

(3.9) u′i = ui

[
b̂i(t)−

n∑

j=1

âij(t)uj

]
, 1 ≤ i ≤ n,

having the initial value û0(0) = ξ. We have two systems (3.8l) and (3.9),
where the right-hand side of (3.8l) converges uniformly to the right-hand
side of (3.9) on any compact subset of Rn+1 = {(t, u1, . . . , un) : t ∈
R, ui ∈ R, 1 ≤ i ≤ n} as ` → ∞. Also the initial values satisfy the
property that u0(τmk`

+ S`) → ξ as ` → ∞. Hence it follows that u0(t +
τmk`

+ S`) converges to û0(t) uniformly on compact subintervals of the
domain of û0(t). This implies that û0(t) ∈ S for all t ∈ R.

Now recall that u0∗(t) is the unique solution of (3.7) with u0∗(t) ∈ S
for all t ∈ R. For each integer `, u0∗(t + S`) is a solution of

(3.10l) u′i = ui

[
b∗i (t + S`)−

n∑

j=1

a∗ij(t + S`)uj

]
, 1 ≤ i ≤ n,

with u0∗(S`) → ξ∗ as ` →∞.
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Since b∗i (t + S`) → b̂i(t), a∗ij(t + S`) → âij(t) (1 ≤ i, j ≤ n) as ` →∞
uniformly with respect to t on (−∞, +∞), it follows that if û0∗(t) is the
solution of (3.9) with û0∗(0) = ξ∗, then u0∗(t + S`) → û0∗(t) as t → ∞
uniformly on any compact subintervals of the domain of û0∗. By the same
argument given before, we have û0∗(t) ∈ S for any t ∈ R. We also have
û0(t) ∈ S for any t ∈ R. Using the same argument as in the proof of
the fact that (3.7) has a unique solution u0∗(t) ∈ S for t ∈ R, we get
that (3.9) has a unique solution defined on (−∞, +∞) which is in S for
any t ∈ (−∞, +∞). Hence û0 ≡ û0∗. But û0(0) = ξ, û0∗(0) = ξ∗ and
‖ξ − ξ∗‖ ≥ α > 0, which is a contradiction. The theorem is proved.

One can show that conditions (0.3) imply conditions (0.5) and (0.6) by
using completely the same argument in [7]. Thus, from Theorems 1.4, 2.2,
2.3 and 3.2 we get the following corollary.

Corollary 2.3. Suppose that bi, aij (1 ≤ i, j ≤ n) are continuous and
bounded above and below by positive constants. If conditions (0.2) hold,
then the system (0.1) has a unique solution u0 defined on (−∞, +∞),
whose components are bounded above and below by positive constants and
ui(t) − u0

i (t) → 0 as t → +∞, 1 ≤ i ≤ n, for any solution u(t) of (0.1)
with u(t0) > 0 for some t0 ∈ R.

If, in addition, aij, bi (1 ≤ i, j ≤ n) are almost periodic then u0(t) is
also almost periodic.
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