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EXISTENCE OF PERIODIC SOLUTIONS OF
NONAUTONOMOUS RETARDED FUNCTIONAL

DIFFERENTIAL EQUATIONS

E. AIT DADS AND K. EZZINBI

Abstract. This paper is concerned with non-linear functional differential
equations of retarded type which are periodic in the independent variable
t. The aim is to obtain explicit conditions which are sufficient for the
existence of periodic solutions if there exists a bounded solution.

1. Introduction

In this work we give consider the following equation

(1)





d

dt
x(t) = F (t, xt), for t ≥ 0,

x0 = ϕ ∈ C
(
[−r, 0],Rn

)
= C,

where C is the space of continuous functions on [−r, 0] with values in Rn

endowed with the uniform norm topology, F is a continuous function on
R × C with values in Rn, and for every t ≥ 0 the function xt ∈ C is
defined by

xt(θ) = x(t + θ), for θ ∈ [−r, 0].

We will study the following problem:
Under what conditions, the existence of bounded solutions implies the

existence of periodic solutions?
Note that the answer to this problem was given by Massera [3] in the

scalar case

(2)
d

dt
x(t) = f(t, x(t)),

which states that if Problem (2) has the uniqueness property with respect
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to the initial condition and if f is ω periodic in t, then the existence of
a bounded solution which is defined in [0,∞] implies the existence of an
ω periodic solution. If n ≥ 3, the Massera theorem is not true, a counter
example was given by Massera.

This paper extends the work of R. A. Smith [4] to the nonautonomous
case

(3)
d

dt
x(t) = F (xt).

2. Main results

Throughout this paper, K∗ denotes the transpose of a real r×s matrix
K. In the sequel we consider the following hypotheses.

(H1) F : R × C → Rn, is a continuous function, ω periodic in t and,
there exists k > 0 such that

|F (t, ϕ)− F (t, ψ)| ≤ k|ϕ− ψ|, for every ϕ,ψ ∈ C and t ∈ R.

(H2) There exists a continuous function U on C with values in R and
an symmetric (n× n)-matrix P such that for all bounded solutions x and
y of (1) which are defined on R one has,

U(xt − yt) ≤ 0, for all t ∈ R

U(φ)− φ(0)∗Pφ(0) ≥ β
[ 0∫

−r

|φ(s)|ds
]2

,

where β is a positive constant.
(H3) P has j negative eigenvalues and (n− j) positive eigenvalues.

Remark 1. In [4], R. A. Smith considered similar hypotheses with j = 2
in the autonomous case, and he obtains the following result:

Theorem 1 ([4]). Under the hypotheses (H1)-(H3) with j = 2, if Equation
(3) has a bounded positive semi-orbit Γ and the omega limit set Ω(Γ) of Γ
does not contain a critical point, then Ω(Γ) contains at least one periodic
orbit.

Our work is a contribution to the nonautonomous case under the above
hypotheses with j = 1. We obtain
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Theorem 2. Assume that the hypotheses (H1)-(H2) are satisfied with
j = 1. If Equation (1) has a bounded solution x which is defined on R,
then there exists an ω periodic solution u such that x(t) − u(t) tends to
zero as t tends to +∞.

If P is a symmetric matrix with only one negative eigenvalue and all
other eigenvalues are positive, then there exists an invertible matrix M
such that

M∗PM = Diag(−1, 1, 1, . . . , 1).

Set x = Mcol(X,Y ), where col(X, Y ) is the column vector with the com-
ponents X ∈ R and Y ∈ Rn−1. One has

x∗Px = |Y |2 − |X|2.

Define the following mapping

Q1 : Rn → R

x → X.

We have

2|Q1x|2 + x∗Px = |Y |2 + |X|2 = |M−1x|2 ≥ |M |−2|x|2.

From this we deduce that

(4) 2|Q1x|2 + x∗Px ≥ |M |−2|x|2, for all x ∈ Rn.

Define the projection operator Π on C by:

Π : C → R

ϕ →
√

2Q1ϕ(0).

Π is a bounded linear operator and

|Π| ≤
√

2|Q1|.

For the proof of Theorem 2 we need the following lemmas.

Lemma 3. For each a > 0 there exists b > 0 such that for every pair of
bounded solutions x, y of Equation (1) in R with the property that |xt| ≤ a
and |yt| ≤ a, for all t ∈ R, one has

|Q1|
√

2|xt − yt| ≥ |Π(xt − yt)| ≥ b|xt − yt|2 for all t ∈ R.
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Proof. Let x and y to be two bounded solutions of Equation (1) such that

(5) |xt| ≤ a and |yt| ≤ a for all t ∈ R.

Using (4), we obtain

|Π(xt − yt)|2 ≥ −(x(t)− y(t))∗P (x(t)− y(t)) + |M |−2|x(t)− y(t)|2.
Condition (H2) implies that U(xt − yt) ≤ 0, and

(6) |Π(xt − yt)|2 ≥ |M |−2|x(t)− y(t)|2 + β
( 0∫

−r

|xt(s)− yt(s)|ds
)2

,

for all t ∈ R. On the other hand, one has
t∫

t+s

2(x(u)−y(u))(F (xu)−F (yu))du = |x(t)−y(t)|2−|x(t+s)−y(t+s)|2.

From this we get

|x(t + s)− y(t + s)|2 ≤ |x(t)− y(t)|2 + 2k

t∫

t+s

|x(u)− y(u)| |xu − yu|du,

for all s ∈ [−r, 0]. This yields

|x(t + s)− y(t + s)|2 ≤ |x(t)− y(t)|2 + 2ka

t∫

t−r

|x(u)− y(u)|du,

for all s ∈ [−r, 0], and

(7) |xt − yt|2 ≤ |x(t)− y(t)|2 + 2ka

0∫

−r

|xt(u)− yt(u)|du.

Hence

|xt − yt|4 ≤ |x(t)− y(t)|4 + (2ka)2
( 0∫

−r

|xt(u)− yt(u)|du
)2

+ 4ka|x(t)− y(t)|2
0∫

−r

|xt(u)− yt(u)|du.
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Using (5) and (6) we conclude that there exists a positive constant b
such that

|xt − yt|4 ≤
(
|x(t)− y(t)|2 +

( 0∫

−r

|xt(s)− yt(s)|ds
)2)

≤ b|Π(xt − yt)|2,

for all t ∈ R. This completes the proof of the lemma.

Lemma 4. Suppose that x and y are bounded solutions of Equation (1)
in R. If there exists an α such that Πxα = Πyα, then x(t) = y(t) for all
t in R.

Proof. If there exists an α such that Πxα = Πyα, by Lemma 3, we
deduce that xα = yα. The hypothesis (H1) implies that Equation (1) has
the uniqueness property with the initial data. From this we obtain that
xt = yt for all t ∈ R.

Proof of Theorem 2.
Let x be a solution of Equation (1) defined on R such that xt ∈ S0 for

all t, where S0 is a bounded closed subspace of C. Put y(t) = x(t + ω).
Then y is also a solution of Equation (1) and yt ∈ S0 for all t.

By hypothesis (H2), one has

U(xt − yt) ≤ 0, for all t ∈ R.

If we define a by

(8) a = sup
{
|ϕ|, ϕ ∈ S0

}
,

then by Lemma 3, there exists b such that

(9) |Π(xt − yt)| ≥ b|xt − yt|2, for all t.

If there exists t0 such that xt0 = yt0 , by Lemma 4, one has x(t) = y(t) for
all t. This follows that x is periodic. If for all t, xt 6= yt, then we have

(10) |Π(xt − yt)| > 0, for all t.

Let t0 ∈ R, then one has

(11) |Π(xt0+nω − xt0+nω+ω)| > 0, for all n.
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Hence Π(xt − yt) is a continuous scalar function, so it has a constant
sign. Then the sequence (Π(xt0+nω))n is monotone, which implies that
(xt0+nω)n is a Cauchy sequence. Let ϕ ∈ S0 such that

lim
n→∞

xt0+nω = ϕ.

Let u be a solution of

(12)

{
d

dt
x(t) = F (t, xt)

xt0 = ϕ.

Then u is defined on [t0, +∞[. On the other hand, one has

ut0+ω = lim
n→∞

xt0+nω+ω = lim
n→∞

xt0+nω = ut0 .

Hence, u is ω periodic. By hypothesis (H1) we conclude that

|xt − ut| ≤ exp kω|xt0+nω − ut0+nω|, for all t ∈ [t0 + nω, t0 + nω + ω].

So,

|xt − ut| ≤ exp kω|xt0+nω − ut0 |, for all t ∈ [t0 + nω, t0 + nω + ω].

Hence,
lim

n→∞
xt0+nω = ut0 ,

which implies

(13) lim
t→∞

(xt − ut) = 0.

This completes the proof of Theorem 2.
In the sequel we give an analogous to a theorem of Massera.

Corollary 5. Assumme that the hypotheses (H1)-(H3) are satisfied with
j = 1. If Equation (1) has a bounded solution which is defined on [0,+∞],
then there exists an ω periodic solution of Equation (1).

Proof. It suffices to show that Equation (1) has a bounded solution which is
defined on R. Let x be a bounded solution of Equation (1) which is defined
on [0, +∞]. For a large n, the following sequence (xn(t))n = (x(t + nω))n
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is equicontinuous on [−1, 1]. By Ascoli-Arzela Theorem, there exists a
subsequence

(
x1

n

)
n

of
(
xn

)
n

and a continuous function x(1) such that

x(1)
n −→

x→∞
x(1), uniformly in [−1, 1].

For each n, xn is a solution of Equation (1). This implies that x(1) is also
solution of Equation (1) which is defined on [−1, 1]. Similarly, one can
find x(2) and a subsequence

(
x

(2)
n

)
n

of
(
x

(1)
n

)
n

such that

x(2)
n −→

n→∞
x(2), uniformly in [−2, 2].

x(2) is also solution of Equation (1) on [−2, 2]. Following the same proce-
dure, one can find a continuous function x which is defined on R and a
subsequence

(
xkn

)
n

=
(
x

(n)
n

)
n

of
(
xn

)
n

such that

xkn −→
n→∞

v, uniformly in every compact set of R.

For each n
x(t) = x(n)(t), for all t ∈ [−n, n],

which implies that x is a bounded solution of Equation (1), which is defined
on R. By Theorem 2, there exists an ω periodic solution. This completes
the proof of Corollary 5.

3. Example

Consider the following differential equation

(14)
d

dt
x(t) = Ax(t) + BF (t, g(xt)).

The parameters and functions on the right-hand side are defined as follows

(15) g(ϕ) =

0∫

−r

G(θ)ϕ(θ)dθ,

where for each θ in [−r, 0], B is an (n×r)-matrix, G(θ) is an (s×n)-matrix.
The function F : R×Rs → Rr satisfies the inequality

|F (t, y)− F (t, z)| ≤ σ|y − z|, for all t in R, y, z in Rs,
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and
F (t + ω, y) = F (t, y) for all t in R and y in Rs.

A = diag(a1, a2, a3), where a1, a2, a3 are squares matrices such that there
are positive constants λ, µ with the following properties:

−λ >Re z for all eigenvalues z of a1(16)

µ >Re z > −λ for all eigenvalues z of a2(17)

Re z > µ for all eigenvalues z of a3(18)

By [1, Ch. 6], these conditions ensure that there exist unique real sym-
metric matrices vk, wk, such that

(ak + λIk)∗vk + v∗k(ak + λIk) = −Ik,

(ak − µIk)∗wk + w∗k(ak − µIk) = −Ik,

for k = 1, 2, 3, where Ik denotes the unit matrix of the same size as of ak.
Define symmetric (n× n) matrices Pk, Pw by

Pv = Diag (v1, v2, v3), Pw = Diag (w1, w2, w3)

These matrices depend only on A, λ, µ.

Theorem 6. Assume that A = Diag (a1, a2, a3) satisfies (16), (17), (18).
Furthermore assume that

σ max(|PvB|, |PwB|) < 2
[ 0∫

−r

|G(θ)| exp(−λθ)dθ
]−1

.

Then (14) satisfies (H1), (H2) and (H3).

Proof. The proof is similar to the one given in [4].

Appendix

For the existence of a bounded solution of Equation (1) one has the
following result:

Theorem 7. Assume that:
(i) There exists a linear bounded operator L from C into Rn such that
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∣∣∣F (t, ϕ)− L(ϕ)
|ϕ|

∣∣∣ → 0 as |ϕ| → +∞ uniformly with respect to t ∈ R.

(ii) All roots of the following characteristic equation

(19) det(zI − L(ez)) = 0

have Re z < 0.
Then every solution of Equation (1), which is defined on [0,+∞],

is bounded.

Proof. For t ≥ 0, let T (t) be the mapping of C into itself defined by
T (t)φ = yt, where y(t) is the solution of the following linear equation

{ d

dt
y(t) = L(yk),

y0 = φ.

Since Re z < 0 for every characteristic root of Equation (19), by [2], it
follows that there exist some positive constants K, β such that

(20) |T (t)φ| ≤ K exp(−βt)|φ|, for all t ≥ 0, φ ∈ C.

Choose a constant ε such that 0 < ε < K−1β. Set g(t, φ) = F (t, φ)−L(φ).
Then (i) means that there exists a constant m > 0 such that

(21) |g(t, φ)| ≤ m + ε|φ|, for all t ∈ R, φ ∈ C.

Also Equation (1) can be rewritten as

(22)
d

dt
x(t) = L(xt) + g(t, xt).

By [2, p. 120], the solution of (22) with the initial data x0 = φ satisfies

xt = T (t)φ +

t∫

0

T (t− s)X0g(s, xs)ds, for all t ≥ 0,

where X0(θ) is an (n× n)-matrix defined by the formula

X0(θ) =
{

0 for − r ≤ θ < 0,

I for θ = 0.
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Here I denotes the unit matrix. This gives

|xt| ≤ K exp(−βt)|φ|+
t∫

0

K exp(−β(t− s))|g(s, xs)|ds, for all t.

If we put
u(t) = exp βt|x|,

then one has,

(23) u(t) ≤ K(φ) + β−1Km exp(βt) +

t∫

0

Kεu(s)ds, for all t.

A generalized Gronwall’s Lemma gives

(24) |u(t)| ≤ (β − εK)−1Km exp(βt) + K|φ| exp(Kεt), for all t ≥ 0.

Since ε < K−1β, this shows that |xt| is bounded in [0, +∞]. This com-
pletes the proof of Theorem 7.
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