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DIFFERENTIABLE FUNCTIONS AND
THE GENERATORS ON A HILBERT-LIE GROUP

ERDAL COŞKUN

Abstract. A convolution semigroup plays an important role in the theory
of probability measure on Lie groups. The basic problem is that one wants

to express a semigroup as a Lévy-Khinchine formula. If (µt)t∈R∗+ is a

continuous semigroup of probability measures on a Hilbert-Lie group G,
then we define

Tµtf :=
∫

faµt(da) (f ∈ C∗(G); t > 0).

It is apparent that (Tµt)t∈R∗+ is a continuous operator semigroup on

the space C∗(G) with the infinitesimal generator N . The generating

functional A of this semigroup is defined by Af := lim
t↓0

1
t (Tµtf(e) −

f(e)). We consider the problem of construction of a subspace C(2)(G)
of C∗(G) such that the generating functional A on C(2)(G) exists. This

result will be used later to show that Lévy-Khinchine formula holds for
Hilbert-Lie groups.

Introduction

Let
(
µt

)
t∈R∗+

be a continuous convolution semigroup of probability

measures on a Hilbert-Lie group G and Cu(G) the Banach space of all
bounded left uniformly continuous real-valued functions on G. Then there
is associated a strongly continuous semigroup

(
Tµt

)
t∈R∗+

of contraction

operators on Cu(G) with the infinitesimal generator (N, D(N)). The ge-
nerating functional (A,D(A)) of the convolution semigroup

(
µt

)
t∈R∗+

is
defined by

Af := lim
t↓0

1
t

(
Tµtf(e)− f(e)

)
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for all f in its domain D(A). For finite dimensional Lie groups, infinite
dimensional Hilbert spaces and Banach spaces of cotype 2, we have

C(2)(G) ⊂ D(A)

(cf. [4], [6] and [8] resp.). In this paper we shall prove that the above
result is also true for a class of infinite dimensional Hilbert-Lie groups.
At several points we shall use ideas and techniques used in [4]. We first
obtain the Taylor expansion for functions f ∈ C(2)(G). In Lemma 2.1 we
prove that, for every neighborhood of e in any Hilbert-Lie group G the
supremum sup

t↓0
1
t µt(U c) is finite. Using this result and Banach-Steinhaus

Theorem, we prove Theorem 2.8.

1. Preliminaries

N and R denote the sets of positive integers and real numbers, respec-
tively. Moreover let R+ := {r : r ≥ 0}, R∗

+ := {r : r > 0}.
Let A be a set and B a subset of A. Then by 1B we denote the indicator

function of B. Let I be a nonvoid set and δij the Kronecker delta (i, j ∈ I).
By G we denote a topological Hausdorff group with identity e. G is

called a Polish group if G is a topological group with a countable basis of
its topology and with a complete left invariant metric d which induces the
topology.

For every function f : G → R and a ∈ G the functions f∗, Raf =
fa and Laf = af are defined by f∗(b) = f(b−1), fa(b) = f(ba) and
af(b) = f(ab) for all b ∈ G, respectively. Moreover let supp (f) =
{a ∈ G : f(a) 6= 0} denote the support of f . By Cu(G) we denote the
Banasch space of all real-valued bounded left uniformly (or d-uniformly)
continuous functions on G furnished with the supremum norm ‖ · ‖. A
Hilbert-Lie group is a separable analytic manifold modeled on a separable
Hilbert space, whose group operations are analytic. It is known that the
Hilbert-Lie groups are Polish (cf. [2]).

For the exponential mapping Exp : Te −→ G there exists an inverse
mapping log from a neighborhood Ue of e onto a neighborhood N0 of zero
in Te, where Te is the tangential space in e ∈ G ([5]).

By B(G) we denote the σ-field of Borel subsets of G. Moreover, V(e)
denotes the system of neighborhoods of the identity e of G which are in
B(G).
M(G) denotes the vector space of real-valued (signed) measures on

B(G). As is well known, M(G) is a Banach algebra with respect to convo-
lution * and the norm ‖ · ‖ of total variation. M+(G) is the set of positive
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measures in M(G) and M1(G) = {µ ∈ M(G) : µ(G) = 1} is the set of
probability measures on G.

Now let γχ(t) := Exp(tX) for X ∈ H and t ∈ R∗.

Definition 1.1. Let f ∈ Cu(G), X ∈ H and a ∈ G. f is called left
differentiable at a ∈ G with respect to X (“Xf(a) exists” for short), if

Xf(a) := lim
t→0

1
t

[
Lγχ(t)f(a)− f(a)

]

exists. f is called continuously left differentiable, if Xf(a) exists for all
a ∈ G and X ∈ H, and if the mappings a 7−→ Xf(a), X 7−→ Xf(a) are
continuous.

Derivatives of higher orders are defined inductively. Differentiability
from the right is defined by replacing Lγχ(h) by Rγχ(h).

The following properties of derivatives are well known for continuously
left differentiable functions (cf. [1]).

Remark 1.2. Let f , g ∈ Cu(G), X ∈ H and a ∈ G,
(i) If Xf(a) exists, then the mapping X 7−→ Xf(a) is linear.
(ii) If Xf(a) and Xg(a) exists, then X(f · g)(a) exists also and

X(f · g)(a) = Xf(a) · g(a) + f(a) ·Xg(a).

Now let f ∈ Cu(G) be a twice continuously left differentiable function.
Then the mapping

Df(a) : X 7−→ Xf(a)
(
D2f(a) : (X, Y ) 7−→ XY f(a)

)

is continuous and linear (resp. symmetric, continuous and bilinear) func-
tional on H (resp. H ×H) for all a ∈ G. Also

〈Df(a), X〉 = Xf(a) and 〈D2f(a)(X), Y 〉 = XY f(a)

for all a ∈ G and X, Y ∈ H.
We denote by C2(G) the space of all twice continuously left differ-

entiable functions f ∈ Cu(G) such that the mapping a 7−→ D2f(a)
is d-uniformly continuous and ‖Df‖ := sup

a∈G
‖Df(a)‖ < ∞, ‖D2f‖ :=

sup
a∈G

‖D2f(a)‖ < ∞. It is easy to see that the space C2(G) is a Banach

space with respect to the norm

‖f‖2 := ‖f‖+ ‖Df‖+ ‖D2f‖, f ∈ C2(G)
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and
RaC2(G) ⊂ C2(G)

is satisfied for all a ∈ G. However C2(G) is not dense in Cu(G) (cf. [6]).
By ai(a) := 〈log(a), Xi〉 (i ∈ N) we define maps ai from the canonical
neighborhood Ue in R. Now we call the system

(
ai

)
i∈N

of maps from Ue

in R a system of canonical coordinates of G with respect to orthonormal

base
(
Xi

)
i∈N

, if for all a ∈ Ue the property a = Exp
( ∞∑

i=1

ai(a)Xi

)
is

satisfied.

Lemma 1.3. Let f ∈ C2(G). Then

(i)
( ∞∑

i=1

ai(a)Xi

)
f =

∞∑
i=1

ai(a)Xif for all a ∈ Ue.

(ii)
( ∞∑

i=1

ai(a)Xi

)(( ∞∑
j=1

aj(c)Xj

)
f
)

=
∞∑

i=1,j=1

ai(a)aj(c)XiXjf

for all a, c ∈ Ue.

Proof. (i) For any a ∈ Ue there exists a X ∈ H with X = log(a). Then

we have X =
∞∑

i=1

〈X, Xi〉Xi =
∞∑

i=1

ai(a)Xi. Thus

Xf(e) =
d

dt

∣∣∣
t=0

f(γχ(t)) = 〈Df(e), X〉

=
∞∑

i=1

ai(a)〈Df(e), Xi〉 =
∞∑

i=1

ai(a)Xif(e).

Now let b ∈ G be an arbitrary point. Then Rbf ∈ C2(G), whence the
assertion. The statement (ii) can be proved similarly.

In the following we give the Taylor expansion for functions f ∈ C2(G).

Proposition 1.4. Let f ∈ C2(G). Then the Taylor-expansion of second
order for f at e ∈ G is given by

f(a) = f(e) +
∞∑

i=1

ai(a)Xif(e) +
1
2

∞∑

i=1

∞∑

j=1

ai(a)aj(a)XiXjf(a)

for all a ∈ Ue, where a is a point of Ue.

Proof. Let f ∈ C2(G) and X ∈ H. Then the function χ : t 7−→ f(γχ(t))
is twice differentiable on R and therefore admits a Taylor-expansion valid
up to second order:

χ(t) = χ(0) + χ′(0) · t +
1
2
χ′′(t) · t2
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for t ∈ [−|t|, |t|]. Since χ′(0) = Xf(e) and χ′′(t) = XXf(γχ(t)) it follows
from Lemma 1.3 that

f(γχ(t)) = f(e) +
∞∑

i=1

〈tX, Xi〉Xif(e)

+
1
2

∞∑

i=1

∞∑

j=1

〈tX,Xi〉 〈tX, Xj〉XiXjf(γχ(t))

for some t ∈ [−|t|, |t|]. This yields the assertion.

Remark 1.5. The Taylor-expansion of f ∈ C2(G) can be written in a
closed form, i.e.

f(a) = f(e) + 〈Df(e), log(a)〉+
1
2
〈D2f(a)(log(a)), log(a)〉

for all a ∈ Ue and for any a in the canonical neighborhood Ue.

2. Convolution semigroups of probability
measures and the generators

For any probability measure µ on G, we define the operator Tµ on
Cu(G) by

Tµf :=
∫

faµ(da) (Bochner-Integral).

It is easy to see that TµCu(G) ⊂ Cu(G) and Tµ∗ν = Tµ ◦ Tν .
A convolution semigroup is a family

(
µt

)
t∈R∗+

in M1(G) such that

µ0 = εe and µs ∗ µt = µs+t for all s, t ∈ R∗
+.

(
µt

)
t∈R∗+

is called con-

tinuous if lim
t 7→0

µt = εe (weakly). It is well known that the convolution

semigroup
(
µt

)
t∈R∗+

is continuous iff the corresponding operator semi-

group
(
Tµt

)
t∈R∗+

is (strongly) continuous. Hille-Yosida theory establishes

a bijection between (strongly) continuous operator semigroups
(
Tµt

)
t∈R∗+

and their infinitesimal generators. N is defined on its domain D(N) which
is dense in Cu(G). It is clear that N commutes with the left translations,
i.e.

LaD(N) ⊂ D(N) and La ◦N = N ◦ La for all a ∈ G.

A continuous convolution semigroup
(
µt

)
t∈R∗+

inM1(G) admits a Lévy

measure η, i.e. η is a σ-finite positive measure on B(G) such that η({e}) =
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0 and
lim
t↓0

1
t

∫
fdµt =

∫
fdη,

for all f ∈ Cu(G) with e 6∈ supp(f) (cf. [7]).

Lemma 2.1. Let
(
µt

)
t∈R∗+

be a continuous convolution semigroup in

M1(G). Then for every U ∈ V(e)

sup
t∈R∗+

1
t
µt(U c) < ∞.

Proof. Let U and V be two neighborhood in e ∈ G with V ⊂ U . Since G
is normal (as a topological space), there exists a function f ∈ Cu(G) such
that

0 ≤ f ≤ 1, f(V ) = {0} and f(U c) = {1}.

Then we have
1
t
µt(U c) ≤ 1

t

∫
fdµt for all t ∈ R∗

+. Since f ∈ Cu(G) with

e 6∈ supp(f) it implies that

lim
t↓0

1
t

∫
fdµt =

∫
fdη.

Hence the assertion.

Let H be a separable Hilbert space with a complete orthonormal system(
Xi

)
i∈N

and G a Hilbert-Lie group on H. Moreover, let

Hn := 〈{X1, X2, . . . , Xn}〉

be the space of all linear combinations of X1, X2, . . . , Xn and H⊥
n the

orthogonal complement of Hn in H (for all n ∈ N). Then H/H⊥
n and Hn

are isomorphic. Clearly
Gn := Exp(H⊥

n )

is a closed subgroup of G for all n ∈ N. The quotient spaces G/Gn

are finite-dimensional Hilbert-Lie groups. Now let pn be the canonical
projection from G onto G/Gn and {bn

i : i = 1, 2, . . . , n} a system of
canonical coordinates with respect to {X1, X2, . . . , Xn}. We now define
the functions dn

i := bn
i ◦ pn ∈ C2(G); then Xjd

n
i exists and

Xjd
n
i = Xj(bn

i ◦ pn) = Xjb
n
i ◦ pn = 0
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holds for all j > n and i = 1, 2, . . . , n.

Definition 2.2. Let G be a Hilbert-Lie group on H, and
(
Xi

)
i∈N

an
orthonormal basis in H. For any n ∈ N we define

C(2),n(G) :=
{

f ∈ C2(G) : Xif = 0 for all i > n and

XiXjf = 0 for all i > n or j > n
}

.

Remark 2.3. Let f ∈ Cu(G) be a left uniformly differentiable function
with respect to X which satisfies the condition Xif = 0 for all i > n
(n ∈ N). Let πn be the orthogonal projection from H onto Hn. Then we
have

Xf = πn(X)f for all X ∈ H.

So f is continuously left differentiable and clearly
(
C(2),n(G)

)
n∈N

is a
monotonic increasing sequence of Banach subalgebras of the Banach alge-
bra C2(G). Further properties of C(2),n(G) (n ∈ N):

(i) C(2),n(G) are ‖ · ‖2-closed in C2(G)
and

(ii) For any probability measure µ ∈M1(G), we have

TµC(2),n(G) ⊂ C(2),n(G) for all n ∈ N.

Thus, C(2),n(G) ∩D(N)
‖·‖2 = C(2),n(G). Now consider the subspace

C(2)(G) :=
⋃

n∈N

C(2),n(G).

C(2)(G) is obviously a linear subspace of C2(G) with TµC(2)(G) ⊂ C(2)(G)

for probability measures µ ∈ M1(G). Especially C(2)(G)
‖·‖2 is a Banach

space with TµC(2)(G)
‖·‖2 ⊂ C(2)(G)

‖·‖2 .

Definition 2.4. For n ∈ N let {bn
i : i = 1, 2, . . . , n} be a system of

extended canonical coordinates with respect to {X1, X2, . . . , Xn}. Then
we say that the Hilbert-Lie group G has the property (K), if

bn
i ∈ C(2),n(G) for all i = 1, 2, . . . , n, n ≥ n0,

and for any n0 ∈ N.
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Every commutative Hilbert-Lie group and every finite dimensional Lie
group have clearly the property (K). In the finite dimensional case we
have n0 = dim(G). Since C(2),n(G) ⊂ C(2),n+1(G), a system

{
bn
i , bn+1

n+1 :
i = 1, 2, . . . , n

} ⊂ C(2),n+1(G) of canonical coordinates exists with respect
to {X1, X2, . . . , Xn+1}. We also have the following

Proposition 2.5. Let G be a Hilbert-Lie group with the property (K).
Then a system

(
dn

)
n∈N

of functions in C(2)(G) exists with

di = bn0
i for all i = 1, 2, . . . , n0

and
dn = bn

n for all n > n0.

This system
(
dn

)
n∈N

is called a system of local canonical coordinates with
respect to

(
Xi

)
i∈N

.

Now let G be a Hilbert-Lie group with the property (K). We define
for any n ∈ N the functions

Φn(a) :=
n∑

i=1

di(a)2, a ∈ G,

where
(
di

)
i=1,2,...,n

is a system of local canonical coordinates with respect
to {X1, X2, . . . , Xn}. Then Φn ∈ C(2),n(G) and Φn(a) > 0 for all a ∈
G \ {Φn = 0}. Therefore

XiΦn(e) = 0, XiXjΦn(e) = 2δij , i, j = 1, 2, . . . , n

(cf. [3], Lemma 4.1.9 and 4.1.10).
The following lemma is a consequence of Banach-Steinhaus Theorem

and Hille-Yosida theory (cf. [3], Lemma 4.1.11).

Lemma 2.6. For every f ∈ C(2),n(G) and every ε > 0 there is a g := ge ∈
C(2),n(G) ∩D(N) such that ‖f − g‖2 < ε, f(e) = g(e), Xif(e) = Xi(g(e)
and XiXjf(e) = XiXjg(e) for i, j = 1, 2, . . . , n.

Proposition 2.7. Let G be a Hilbert-Lie group with the property (K),(
µt

)
t∈R∗+

a convolution semigroup in M1(G) and Φn, (n ∈ N) be as
above. Then the suprema

sup
t∈R∗+

1
t

∫
Φndµt
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are finite for every n ∈ N.

Proof. An application of Lemma 2.6 to the function Φn ∈ C(2),n(G) yields
the existence of a function Ψn ∈ C(2),n(G) ∩D(N) with the property

‖Φn −Ψn‖2 < ε, Ψn(e) = Φn(e) = 0, XiΨn(e) = XiΦn(e) = 0

and XiXjΨn(e) = XiXjΦn(e) = 2δij , i, j = 1, 2, . . . , n.

The Taylor expansion of Ψn ∈ C(2),n(G)∩D(N) in a neighborhood W1 of
e with W1 ⊂ Ue has the form

Ψn(a) =
1
2

n∑

i=1

n∑

j=1

di(a)dj(a)XiXjΨn(a),

for all a ∈ W1 with a ∈ W1. Since ‖Φn−Ψn‖2 < ε and XiXjΨn(e) = 2δij ,
i, j = 1, 2, . . . , n there exists a neighborhood W2 of e with the properties

−ε ≤ XiXjΨn(a) ≤ ε for all i, j = 1, 2, . . . , n, i 6= j,

2− ε ≤ XiXiΨn(a) ≤ 2 + ε for all i = 1, 2, . . . , n,

whenever a ∈ W2. Putting δn := δn(e) :=
1
2
(2 − ε − ε(n − 1)) and

W := W1 ∩W2, we obtain

Ψn(a) ≥ δn ·
n∑

i=1

di(a)2 for all a ∈ W.

Since Ψn ∈ C(2),n(G) ∩ D(N), we obtain sup
t∈R∗+

1
t

∣∣∣
∫

W

Ψndµt

∣∣∣ < ∞ by

Lemma 2.1. Thus sup
t∈R∗+

1
t

∫

W

Φndµt < ∞, and since Φn is bounded, the

assertion follows from Lemma 2.1.

Now let G be a Hilbert-Lie group with the property (K) and
(
di

)
i∈N

a
system of local canonical coordinates with respect to

(
Xi

)
i∈N

. By Lemma
2.6 there exist functions zi ∈ C(2),n(G)∩D(N), (n ∈ N) with the property

zi(e) = di(e) = 0, Xjzi(e) = Xjdi(e) = δij , i, j = 1, 2, . . . , n.
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Theorem 2.8. Let G be a Hilbert-Lie group with the property (K) and(
µt

)
t∈R∗+

a convolution semigroup in P(G). Then the generating function

A of
(
µt

)
t∈R∗+

on C(2)(G) exists, i.e.

C(2)(G) ⊂ D(A).

Proof. Let f ∈ C(2),n(G) (n ∈ N) and setting

g(a) := f(a)− f(e)−
n∑

i=1

zi(a) ·Xif(e) for all a ∈ G,

where the function zi, i = 1, 2, . . . , n are as in above. Then g ∈ C(2),n(G)

with g(e) = 0, Xjg(e) = Xjf(e)−
n∑

i=1

Xjzi(e) ·Xif(e) = Xjf(e)−
n∑

i=1

δij ·
Xif(e) = 0. The Taylor expansion of g in a neighborhood W ⊂ Ue gives

g(a) =
1
2

n∑

i=1

n∑

j=1

di(a)dj(a)XiXjg(a), a ∈ W.

Thus there is a constant k1 ∈ R∗
+ such that

|g(a)| ≤ k1 · ‖g‖2 · Φn(a) for all a ∈ W.

It follows from Proposition 2.7 that

(1) sup
t∈R∗+

∣∣∣1
t

∫

W

gdµt

∣∣∣ ≤ k1 · ‖g‖2 · sup
t∈R∗+

∫
Φndµt < ∞.

Clearly,
∣∣∣1
t

∫

W c

gdµt

∣∣∣ ≤ ‖g‖2 · 12µt(W c), and sup
t∈R∗+

∣∣∣1
t

∫

W c

gdµt

∣∣∣ < ∞. Hence,

there exists a constant k2 ∈ R∗
+ independent of t such that

(2)
∣∣∣1
t

∫

W c

gdµt

∣∣∣ ≤ k2 · ‖g‖2 for all t ∈ R∗
+.

Adding the inequalities (1) and (2)

∣∣∣1
t

[
Tµtf(e)− f(e)

]− 1
t

n∑

i=1

Xif(e) · Tµtzi(e)
∣∣∣ ≤ k3 · ‖f‖2, ∀t ∈ R∗

+,
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where k3 is a constant (independent of t). Since zi ∈ D(N) and zi(e) = 0,

we have sup
t∈R∗+

∣∣∣1
t
Tµt

zi(e)
∣∣∣ < ∞ for all i = 1, 2, . . . , n. Hence we obtain a

constant k(n) ∈ R∗
+ depending only on n such that

∣∣∣1
t

(
Tµt

f(e)− f(e)
)∣∣∣ ≤ k(n) · ‖f‖2

for all t ∈ R∗
+ and f ∈ C(2),n(G). By Theorem of Banach-Steinhaus the

limit
lim
t↓0

1
t

[
Tµ̃t

f(e)− f(e)
]

exists for every f ∈ C(2)(G).

Remark 2.9. Let G be a commutative Hilbert-Lie group and
(
µt

)
t∈R∗+

a

convolution semigroup in M1(G). As in the proof of Proposition 2.8, we
can find a constant k(n) ∈ R∗

+ (independent of a ∈ G and t ∈ R∗
+) such

that
∣∣∣1
t

(
Tµtf(a)− f(a)

∣∣∣ =
∣∣∣1
t

[
Tµt(Laf)(e)− (Laf)(e)

]∣∣∣
≤ k(n) ·

∥∥Laf
∥∥

2
= k(n) · ‖f‖2,

for all f ∈ C(2),n(G) and a ∈ G. Banach-Steinhaus Theorem now yields
the existence of the limit

Nf(a) = lim
t↓0

1
t

[
Tµtf(a)− f(a)

]

uniformly in a ∈ G. This implies the existence of the infinitesimal gener-
ator N on C(2)(G).

Remark 2.10. Let G = H be a separable Hilbert space and C
(2)
u (H)

the space of all twice Fréchet differentiable functions f ∈ Cu(H) such
that ‖f ′‖ := sup

x∈H
‖f ′(x)‖ < ∞, ‖f ′′‖ := sup

x∈H
‖f ′′(x)‖ < ∞ and f ′′ is

uniformly continuous in x. Then we have C
(2)
u (H) ⊂ D(N) (cf. [6]) and

C2(H) = C
(2)
u (H).
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