DIFFERENTIABLE FUNCTIONS AND THE GENERATORS ON A HILBERT-LIE GROUP

ERDAL COŞKUN

ABSTRACT. A convolution semigroup plays an important role in the theory of probability measure on Lie groups. The basic problem is that one wants to express a semigroup as a Lévy-Khinchine formula. If $(\mu_t)_{t \in \mathbf{R}^*_+}$ is a continuous semigroup of probability measures on a Hilbert-Lie group G, then we define

$$T_{\mu_t}f := \int f_a \mu_t(da) \quad (f \in C_*(G); \ t > 0).$$

It is apparent that $(T_{\mu_t})_{t\in\mathbf{R}^*_+}$ is a continuous operator semigroup on the space $C_*(G)$ with the infinitesimal generator N. The generating functional A of this semigroup is defined by $Af := \lim_{t\downarrow 0} \frac{1}{t}(T_{\mu_t}f(e) - f(e))$. We consider the problem of construction of a subspace $C_{(2)}(G)$ of $C_*(G)$ such that the generating functional A on $C_{(2)}(G)$ exists. This result will be used later to show that Lévy-Khinchine formula holds for Hilbert-Lie groups.

INTRODUCTION

Let $(\mu_t)_{t \in \mathbf{R}^*_+}$ be a continuous convolution semigroup of probability measures on a Hilbert-Lie group G and $C_u(G)$ the Banach space of all bounded left uniformly continuous real-valued functions on G. Then there is associated a strongly continuous semigroup $(T_{\mu_t})_{t \in \mathbf{R}^*_+}$ of contraction operators on $C_u(G)$ with the infinitesimal generator (N, D(N)). The generating functional (A, D(A)) of the convolution semigroup $(\mu_t)_{t \in \mathbf{R}^*_+}$ is defined by

$$Af := \lim_{t \downarrow 0} \frac{1}{t} \left(T_{\mu_t} f(e) - f(e) \right)$$

Received January 11, 1996

¹⁹⁹¹ Mathematics Subject Classification. Primary 60B, 58B; Secondary 47B

Key words and phrases. Continuous convolution semigroup, operator semigroup, Hilbert-Lie group, Lévy measure, infinitesimal generator, generating functional.

for all f in its domain D(A). For finite dimensional Lie groups, infinite dimensional Hilbert spaces and Banach spaces of cotype 2, we have

$$C_{(2)}(G) \subset D(A)$$

(cf. [4], [6] and [8] resp.). In this paper we shall prove that the above result is also true for a class of infinite dimensional Hilbert-Lie groups. At several points we shall use ideas and techniques used in [4]. We first obtain the Taylor expansion for functions $f \in C_{(2)}(G)$. In Lemma 2.1 we prove that, for every neighborhood of e in any Hilbert-Lie group G the supremum $\sup_{t\downarrow 0} \frac{1}{t} \mu_t(U^c)$ is finite. Using this result and Banach-Steinhaus

Theorem, we prove Theorem 2.8.

1. Preliminaries

N and **R** denote the sets of positive integers and real numbers, respectively. Moreover let $\mathbf{R}_+ := \{r : r \ge 0\}, \mathbf{R}_+^* := \{r : r > 0\}.$

Let A be a set and B a subset of A. Then by 1_B we denote the indicator function of B. Let I be a nonvoid set and δ_{ij} the Kronecker delta $(i, j \in I)$.

By G we denote a topological Hausdorff group with identity e. G is called a *Polish group* if G is a topological group with a countable basis of its topology and with a complete left invariant metric d which induces the topology.

For every function $f: G \to \mathbf{R}$ and $a \in G$ the functions f^* , $R_a f = f_a$ and $L_a f = af$ are defined by $f^*(b) = f(b^{-1})$, $f_a(b) = f(ba)$ and af(b) = f(ab) for all $b \in G$, respectively. Moreover let $\operatorname{supp}(f) = \overline{\{a \in G : f(a) \neq 0\}}$ denote the support of f. By $C_u(G)$ we denote the Banasch space of all real-valued bounded left uniformly (or *d*-uniformly) continuous functions on G furnished with the supremum norm $\|\cdot\|$. A *Hilbert-Lie group* is a separable analytic manifold modeled on a separable Hilbert space, whose group operations are analytic. It is known that the Hilbert-Lie groups are Polish (cf. [2]).

For the exponential mapping $\mathcal{E}xp : T_e \longrightarrow G$ there exists an inverse mapping log from a neighborhood U_e of e onto a neighborhood N_0 of zero in T_e , where T_e is the tangential space in $e \in G$ ([5]).

By B(G) we denote the σ -field of Borel subsets of G. Moreover, $\mathcal{V}(e)$ denotes the system of neighborhoods of the identity e of G which are in B(G).

 $\mathcal{M}(G)$ denotes the vector space of real-valued (signed) measures on B(G). As is well known, $\mathcal{M}(G)$ is a Banach algebra with respect to convolution * and the norm $\|\cdot\|$ of total variation. $\mathcal{M}_+(G)$ is the set of positive

measures in $\mathcal{M}(G)$ and $\mathcal{M}^1(G) = \{\mu \in \mathcal{M}(G) : \mu(G) = 1\}$ is the set of probability measures on G.

Now let $\gamma_{\chi}(t) := \mathcal{E}xp(tX)$ for $X \in H$ and $t \in \mathbf{R}^*$.

Definition 1.1. Let $f \in C_u(G)$, $X \in H$ and $a \in G$. f is called *left differentiable* at $a \in G$ with respect to X ("Xf(a) exists" for short), if

$$Xf(a) := \lim_{t \to 0} \frac{1}{t} \left[L_{\gamma_{\chi}(t)} f(a) - f(a) \right]$$

exists. f is called *continuously left differentiable*, if Xf(a) exists for all $a \in G$ and $X \in H$, and if the mappings $a \longmapsto Xf(a), X \longmapsto Xf(a)$ are continuous.

Derivatives of higher orders are defined inductively. Differentiability from the right is defined by replacing $L_{\gamma_{\chi}(h)}$ by $R_{\gamma_{\chi}(h)}$.

The following properties of derivatives are well known for continuously left differentiable functions (cf. [1]).

Remark 1.2. Let $f, g \in C_u(G), X \in H$ and $a \in G$,

- (i) If Xf(a) exists, then the mapping $X \longmapsto Xf(a)$ is linear.
- (ii) If Xf(a) and Xg(a) exists, then $X(f \cdot g)(a)$ exists also and $X(f \cdot g)(a) = Xf(a) \cdot g(a) + f(a) \cdot Xg(a)$.

Now let $f \in C_u(G)$ be a twice continuously left differentiable function. Then the mapping

$$Df(a): X \longmapsto Xf(a) \quad (D^2f(a): (X,Y) \longmapsto XYf(a))$$

is continuous and linear (resp. symmetric, continuous and bilinear) functional on H (resp. $H \times H$) for all $a \in G$. Also

$$\langle Df(a), X \rangle = Xf(a)$$
 and $\langle D^2f(a)(X), Y \rangle = XYf(a)$

for all $a \in G$ and $X, Y \in H$.

We denote by $C_2(G)$ the space of all twice continuously left differentiable functions $f \in C_u(G)$ such that the mapping $a \longmapsto D^2 f(a)$ is *d*-uniformly continuous and $\|Df\| := \sup_{a \in G} \|Df(a)\| < \infty$, $\|D^2 f\| := \sup_{a \in G} \|D^2 f(a)\| < \infty$. It is easy to see that the space $C_2(G)$ is a Banach

space with respect to the norm

$$||f||_2 := ||f|| + ||Df|| + ||D^2f||, \quad f \in C_2(G)$$

and

$$R_a C_2(G) \subset C_2(G)$$

is satisfied for all $a \in G$. However $C_2(G)$ is not dense in $C_u(G)$ (cf. [6]). By $a_i(a) := \langle \log(a), X_i \rangle$ $(i \in \mathbf{N})$ we define maps a_i from the canonical neighborhood U_e in \mathbf{R} . Now we call the system $(a_i)_{i \in \mathbf{N}}$ of maps from U_e in \mathbf{R} a system of canonical coordinates of G with respect to orthonormal base $(X_i)_{i \in \mathbf{N}}$, if for all $a \in U_e$ the property $a = \mathcal{E}xp\left(\sum_{i=1}^{\infty} a_i(a)X_i\right)$ is satisfied.

Lemma 1.3. Let
$$f \in C_2(G)$$
. Then
(i) $\left(\sum_{i=1}^{\infty} a_i(a)X_i\right)f = \sum_{i=1}^{\infty} a_i(a)X_if$ for all $a \in U_e$.
(ii) $\left(\sum_{i=1}^{\infty} a_i(a)X_i\right)\left(\left(\sum_{j=1}^{\infty} a_j(c)X_j\right)f\right) = \sum_{i=1,j=1}^{\infty} a_i(a)a_j(c)X_iX_jf$
for all $a, c \in U_e$.

Proof. (i) For any $a \in U_e$ there exists a $X \in H$ with $X = \log(a)$. Then we have $X = \sum_{i=1}^{\infty} \langle X, X_i \rangle X_i = \sum_{i=1}^{\infty} a_i(a) X_i$. Thus

$$Xf(e) = \frac{d}{dt}\Big|_{t=0} f(\gamma_{\chi}(t)) = \langle Df(e), X \rangle$$
$$= \sum_{i=1}^{\infty} a_i(a) \langle Df(e), X_i \rangle = \sum_{i=1}^{\infty} a_i(a) X_i f(e)$$

Now let $b \in G$ be an arbitrary point. Then $R_b f \in C_2(G)$, whence the assertion. The statement (ii) can be proved similarly.

In the following we give the Taylor expansion for functions $f \in C_2(G)$.

Proposition 1.4. Let $f \in C_2(G)$. Then the Taylor-expansion of second order for f at $e \in G$ is given by

$$f(a) = f(e) + \sum_{i=1}^{\infty} a_i(a) X_i f(e) + \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i(a) a_j(a) X_i X_j f(\overline{a})$$

for all $a \in U_e$, where \overline{a} is a point of U_e .

Proof. Let $f \in C_2(G)$ and $X \in H$. Then the function $\chi : t \longmapsto f(\gamma_{\chi}(t))$ is twice differentiable on **R** and therefore admits a Taylor-expansion valid up to second order:

$$\chi(t) = \chi(0) + \chi'(0) \cdot t + \frac{1}{2}\chi''(t) \cdot t^2$$

for $\bar{t} \in [-|t|, |t|]$. Since $\chi'(0) = Xf(e)$ and $\chi''(\bar{t}) = XXf(\gamma_{\chi}(\bar{t}))$ it follows from Lemma 1.3 that

$$f(\gamma_{\chi}(t)) = f(e) + \sum_{i=1}^{\infty} \langle tX, X_i \rangle X_i f(e)$$

+ $\frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle tX, X_i \rangle \langle tX, X_j \rangle X_i X_j f(\gamma_{\chi}(\bar{t}))$

for some $\overline{t} \in [-|t|, |t|]$. This yields the assertion.

Remark 1.5. The Taylor-expansion of $f \in C_2(G)$ can be written in a closed form, i.e.

$$f(a) = f(e) + \langle Df(e), \log(a) \rangle + \frac{1}{2} \langle D^2 f(\overline{a})(\log(a)), \log(a) \rangle$$

for all $a \in U_e$ and for any \overline{a} in the canonical neighborhood U_e .

2. Convolution semigroups of probability measures and the generators

For any probability measure μ on G, we define the operator T_{μ} on $C_u(G)$ by

$$T_{\mu}f := \int f_a \mu(da)$$
 (Bochner-Integral).

It is easy to see that $T_{\mu}C_u(G) \subset C_u(G)$ and $T_{\mu*\nu} = T_{\mu} \circ T_{\nu}$.

A convolution semigroup is a family $(\mu_t)_{t \in \mathbf{R}^*_+}$ in $\mathcal{M}^1(G)$ such that $\mu_0 = \varepsilon_e$ and $\mu_s * \mu_t = \mu_{s+t}$ for all $s, t \in \mathbf{R}^*_+$. $(\mu_t)_{t \in \mathbf{R}^*_+}$ is called continuous if $\lim_{t \to 0} \mu_t = \varepsilon_e$ (weakly). It is well known that the convolution semigroup $(\mu_t)_{t \in \mathbf{R}^*_+}$ is continuous iff the corresponding operator semigroup $(T_{\mu_t})_{t \in \mathbf{R}^*_+}$ is (strongly) continuous. Hille-Yosida theory establishes a bijection between (strongly) continuous operator semigroups $(T_{\mu_t})_{t \in \mathbf{R}^*_+}$ and their infinitesimal generators. N is defined on its domain D(N) which is dense in $C_u(G)$. It is clear that N commutes with the left translations, i.e.

$$L_a D(N) \subset D(N)$$
 and $L_a \circ N = N \circ L_a$ for all $a \in G$

A continuous convolution semigroup $(\mu_t)_{t \in \mathbf{R}^*_+}$ in $\mathcal{M}^1(G)$ admits a Lévy measure η , i.e. η is a σ -finite positive measure on $\mathcal{B}(G)$ such that $\eta(\{e\}) =$

 $0~\mathrm{and}$

$$\lim_{t\downarrow 0}\frac{1}{t}\int fd\mu_t = \int fd\eta,$$

for all $f \in C_u(G)$ with $e \notin \operatorname{supp}(f)$ (cf. [7]).

Lemma 2.1. Let $(\mu_t)_{t \in \mathbf{R}^*_+}$ be a continuous convolution semigroup in $\mathcal{M}^1(G)$. Then for every $U \in \mathcal{V}(e)$

$$\sup_{t\in\mathbf{R}^*_+}\frac{1}{t}\mu_t(U^c)<\infty$$

Proof. Let U and V be two neighborhood in $e \in G$ with $\overline{V} \subset U$. Since G is normal (as a topological space), there exists a function $f \in C_u(G)$ such that

$$0 \le f \le 1$$
, $f(V) = \{0\}$ and $f(U^c) = \{1\}$.

Then we have $\frac{1}{t}\mu_t(U^c) \leq \frac{1}{t}\int f d\mu_t$ for all $t \in \mathbf{R}^*_+$. Since $f \in C_u(G)$ with $e \notin \operatorname{supp}(f)$ it implies that

$$\lim_{t\downarrow 0}\frac{1}{t}\int fd\mu_t = \int fd\eta.$$

Hence the assertion.

Let H be a separable Hilbert space with a complete orthonormal system $(X_i)_{i \in \mathbb{N}}$ and G a Hilbert-Lie group on H. Moreover, let

$$H_n := \langle \{X_1, X_2, \dots, X_n\} \rangle$$

be the space of all linear combinations of X_1, X_2, \ldots, X_n and H_n^{\perp} the orthogonal complement of H_n in H (for all $n \in \mathbb{N}$). Then H/H_n^{\perp} and H_n are isomorphic. Clearly

$$G_n := \mathcal{E}xp(H_n^{\perp})$$

is a closed subgroup of G for all $n \in \mathbf{N}$. The quotient spaces G/G_n are finite-dimensional Hilbert-Lie groups. Now let p_n be the canonical projection from G onto G/G_n and $\{b_i^n : i = 1, 2, ..., n\}$ a system of canonical coordinates with respect to $\{X_1, X_2, ..., X_n\}$. We now define the functions $d_i^n := b_i^n \circ p_n \in C_2(G)$; then $X_j d_i^n$ exists and

$$X_j d_i^n = X_j (b_i^n \circ p_n) = X_j b_i^n \circ p_n = 0$$

18

holds for all j > n and $i = 1, 2, \ldots, n$.

Definition 2.2. Let G be a Hilbert-Lie group on H, and $(X_i)_{i \in \mathbb{N}}$ an orthonormal basis in H. For any $n \in \mathbb{N}$ we define

$$C_{(2),n}(G) := \left\{ f \in C_2(G) : X_i f = 0 \text{ for all } i > n \text{ and} \\ X_i X_j f = 0 \text{ for all } i > n \text{ or } j > n \right\}.$$

Remark 2.3. Let $f \in C_u(G)$ be a left uniformly differentiable function with respect to X which satisfies the condition $X_i f = 0$ for all i > n $(n \in \mathbf{N})$. Let π_n be the orthogonal projection from H onto H_n . Then we have

$$Xf = \pi_n(X)f$$
 for all $X \in H$.

So f is continuously left differentiable and clearly $(C_{(2),n}(G))_{n\in\mathbb{N}}$ is a monotonic increasing sequence of Banach subalgebras of the Banach algebra $C_2(G)$. Further properties of $C_{(2),n}(G)$ $(n \in \mathbb{N})$:

(i) $C_{(2),n}(G)$ are $\|\cdot\|_2$ -closed in $C_2(G)$ and

(ii) For any probability measure $\mu \in \mathcal{M}^1(G)$, we have

$$T_{\mu}C_{(2),n}(G) \subset C_{(2),n}(G)$$
 for all $n \in \mathbf{N}$

Thus, $\overline{C_{(2),n}(G) \cap D(N)}^{\|\cdot\|_2} = C_{(2),n}(G)$. Now consider the subspace

$$C_{(2)}(G) := \bigcup_{n \in \mathbf{N}} C_{(2),n}(G)$$

 $C_{(2)}(G)$ is obviously a linear subspace of $C_2(G)$ with $T_{\mu}C_{(2)}(G) \subset C_{(2)}(G)$ for probability measures $\mu \in \mathcal{M}^1(G)$. Especially $\overline{C_{(2)}(G)}^{\|\cdot\|_2}$ is a Banach space with $T_{\mu}\overline{C_{(2)}(G)}^{\|\cdot\|_2} \subset \overline{C_{(2)}(G)}^{\|\cdot\|_2}$.

Definition 2.4. For $n \in \mathbf{N}$ let $\{b_i^n : i = 1, 2, ..., n\}$ be a system of extended canonical coordinates with respect to $\{X_1, X_2, ..., X_n\}$. Then we say that the Hilbert-Lie group *G* has the property (K), if

$$b_i^n \in C_{(2),n}(G)$$
 for all $i = 1, 2, \dots, n, n \ge n_0$,

and for any $n_0 \in \mathbf{N}$.

Every commutative Hilbert-Lie group and every finite dimensional Lie group have clearly the property (K). In the finite dimensional case we have $n_0 = \dim(G)$. Since $C_{(2),n}(G) \subset C_{(2),n+1}(G)$, a system $\{b_i^n, b_{n+1}^{n+1} : i = 1, 2, ..., n\} \subset C_{(2),n+1}(G)$ of canonical coordinates exists with respect to $\{X_1, X_2, \ldots, X_{n+1}\}$. We also have the following

Proposition 2.5. Let G be a Hilbert-Lie group with the property (K). Then a system $(d_n)_{n \in \mathbb{N}}$ of functions in $C_{(2)}(G)$ exists with

$$d_i = b_i^{n_0}$$
 for all $i = 1, 2, \dots, n_0$

and

$$d_n = b_n^n$$
 for all $n > n_0$.

This system $(d_n)_{n \in \mathbf{N}}$ is called a system of local canonical coordinates with respect to $(X_i)_{i \in \mathbf{N}}$.

Now let G be a Hilbert-Lie group with the property (K). We define for any $n \in \mathbf{N}$ the functions

$$\Phi_n(a) := \sum_{i=1}^n d_i(a)^2, \quad a \in G,$$

where $(d_i)_{i=1,2,...,n}$ is a system of local canonical coordinates with respect to $\{X_1, X_2, ..., X_n\}$. Then $\Phi_n \in C_{(2),n}(G)$ and $\Phi_n(a) > 0$ for all $a \in G \setminus \{\Phi_n = 0\}$. Therefore

$$X_i \Phi_n(e) = 0, \quad X_i X_j \Phi_n(e) = 2\delta_{ij}, \quad i, j = 1, 2, \dots, n$$

(cf. [3], Lemma 4.1.9 and 4.1.10).

The following lemma is a consequence of Banach-Steinhaus Theorem and Hille-Yosida theory (cf. [3], Lemma 4.1.11).

Lemma 2.6. For every $f \in C_{(2),n}(G)$ and every $\varepsilon > 0$ there is a $g := g_e \in C_{(2),n}(G) \cap D(N)$ such that $||f - g||_2 < \varepsilon$, f(e) = g(e), $X_i f(e) = X_i(g(e))$ and $X_i X_j f(e) = X_i X_j g(e)$ for i, j = 1, 2, ..., n.

Proposition 2.7. Let G be a Hilbert-Lie group with the property (K), $(\mu_t)_{t \in \mathbf{R}^*_+}$ a convolution semigroup in $\mathcal{M}^1(G)$ and Φ_n , $(n \in \mathbf{N})$ be as above. Then the suprema

$$\sup_{t\in\mathbf{R}^*_+}\frac{1}{t}\int\Phi_n d\mu_t$$

are finite for every $n \in \mathbf{N}$.

Proof. An application of Lemma 2.6 to the function $\Phi_n \in C_{(2),n}(G)$ yields the existence of a function $\Psi_n \in C_{(2),n}(G) \cap D(N)$ with the property

$$\|\Phi_n - \Psi_n\|_2 < \varepsilon, \quad \Psi_n(e) = \Phi_n(e) = 0, \quad X_i \Psi_n(e) = X_i \Phi_n(e) = 0$$

and $X_i X_j \Psi_n(e) = X_i X_j \Phi_n(e) = 2\delta_{ij}, \quad i, j = 1, 2, \dots, n.$

The Taylor expansion of $\Psi_n \in C_{(2),n}(G) \cap D(N)$ in a neighborhood W_1 of e with $W_1 \subset U_e$ has the form

$$\Psi_n(a) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n d_i(a) d_j(a) X_i X_j \Psi_n(\overline{a}),$$

for all $a \in W_1$ with $\overline{a} \in W_1$. Since $\|\Phi_n - \Psi_n\|_2 < \varepsilon$ and $X_i X_j \Psi_n(e) = 2\delta_{ij}$, $i, j = 1, 2, \ldots, n$ there exists a neighborhood W_2 of e with the properties

$$-\varepsilon \leq X_i X_j \Psi_n(a) \leq \varepsilon \quad \text{for all } i, j = 1, 2, \dots, n, \ i \neq j,$$

$$2 - \varepsilon \leq X_i X_i \Psi_n(a) \leq 2 + \varepsilon \quad \text{for all } i = 1, 2, \dots, n,$$

whenever $a \in W_2$. Putting $\delta_n := \delta_n(e) := \frac{1}{2}(2 - \varepsilon - \varepsilon(n - 1))$ and $W := W_1 \cap W_2$, we obtain

$$\Psi_n(a) \ge \delta_n \cdot \sum_{i=1}^n d_i(a)^2 \text{ for all } a \in W.$$

Since $\Psi_n \in C_{(2),n}(G) \cap D(N)$, we obtain $\sup_{t \in \mathbf{R}^*_+} \frac{1}{t} \Big| \int_W \Psi_n d\mu_t \Big| < \infty$ by

Lemma 2.1. Thus $\sup_{t \in \mathbf{R}^*_+} \frac{1}{t} \int_W \Phi_n d\mu_t < \infty$, and since Φ_n is bounded, the assertion follows from Lemma 2.1.

Now let G be a Hilbert-Lie group with the property (K) and $(d_i)_{i \in \mathbb{N}}$ a system of local canonical coordinates with respect to $(X_i)_{i \in \mathbb{N}}$. By Lemma 2.6 there exist functions $z_i \in C_{(2),n}(G) \cap D(N)$, $(n \in \mathbb{N})$ with the property

$$z_i(e) = d_i(e) = 0, \quad X_j z_i(e) = X_j d_i(e) = \delta_{ij}, \quad i, j = 1, 2, \dots, n.$$

Theorem 2.8. Let G be a Hilbert-Lie group with the property (K) and $(\mu_t)_{t \in \mathbf{R}^*_+}$ a convolution semigroup in $\mathcal{P}(G)$. Then the generating function A of $(\mu_t)_{t \in \mathbf{R}^*_+}$ on $C_{(2)}(G)$ exists, i.e.

$$C_{(2)}(G) \subset D(A).$$

Proof. Let $f \in C_{(2),n}(G)$ $(n \in \mathbf{N})$ and setting

$$g(a) := f(a) - f(e) - \sum_{i=1}^{n} z_i(a) \cdot X_i f(e) \quad \text{for all } a \in G,$$

where the function z_i , i = 1, 2, ..., n are as in above. Then $g \in C_{(2),n}(G)$ with g(e) = 0, $X_j g(e) = X_j f(e) - \sum_{i=1}^n X_j z_i(e) \cdot X_i f(e) = X_j f(e) - \sum_{i=1}^n \delta_{ij} \cdot X_i f(e) = 0$. The Taylor expansion of g in a neighborhood $W \subset U_e$ gives

$$g(a) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_i(a) d_j(a) X_i X_j g(\overline{a}), \quad a \in W.$$

Thus there is a constant $k_1 \in \mathbf{R}^*_+$ such that

$$|g(a)| \le k_1 \cdot ||g||_2 \cdot \Phi_n(a)$$
 for all $a \in W$.

It follows from Proposition 2.7 that

(1)
$$\sup_{t \in \mathbf{R}^*_+} \left| \frac{1}{t} \int_W g d\mu_t \right| \le k_1 \cdot \|g\|_2 \cdot \sup_{t \in \mathbf{R}^*_+} \int \Phi_n d\mu_t < \infty.$$

Clearly, $\left|\frac{1}{t}\int_{W^c} gd\mu_t\right| \leq \|g\|_2 \cdot \frac{1}{2}\mu_t(W^c)$, and $\sup_{t\in\mathbf{R}^*_+} \left|\frac{1}{t}\int_{W^c} gd\mu_t\right| < \infty$. Hence, there exists a constant $k_2 \in \mathbf{R}^*_+$ independent of t such that

(2)
$$\left|\frac{1}{t}\int_{W^c} gd\mu_t\right| \le k_2 \cdot \|g\|_2 \quad \text{for all } t \in \mathbf{R}^*_+$$

Adding the inequalities (1) and (2)

$$\left|\frac{1}{t} \left[T_{\mu_t} f(e) - f(e) \right] - \frac{1}{t} \sum_{i=1}^n X_i f(e) \cdot T_{\mu_t} z_i(e) \right| \le k_3 \cdot \|f\|_2, \quad \forall t \in \mathbf{R}^*_+,$$

where k_3 is a constant (independent of t). Since $z_i \in D(N)$ and $z_i(e) = 0$, we have $\sup_{t \in \mathbf{R}^*_+} \left| \frac{1}{t} T_{\mu_t} z_i(e) \right| < \infty$ for all i = 1, 2, ..., n. Hence we obtain a constant $k(n) \in \mathbf{R}^*_+$ depending only on n such that

$$\left|\frac{1}{t} \left(T_{\mu_t} f(e) - f(e)\right)\right| \le k(n) \cdot \|f\|_2$$

for all $t \in \mathbf{R}^*_+$ and $f \in C_{(2),n}(G)$. By Theorem of Banach-Steinhaus the limit

$$\lim_{t\downarrow 0} \frac{1}{t} \left[T_{\tilde{\mu}_t} f(e) - f(e) \right]$$

exists for every $f \in C_{(2)}(G)$.

Remark 2.9. Let G be a commutative Hilbert-Lie group and $(\mu_t)_{t \in \mathbf{R}^*_+}$ a convolution semigroup in $\mathcal{M}^1(G)$. As in the proof of Proposition 2.8, we can find a constant $k(n) \in \mathbf{R}^*_+$ (independent of $a \in G$ and $t \in \mathbf{R}^*_+$) such that

$$\left| \frac{1}{t} (T_{\mu_t} f(a) - f(a)) \right| = \left| \frac{1}{t} [T_{\mu_t} (L_a f)(e) - (L_a f)(e)] \right|$$

$$\leq k(n) \cdot \left\| L_a f \right\|_2 = k(n) \cdot \|f\|_2,$$

for all $f \in C_{(2),n}(G)$ and $a \in G$. Banach-Steinhaus Theorem now yields the existence of the limit

$$Nf(a) = \lim_{t \downarrow 0} \frac{1}{t} \left[T_{\mu_t} f(a) - f(a) \right]$$

uniformly in $a \in G$. This implies the existence of the infinitesimal generator N on $C_{(2)}(G)$.

Remark 2.10. Let G = H be a separable Hilbert space and $C_u^{(2)}(H)$ the space of all twice Fréchet differentiable functions $f \in C_u(H)$ such that $||f'|| := \sup_{x \in H} ||f'(x)|| < \infty$, $||f''|| := \sup_{x \in H} ||f''(x)|| < \infty$ and f'' is uniformly continuous in x. Then we have $C_u^{(2)}(H) \subset D(N)$ (cf. [6]) and $C_2(H) = C_u^{(2)}(H)$.

Acknowledgement

The author would like to thank Professor E. Siebert for several helpful discussions and comments.

References

- 1. H. Boseck and G. Czichowski, Grundfunktionen und verallgemeinerte Funktionen auf topologischen Gruppen I, Math. Nach. 58 (1973), 215-240.
- E. Coşkun, Faltungshalbgruppen von Wahrscheinlichkeitsmaßen auf einer Hilbert-Lie-Grouppe, Dissertation der Mathematischen Fakultät der Universität Tübingen, 1991.
- 3. H. Heyer, *Probability Measures on Locally Compact Groups*, Springer, Berlin-Heidelberg-New York, 1977.
- G. A. Hunt, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293.
- 5. M. Maissen, *Lie-Gruppen mit Banachräumen als Parameterräume*, Acta Math. **108** (1962), 229-270.
- J. D. Samur, On semigroup of convolution operators in Hilbert space, Pacific J. Math. 115 (1984), 463-479.
- E. Siebert, Jumps of stochastic processes with values in a topological group, Prob. Math. Statist. 5 (1985), 197-209.
- 8. T. Zak, A representation of infinitesimal operators of semigroups of measures on Banach spaces of cotype 2, Bull. Pol. Acad. Scien. **31** (1983), 71-74.

HACETTEPE UNIVERSITY, FACULTY OF EDUCATION, DEPARTMENT OF MATHEMATICS, 06532 BEYTEPE-ANKARA TURKEY *E-mail:* coşkun@eti-cc.hun.edu.tr